
From vhd to thy

Zhé Hóu

September 19, 2016

The main task is to convert a VHDL file (.vhd) to an Isabelle file (.thy). Note

that we do not use the complete VHDL syntax, but only a subset of it.

1 Basics of Isabelle files

A .thy file is wrapped in the following structure:

theory f i l ename

imports Main vhdl component vhdl syntax complex

begin

. . .

end

where filename must be identical to the name of the .thy file, and the ... part is

the content of the file.

Optionally you can add a commented header (placed at the beginning of the

file, before the above) for license and related issues, for example:

(∗
∗ Copyright 2016 , NTU

∗
∗ This so f tware may be d i s t r i b u t e d and modi f i ed accord ing to

∗ the terms o f the BSD 2−Clause l i c e n s e . Note that NO WARRANTY

∗ i s provided . See ”LICENSE BSD2 . txt ” f o r d e t a i l s .

∗
∗ Author : Hongxu Chen and Nam.

1

∗)

2 VHDL types, values, and expressions in Is-

abelle

2.1 VHDL types in Isabelle

The following are the VHDL types pre-defined in our Isabelle model, these in-

clude: vhdl boolean, vhdl bit, vhdl character, vhdl integer, vhdl positive,

vhdl natural, vhdl real, vhdl time, vhdl string, vhdl bitstr, vhdl boolstr,

vhdl std logic,

vhdl std ulogic, vhdl std logic vector, vhdl std ulogic vector, vhdl signed,

vhdl unsigned.

As far as I see in the iu.vhd, the LEON3 design only uses vhdl signed and

vhdl unsigned in shifting operations, thus I just treat these two types in the

same way as vhdl std logic vector. Shifting on signed must be arithmetic shift,

shifting on unsigned must be logical shift.

2.2 VHDL values in Isabelle

The values in VHDL are presented in Isabelle as below:

In VHDL In Isabelle

If a value is an integer i val i i

If a value is a real r val r r

If a value is a character c val c (CHR ’’c’’)

If a value is a std logic c val c (CHR ’’c’’)

If a value is a std ulogic c val c (CHR ’’c’’)

If a value is a Boolean b val b b

If a value is a vector defined with TO val list [...]

If a value is a vector defined with DOWNTO val rlist [...]

Not used val null

2

2.3 VHDL expressions in Isabelle

The supported expressions in the Isabelle model is defined inductively:

datatype exp r e s s i on =

uexp uop expr e s s i on

| bexpl exp r e s s i on lop exp r e s s i on

| bexpr exp r e s s i on rop exp r e s s i on

| bexps exp r e s s i on sop exp r e s s i on

| bexpa exp r e s s i on aop expr e s s i on

| e x p s i g ”(name x type x s i g n a l k i n d x exp r e s s i on)”

| exp prt ”(name x type x mode x connect ion x exp r e s s i on)”

| exp var ”(name x type x exp r e s s i on)”

| exp con const

| exp nth exp r e s s i on exp r e s s i on

| e x p s l exp r e s s i on exp r e s s i on exp r e s s i on

| e x p t l exp r e s s i on

| e x p t r l exp r e s s i on

| exp f c ”name x (exp r e s s i on l i s t) x type ”

| exp r r h s l

and r h s l =

r l s ”(name x type x s i g n a l k i n d exp r e s s i on)”

| r l p ”(name x type x mode x connect ion x exp r e s s i on)”

| r l v ”(name x type x exp r e s s i on)”

| r n l ” r h s l l i s t ”

uexp is for unary expressions. uop is one of [abs] (absolute value), [not], [-:]

(negative), [+:] (positive). For example:

In VHDL In Isabelle

-e uexp [-:] e

bexpl is for binary logical expressions. rop is one of [and], [or], [nand], [nor],

[xor], [xnor]. For example:

In VHDL In Isabelle

e1 and e2 bexpl e1 [and] e2

3

bexpr is for binary relational expressions. rop is one of [=], [’/=] (not equal),

[<], [<=], [>], [>=]. For example:

In VHDL In Isabelle

e1 /= e2 bexpr e1 [’/=] e2

bexps is for binary shifting expressions. sop is one of [sll], [srl], [sla], [sra],

[rol], [ror]. For example:

In VHDL In Isabelle

e1 sll e2 bexps e1 [sll] e2

bexpa is for binary arithmetic expressions. aop is one of [+], [-], [&] (concate-

nate), [*], [’/] (division), [mod], rem (reminder), [**] (exponential). For

example:

In VHDL In Isabelle

e1 / e2 bexpa e1 [’/] e2

exp nth gets the nth member of a vector. In an instance exp nth e1 e2, e1 must

be an expression of a vector type, and e2 must be an expression of type

vhdl natural. This is useful when expressing member access of a vector

type object in VHDL. For example:

In VHDL In Isabelle

v(63) exp nth (exp var v) (exp con (vhdl natural, val i 63))

exp sl gets a sub-vector of a vector. In an instance exp sl e1 e2 e3, e1 must

be an expression of a vector type, e1 and e2 must be expressions of type

vhdl natural. This is useful when the right hand side of an assignment (not

the left hand side, which requires a different Isabelle construct) is

a range expression. For example:

In VHDL In Isabelle

s1 <= s2(31 downto 0); (””:(lhs s (sp s s1)) <= (rhs e (exp sl (exp sig s2)

(exp con (vhdl natural, val i 31))

(exp con (vhdl natural, val i 0)))))

4

exp tl converts an expression to a vector type defined with TO. This is used,

e.g., when the VHDL code mixes the use of non-vector objects and vector

objects. Isabelle is strongly typed, so we have to convert the type explicitly.

For example:

In VHDL In Isabelle

v & ’1’ bexpa (exp var v) [&] (exp trl (exp con (vhdl std logic,

val c (CHR ”1”))))

That is, the VHDL code applies list concatenation to a list and a member of

the list1. This is not allowed in Isabelle, so we need to convert the member

to a singleton list first.

exp trl converts an expression to a vector type defined with DOWNTO.

exp fc is for function calls in expressions, but we never actually use this, see

Section 6.10 for details.

exp r is for the right hand side of the assignments of record types. For example,

if the variables v and rin are of a record type in the VHDL code, we convert

the record type assignment as below:

In VHDL In Isabelle

rin <= v; (””: (clhs spr rin) <= (rhs e (exp r (rhsl of vl v)))),

2.4 Useful abbreviations

The following as some useful abbreviations for expressions:

e l b = exp con (v h d l s t d l o g i c , (v a l c b))

eu l b = exp con (v h d l s t d u l o g i c , (v a l c b))

en i = exp con (vhd l natura l , (v a l i i))

e l l l = exp con (v h d l s t d l o g i c v e c t o r , (v a l l i s t l))

1Or, you can say VHDL overloads the symbols for list concatenation and list appending.

5

e u l l l = exp con (v h d l s t d u l o g i c v e c t o r , (v a l l i s t l))

e l r l l = exp con (v h d l s t d l o g i c v e c t o r , (v a l r l i s t l))

e u l r l l = exp con (v h d l s t d u l o g i c v e c t o r , (v a l r l i s t l))

3 Using signals/ports in Isabelle

In many occasions the Isabelle model use a type sigprt for either a signal or a

port. A signal s in VHDL corresponds to sp s s in the Isabelle code. A port p

in VHDL corresponds to sp p p. This is used in the definition of env sp, and in

the Isabelle code for the VHDL statements. For example, a signal assignment in

VHDL

addsub <= vaddsub ;

is translated to

(’ ’ ’ ’ : (c l h s s p (l h s s (sp s addsub))) <= (r h s e (exp var vaddsub)))

4 Declarations.

4.1 Library and import declarations

These two kinds of declarations in .vhd is ignored.

4.2 Entity declaration

Each .vhd file should have an entity declaration (usually only one). An entity

declaration is of the form:

e n t i t y div32 i s

g e n e r i c (s c a n t e s t : i n t e g e r := 0) ;

port (

r s t : in s t d u l o g i c ;

6

c l k : in s t d u l o g i c ;

holdn : in s t d u l o g i c ;

d i v i : in d i v 3 2 i n t y p e ;

divo : out d iv32 out type ;

t e s t e n : in s t d u l o g i c := ’ 0 ’ ;

t e s t r s t : in s t d u l o g i c := ’1 ’

) ;

end ;

A entity corresponds to a definition of type vhdl desc complex in Isabelle.

This type is a triple of environment, res fn, conc stmt complex list, and

subprogram complex list.

environment is a record with three fields: env sp for the list of signals/ports;

env v for the list of variables/constants/generics; and env t for the list of

types defined in the .vhd file (record types, as said above, do not count).

Usually env t is blank, as my model covers the widely-used types.

res fn is the resolution function for signals. This field is usually \<lambda>x.(None),

i.e., an empty function.

conc stmt complex list is the list of concurrent statements in this entity.

subprogram complex list is the list of function bodies and procedure bodies in

this entity.

The entity above is translated to the following definition in Isabelle:

d e f i n i t i o n div32 : : ” vhdl desc complex ” where

” div32 \<equiv>

l e t env = \< l par r>env sp = [. . .] ,

env v = [. . .] ,

env t = [. . .] \ < rparr >;

r e s f n = \<lambda>x . (None) ;

c s t l i s t = [. . .]

in

(env , r e s fn , c s t l i s t , [])

”

7

where the ... parts are to be filled later.

4.3 Declaration of architecture

In the Isabelle code we do not explicitly define architectures. Instead, we associate

each architecture to a state. For example, the architecture declaration

a r c h i t e c t u r e r t l o f div32 i s

(∗ s i g n a l / v a r i a b l e / constant d e c l a r a t i o n s ∗)

begin

(∗ concurrent statements ∗)

end

corresponds to the following state in Isabelle:

d e f i n i t i o n i n i t a r c h s t a t e r t l : : ” v h d l a r c h s t a t e ” where

” i n i t a r c h s t a t e r t l \<equiv> a r c h s t a t e (’ ’ r t l ’ ’ ,

i n i t s t a t e , []) ”

where the empty list [] contains the components used in this architecture. In

case there are components in the architecture, each component will be a pair

(comp port map, vhdl arch state) in the list. comp port map is simply a map-

ping from sigprt to sigprt (see Section 3). For instance, to define the port

mappings

p1 7→ s1, p2 7→ p3,

use the following Isabelle definition:

d e f i n i t i o n my port map : : ”comp port map” where ”my port map

\<equiv> add comp port map [(sp p p1 , sp s s1) ,

(sp p p2 , sp p p3)] emp comp port map”

Signal/variable/port/constant declarations are translated as below.

Concurrent statements are translated in the next section. The translated ver-

sion goes to the list cst list in definition for the entity.

8

4.4 Declaration of variables

Some entities have a generic declaration, which includes some declarations of

variables. These are all translated to definitions of type variables in Isabelle. A

variable type in Isabelle is defined as a triple of name, type, and expression.

name is a string in Isabelle, which is of the form ’’...’’ (enclosed by two single

quotes, not a double quote) where ... is the content of the string.

type is the type of the variable.

expression is the initial expression of the variable.

For example, the generic variable “scantest” in the above entity declaration is

translated to:

d e f i n i t i o n s c a n t e s t : : ” v a r i a b l e ” where

” s c a n t e s t \<equiv> (’ ’ s cante s t ’ ’ , vhd l i n t eg e r ,

(exp con (vhd l i n t eg e r , (v a l i 0)))) ”

N.B. constants in VHDL are defined as variables in Isabelle.

4.5 Declaration of ports

Ports in a VHDL design is usually declared right after the entity declaration. See

the div32 entity for an example. Sometimes there are no initial values for ports.

But in Isabelle we need to make up some initial values, usually 0 for integers,

and ’0’ for std logic and std ulogic and char and bit.

A port in my Isabelle model is defined as a tuple of name, type, mode, connection,

expression. Some of them are explained before, the others stand for:

mode is the mode of the port, in Isabelle we have defined the following modes:

mode in, mode out, mode inout, mode buffer, mode linkage.

connection is either connected or unconnected. Usually use the former if not

defined in VHDL.

expression is an expressions for the initial value of the port. Here we use a

constant expression for the initial value. A constant is a pair of type and

val. A constant expression is of the form exp con (type,val).

9

For example, the declaration of the port rst in div32 is translated as below:

d e f i n i t i o n r s t : : ” port ” where

” r s t \<equiv> (’ ’ r s t ’ ’ , v h d l s t d u l o g i c , mode in , connected ,

(exp con (v h d l s t d u l o g i c , (v a l c (CHR ’ ’ 1 ’ ’))))) ”

4.6 Declaration of signals

As for ports, signal declarations in Isabelle requires an initial value. A signal is

defined as a tuple of name, type, signal kind, expression, the last of which is

the initial value of the signal.

signal kind is one of register, bus, and discrete. If it’s not defined, use

register.

Here’s an example of signal declaration in VHDL:

s i g n a l a r s t : s t d u l o g i c ;

This is translated to the following Isabelle definition:

d e f i n i t i o n a r s t : : ” s i g n a l ” where

” a r s t \<equiv> (’ ’ a r s t ’ ’ , v h d l s t d u l o g i c , r e g i s t e r ,

(exp con (v h d l s t d u l o g i c , (v a l c (CHR ’ ’ 1 ’ ’))))) ”

4.7 Declaration of signal/port/variable vectors

If a signal/port/variable is a vector (i.e., array/list), the value will be a val list or

val rlist. For example, the following says addin1 is a signal of type std logic vector

and is defined with downto:

s i g n a l addin1 : s t d l o g i c v e c t o r (32 downto 0) ;

This is translated to

d e f i n i t i o n addin1 : : ” s i g n a l ” where

” addin1 \<equiv> (’ ’ addin1 ’ ’ , v h d l s t d l o g i c v e c t o r , r e g i s t e r ,

(exp con (v h d l s t d l o g i c v e c t o r ,

(v a l l i s t (s t d l o g i c v e c g e n 33 (v a l c (CHR ’ ’ 0 ’ ’))))))) ”

10

Note that a vector defined with downto corresponds to values of val rlist

(reversed list); a vector defined with to corresponds to val list.

We initialise the vector to all 0s. You can use an Isabelle function std logic vec gen

x val to generated a list of values val of length x. This functions can be used for

both downto and to.

4.8 Declaration of signal/port/variable records

We do not explicitly define record types in Isabelle. Instead, a record in VHDL

is defined as a list in Isabelle. For example, a signal record in VHDL corresponds

to a signal list in Isabelle, where each field of the record corresponds to a signal

in the list. Consider the following record type declaration and constant record

declaration:

type d iv r eg type i s r ecord

x : s t d l o g i c v e c t o r (64 downto 0) ;

s t a t e : s t d l o g i c v e c t o r (2 downto 0) ;

ze ro : s t d l o g i c ;

zero2 : s t d l o g i c ;

qcor r : s t d l o g i c ;

z c o r r : s t d l o g i c ;

qzero : s t d l o g i c ;

qmsb : s t d l o g i c ;

ovf : s t d l o g i c ;

neg : s t d l o g i c ;

cnt : s t d l o g i c v e c t o r (4 downto 0) ;

end record ;

constant RRES : d iv r eg type := (

x => (o the r s => ’ 0 ’) ,

s t a t e => (o the r s => ’ 0 ’) ,

z e ro => ’ 0 ’ ,

ze ro2 => ’ 0 ’ ,

qcor r => ’ 0 ’ ,

z c o r r => ’ 0 ’ ,

11

qzero => ’ 0 ’ ,

qmsb => ’ 0 ’ ,

ov f => ’ 0 ’ ,

neg => ’ 0 ’ ,

cnt => (o the r s => ’ 0 ’)) ;

We define RRES as below in Isabelle:

d e f i n i t i o n r r e s : : ” v a r i ab l e l i s t ” where

” r r e s \<equiv> vnl (’ ’ ’ ’ , [

v l v (’ ’ r r e s x ’ ’ , v hd l s t d l o g i c v e c t o r , (exp con (vhd l s t d l o g i c v e c t o r ,

(v a l r l i s t (s t d l o g i c v e c g e n 65 (va l c (CHR ’ ’ 0 ’ ’))))))) ,

v l v (’ ’ r r e s s t a t e ’ ’ , v hd l s t d l o g i c v e c t o r , (exp con (vhd l s t d l o g i c v e c t o r ,

(v a l r l i s t (s t d l o g i c v e c g e n 3 (v a l c (CHR ’ ’ 0 ’ ’))))))) ,

v l v (’ ’ r r e s z e r o ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s z e r o 2 ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s q c o r r ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s z c o r r ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s q z e r o ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ rres qmsb ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s o v f ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s neg ’ ’ , v hd l s t d l o g i c , (exp con (vhd l s t d l o g i c , (v a l c (CHR ’ ’ 0 ’ ’))))) ,

v l v (’ ’ r r e s cn t ’ ’ , v hd l s t d l o g i c v e c t o r , (exp con (vhd l s t d l o g i c v e c t o r ,

(v a l r l i s t (s t d l o g i c v e c g e n 5 (v a l c (CHR ’ ’ 0 ’ ’)))))))

]) ”

It is important that each member of the list has a name prefixed with the

name of the list and an underscore. For example, all member names start with

rres if the name of the list is rres. Our Isabelle model uses the prefix to search

for members of a list.

5 Concurrent statements

Our Isabelle model accepts three types of concurrent statements: process state-

ment, concurrent signal assignment, and generate statement.

5.1 Process statement

A process statement in VHDL is of the form

name : p roce s s (s1 , s2 , p1 , . . .)

(∗ v a r i a b l e d e c l a r a t i o n s ∗)

begin

12

seq stmt1 ;

seq stmt2 ;

. . .

end proce s s ;

where seq stmt1 and seq stmt2 are sequential statements. In Isabelle we deal

with variable declarations before the definition of the entity (of type vhdl desc complex).

Thus we assume the variable declarations in a process statement have already been

defined in Isabelle. The above is translated to

(’ ’ name ’ ’ :PROCESS([sp s s1 , sp s s2 , sp p p1 , . . .])

BEGIN [seq stmt1 ’ , seq stmt2 ’ , . . .]

END PROCESS)

where seq stmt1’ and seq stmt2’ are the translated version of the corresponding

sequential statements.

5.2 Concurrent signal assignment

Consider the following concurrent signal assignment in VHDL:

s <= s1 when exp1 e l s e

s2 when exp2 e l s e

p1 when exp3 e l s e

c

where s1, s2 are signals, p1 is a port, and c is a constant.

If s is not a record , the above is translated to

(’ ’ ’ ’ : (c l h s s p (l h s s (sp s s))) <= <[(r h s e (exp s i g s1)) WHEN exp1 ’ ELSE,

(rh s e (exp s i g s2)) WHEN exp2 ’ ELSE,

(rh s e (exp prt p1)) WHEN exp3 ’ ELSE]>

(r h s e (exp con c))

)

If s is a record , which means s1, s2, p1 and c are all records, the assignment

is translated as follows:

13

(’ ’ ’ ’ : (c l h s r s) <= <[(r h s e (exp r (r h s l o f s p l s1))) WHEN exp1 ’ ELSE,

(rh s e (exp r (r h s l o f s p l s2))) WHEN exp2 ’ ELSE,

(rh s e (exp r (r h s l o f s p l p1))) WHEN exp3 ’ ELSE]>

(r h s e (exp r (r h s l o f v l c)))

)

Here’s a concrete example:

a r s t <= t e s t r s t when (ASYNC RESET and s can t e s t /=0 and t e s t en /= ’0 ’) e l s e

r s t when ASYNC RESET e l s e

’ 1 ’ ;

This is translated to:

(’ ’ ’ ’ : (c l h s s p (l h s s (sp s a r s t))) <= < [((r h s e (exp prt t e s t r s t)) WHEN

(bexpl (exp var a s yn c r e s e t) [and] (bexpl

(bexpr (exp var s c an t e s t) [/=] (exp con (vhd l i n t eg e r , (v a l i 0)))) [and]

(bexpr (exp prt t e s t en) [/=] (eu l (CHR ’ ’ 0 ’ ’))))) ELSE) ,

((r h s e (exp prt r s t)) WHEN (exp var a s yn c r e s e t) ELSE)]>

(r h s e (eu l (CHR ’ ’ 1 ’ ’)))) ,

5.3 Generate statement

If generate statement is of the following form:

name : i f exp generate begin

conc stmt1 ;

conc stmt2 ;

. . .

end generate

where conc stmt1 and conc stmt2 are concurrent statements. This is translated

to

(’ ’ name ’ ’ : IF exp ’ GENERATE BEGIN

conc stmt1 ’ ;

conc stmt2 ’ ;

. . .

END GENERATE)

where conc stmt1’ and conc stmt2’ are translated concurrent statements.

14

For generate statement is of the following form:

name : f o r i in 0 to 10 generate begin

conc stmt1 ;

conc stmt2 ;

. . .

end generate

This is translated to

(’ ’ name ’ ’ : FOR (exp var i) IN (en 0) TO (en 10) GENERATE BEGIN

conc stmt1 ’ ;

conc stmt2 ’ ;

. . .

END GENERATE)

6 Sequential statements

Our Isabelle model only covers a synthesisable subset of VHDL. The related se-

quential statements are translated as below.

6.1 Signal assignment

A signal assignment has the form

l h s <= rhs ;

If the target signal/port is not a record , then lhs can be either a signal/-

port (including a member of a signal/port record), or a signal/port vector with a

range. These are translated as follows, where s1 is a signal, p1 is a port, and s2.m

is a signal:

lhs In VHDL lhs In Isabelle

s1 (clhs sp (lhs s (sp s s1)))

p1 (clhs sp (lhs s (sp p p1)))

s2.m (clhs sp (lhs s (sp s (s2 s.’’s2 m’’))))

s1(30 downto 1) (clhs sp (lhs sa (sp s s1) ((en 30) DOWNTO (en 1))))

s1(5 to 10) (clhs sp (lhs sa (sp s s1) ((en 5) TO (en 10))))

15

The right hand side of the assignment can be either an expression or an other

expression. These are translated as below:

rhs In VHDL rhs In Isabelle

e (rhs e e)

(others => ’0’) (OTHERS => (el (CHR ’’0’’)))

Refer to Section 2.3 for how expressions are translated in Isabelle.

The assignment is translated to:

(’ ’ ’ ’ : lhs ’ <= rhs ’)

where lhs’ and rhs’ are the translated left hand side and right hand side.

If the target signal/port is a record , then lhs must be a signal record or

a port record, which corresponds to a signal list or a port list in Isabelle. The

rhs can be a signal record or a port record or a variable record. Assuming s1 is

a signal vector, p1 is a port vector, and v1 is a variable vector, the translation of

the left hand side is as follows:

lhs In VHDL lhs In Isabelle

s1 (clhs spr s1)

p1 (clhs spr p1)

and the right hand side is translated as below:

rhs In VHDL rhs In Isabelle

s1 (rhs e (exp r (rhsl of spl s1)))

p1 (rhs e (exp r (rhsl of spl p1)))

v1 (rhs e (exp r (rhsl of vl v1)))

In this case, the assignment is translated as below:

(’ ’ ’ ’ : lhs ’ <= rhs ’)

where lhs’ and rhs’ are the translated left hand side and right hand side.

6.2 Variable assignment

The treatment for variable assignments are very similar to that for signal assign-

ments.

A variable assignment has the form

16

l h s := rhs ;

If the target signal/port is not a record , then lhs can be either a variable

(including a member of a variable record), or a variable vector with a range. These

are translated as follows, where v1 and v2.m are variables:

lhs In VHDL lhs In Isabelle

v1 (clhs v (lhs v v1))

v2.m (clhs v (lhs v (v2 v.’’v2 m’’)))

v1(30 downto 1) (clhs v (lhs va v1 ((en 30) DOWNTO (en 1))))

v1(5 to 10) (clhs v (lhs va v1 ((en 5) TO (en 10))))

The right hand side of a variable assignment is the same as the right hand side

of a signal assignment. See Section 6.1.

The assignment is translated to:

(’ ’ ’ ’ : lhs ’ := rhs ’)

where lhs’ and rhs’ are the translated left hand side and right hand side.

If the target signal/port is a record , then lhs must be a variable record,

which corresponds to a variable list in Isabelle. The rhs can be a signal record or a

port record or a variable record. Assuming s1 is a signal vector, p1 is a port vector,

and v1 is a variable vector, the translation of the left hand side is as follows:

lhs In VHDL lhs In Isabelle

v1 (clhs vr v1)

and the right hand side is translated as below:

rhs In VHDL rhs In Isabelle

s1 (rhs e (exp r (rhsl of spl s1)))

p1 (rhs e (exp r (rhsl of spl p1)))

v1 (rhs e (exp r (rhsl of vl v1)))

In this case, the assignment is translated as below:

(’ ’ ’ ’ : lhs ’ := rhs ’)

where lhs’ and rhs’ are the translated left hand side and right hand side.

17

6.3 If statement

An if statement is of the form:

i f exp1 then

seq stmt1 ;

seq stmt2 ;

. . .

e l s i f exp2 then

. . .

e l s i f exp3 then

. . .

e l s e

. . .

end i f ;

where exp1, exp2, and exp3 are Boolean expressions, seq stmt1 and seq stmt2

are sequential statements. This is translated to:

(’ ’ ’ ’ : IF exp ’ THEN

[seq stmt1 ’ ,

seq stmt2 ’ ,

. . .]

[(ELSIF exp2 ’ THEN [. . .]) ,

(ELSIF exp3 ’ THEN [. . .])]

ELSE [. . .] END IF)

where exp1’, exp2’, and exp3’ are translated Boolean expressions, seq stmt1’

and seq stmt2’ are translated sequential statements.

6.4 Case statement

A case statement has the form:

case exp i s

when cho i c e s1 =>

seq stmt1 ;

seq stmt2 ;

18

. . .

when cho i c e s2 =>

. . .

when othe r s =>

. . .

end case ;

where exp is an expression, choices1 and choices2 are expressions separated by

| (there may be only one expression), seq stmt1 and seq stmt2 are sequential

statements. This is translated to:

(’ ’ ’ ’ : CASE exp ’ IS

WHEN cho ices1 ’ =>

[seq stmt1 ’ ,

seq stmt2 ’ ,

. . .]

WHEN cho ices2 ’ =>

[. . .]

WHEN OTHERS =>

[. . .]

END CASE)

where exp’ is the translated expression, choices1’ and choices2’ are lists of

translated expressions, seq stmt1’ and seq stmt2’ are translated sequential state-

ments.

6.5 While statement

A while statement is of the form

name : whi l e exp loop

seq stmt1 ;

seq stmt2 ;

. . .

end loop ;

where exp is an expression, seq stmt1 and seq stmt2 are sequential statements.

This is translated to:

19

(’ ’ name ’ ’ : WHILE exp ’ LOOP

[seq stmt1 ’ ,

seq stmt2 ’ ,

. . .]

END LOOP;

where exp’ is the translated expression, seq stmt1’ and seq stmt2’ are trans-

lated sequential statements.

6.6 For statement

A for statement is of the form

name : f o r i in 1 to /downto 10 loop

seq stmt1 ;

seq stmt2 ;

. . .

end loop ;

This is translated to:

(’ ’ name ’ ’ : FOR (exp var i) IN (1 TO/DOWNTO 10) LOOP

[seq stmt1 ’ ,

seq stmt2 ’ ,

. . .]

END LOOP)

6.7 Next statement

A next statement is of the form

next name when exp ;

where name is the label of a while/for statement, exp is a Boolean expression. This

is translated to:

(’ ’ ’ ’ : NEXT ’ ’ name ’ ’ WHEN exp ’)

where exp’ is the translated expression.

20

6.8 Exit statement

An exit statement is of the form

e x i t name when exp ;

where name is the label of a while/for statement, exp is a Boolean expression. This

is translated to:

(’ ’ ’ ’ : EXIT ’ ’ name ’ ’ WHEN exp ’)

where exp’ is the translated expression.

6.9 Null statement

A null statement is of the form

n u l l ;

This is translated to

NULL

6.10 Function Call

In VHDL function calls are expressions. In my Isabelle model, we support function

calls as a specific type of variable assignment statements as below:

v := f(x);

Suppose x is a variable, and this function’s return type is vhdl integer, this

is translated to the following syntax in Isabelle (if v is not a record):

ssc fn ’’’’ (clhs v (lhs v v)) (’’f’’, [(rhs e (exp var x))],

vhdl integer)

For each function call in VHDL of the following form:

v := f(x) + ...;

We create a fresh and distinct variable v tmp, and create a variable assignment as

below:

21

v tmp := f(x);

v := v tmp + ...;

If a variable is initialised by a function call, we do not use the function call

as the variable’s initial expression. Instead, initialise the variable as an arbitrary

value, and assign the function call to the variable at the beginning of every process

in the entity. This ensures that the variable is initialised correctly.

6.11 Procedure Call

Procedure calls in VHDL are statements of the form

p(x);

Suppose x is a variable, in Isabelle this is translated to:

ssc pc ’’’’ (’’p’’, [(rhs e (exp var x))], emptype)

Note that procedures don’t return values, so the “return type” is always emptype.

7 Components

If a .vhd file uses components from other entities (defined in other .vhd files), all

the related entities have to be included, for example:

d e f i n i t i o n vhdl power comp : : ” v h d l a r c h d e s c a l l ” where

”vhdl power comp \<equiv> [(’ ’MULT’ ’ , t r ans vhd l de s c complex

vhdl mult) , (’ ’POWER’ ’ , t rans vhd l de s c complex vhdl power)] ”

Here, vhdl mult and vhdl power are two definitions of type vhdl desc complex

(cf. Section 4.2). More info about components can be found in Section 4.3.

8 Code export

Finally, the last two lines in the .thy file should be the commands for Isabelle code

export, for example:

export code t h i s t h y f i l e i n i t a r c h s t a t e p o w e r s im arch in OCaml

module name t h i s t h y f i l e ou tput f i l e name

22

