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ABSTRACT 

The internet is responsible for global connectivity and 

ensuring its safety is a paramount task for governments and 

organisations. Cybersecurity concerns led to the encryption of 

over 87% of internet traffic. Encryption ensures security by 

improving privacy between sender and receiver but creates a 

problem of in-accurate traffic classification. Previous papers 

have used Artificial Intelligence to address this problem, 

however issues such as model simplicity, complexity, 

imbalanced dataset etc, are problems yet to be addressed. 

Overfitting, underfitting and ultimately poor classification are 

outcomes of poorly designed models. This paper applies deep 

learning to the problem of encrypted traffic classification. A 

Convolutional Neural Network (CNN) is used to address this 

problem. An eleven layered architecture is designed and 

trained with a range of images generated from the metadata of 

encrypted traffic. At its core, the design is made less complex 

for understandability and deals with overfitting. The proposed 

model is assessed with the standard metrics of accuracy, 

precision, recall and  𝐹1 score then compared to a baseline 

model. The model is trained and tested for seven classification 

problems, using three encryption types (https, vpn, tor). For 

all classification tasks, the proposed model achieved 

accuracies ranging from 91% - 99%, which is an indication of 

optimum generalization strength. Our model outperformed 

the baseline model which had accuracies ranging from 67.6% 

- 99%, an indication of poor generalization strength. 
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1 Introduction 

The internet has been responsible for keeping the world 

digitally connected. Over the past decades, internet usage has 

increased geometrically. Remarkable advancements in 

technology have been made possible because of the internet. 

The rapid development of the internet has made it a dynamic 

space, accommodating different forms of data and protocols. 

In a bid to ensure privacy of data over the internet, encryption 

has been widely adopted. According to the 2021 transparency 

report by google, more than 90% of internet traffic is 

encrypted [1]. While encryption ensures privacy of 

information, it also comes with some disadvantages, one of 

which is the issue of network traffic classification. Accurately 

classifying network traffic is crucial for network resource 

management such as firewall, monitoring, anomaly, and 

intrusion detection [2]. In the case of anomaly detection, it can 

be detrimental to a network’s cybersecurity outlook and cause 

a major incident if malicious traffic finds its way unnoticed 

into a network. A new trend noticed during the COVID-19 

pandemic was an increase in Business email compromise 

(BEC) scams, which have become more organized, enhanced, 

and modernized to bypass cybersecurity protocols [3]. 

Watchguard (2021) reported 91.5% of malware in the second 

quarter of 2021 arrived over encrypted connection [22]. As 

researchers continue to develop resilient encryption methods 

and protocols, it is also important that security systems are 

developed to accurately analyse and classify traffic over these 

protocols while preserving privacy and confidentiality. 

Classifying internet traffic is usually at the core of every 

security system design. How well the system can detect 

unusual traffic from benign traffic can save an organization 

from cyber-attacks. The issue of false positives also comes up 

when IDS (Intrusion detection systems) are discussed. False 

positives and negatives can also be hinderances to security 

systems achieving their goal of accurate traffic classification. 

Due to the massive rate at which data is transferred over the 

internet, analysing every packet will induce latency to the 

network. Looking at mitigating these issues and properly 

classifying network traffic, we utilize deep learning for 

encrypted traffic analysis and classification. 

The conventional ways of network traffic classification are 

flow based and payload-based methods [4]. The flow-based 

method utilizes statistical features of traffic flows. A traffic 
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flow is categorized by the packet’s source/destination IP 

addresses, ports, and protocols. This method is effective in 

detecting and classifying intrusion and malicious traffic. The 

flow-based method, however, does not perform well when 

traffic is strongly encrypted e.g., if a TOR browser is used. It 

also requires high storage capacity to store flows, which can 

be time and resource consuming. The payload-based method 

also known as deep packet inspection, analyses every packet 

in a flow, in most cases, it decrypts the packet and scrutinizes 

its contents. This method is good for malware and threat 

detection, but it breaches privacy and is ineffective for 

representing the actual network behaviour. Understanding 

network behaviour is important for traffic classification and 

network security. To preserve the privacy of information, the 

flow-based model is the most widely utilized model.  

Deep learning is a subset of machine learning and artificial 

intelligence ecosystem [26]. Deep learning tries to mimic the 

human brain by learning patterns from a pool of data, then 

makes near accurate predictions based on the learnt 

information. It has been applied to numerous problems 

ranging from visual recognition, natural language processing, 

fraud detection etc. Recently, researchers applied deep 

learning to the problem of encrypted traffic classification; it 

was used to classify network data according to specific 

parameters, further research in this area is still underway. 

Network traffic is transmitted on secure channels which 

encrypts traffic content. By leveraging deep learning, high 

level properties of traffic flows can be extracted and used to 

classify traffic with high accuracy. Deep learning heavily relies 

on statistical concepts for its basic operations. Feedforward 

neural networks [23] are one of the most primary deep 

learning models. At its core, it defines a mapping and learns 

the value for the parameters that results in the best function 

approximation [23]. Convolutional Neural Networks (CNN) 

are feed forward networks mainly used for image 

classification tasks. CNN are trained using back propagation. 

 This paper develops a CNN based traffic classifier 

(supervised learning). We achieve our goal by investigating 

the advantages of using deep learning for the problem of 

traffic classification. A unique feature extraction process [5] is 

modified to properly represent the metadata of traffic flows as 

images. Due to the unstructured nature of encrypted traffic, 

we use the metadata rather than the encrypted bits for 

analysis. The model is trained and tested on the traffic flow 

images. We evaluate the performance of our model using 

standard metrics. 

The main contribution of this paper is as follows,  

• Improved the feature extraction process for traffic 

representation to better identify traffic flows. 

• Development of an optimized CNN based classifier 

with high generalization strength for identifying and 

classify encrypted network traffic. 

Section 2 of this paper discusses the gaps unaddressed by 

previous works. Our proposed architecture and experimental 

setup are discussed in sections 3 and 4. In Section 5, we report 

our results and discuss them in 6. Section 7 concludes the 

paper. 

 

2 Previous Work 

Machine learning and deep learning methods have recently 

been applied to the problem of internet traffic classification 

with the latter predominantly adopted within the last five 

years. CNN and Long-short term memory (LSTM) models are 

the most frequently used deep learning models for this task. 

The models are sometimes used together [8], [9], [10] or 

separately [4], [5]. These papers used various models to 

achieve different accuracies with different datasets. Most of 

the designs are complex in nature and do not address the 

possibility of overfitting during the training and testing 

process. Wang et al., (2017) was able to achieve an accuracy of 

99% for the classification of VPN traffic but achieved a lower 

accuracy of 86.6% for the classification of non-VPN traffic [6], 

this shows that the model has poor generalization strength 

and may have overfitted with the VPN traffic. 

When deep learning techniques are used for specific tasks, 

the tendency of the model overfitting rises. This is because 

models are usually trained to fit a particularly small set of 

data. This creates a generalization problem as models tend to 

give uneven values of accuracy when tested with unseen data. 

Lu et al [8], used both CNN and LSTM for local and temporal 

feature extraction respectively. Both models were arranged in 

parallel, enabling features to be extracted and trained 

simultaneously, concatenated, then classified. They achieved 

an overall accuracy of 98.1%.  The complexity of their model 

is a drawback as latency can become an issue if implemented 

for real-time classification. Hu et al [9], also used CNN and 

LSTM but arranged both models sequentially. The output of 

the LSTM is fed as input to the CNN and classification is done. 

Their model utilizes a squeeze and excitation (SE) 

mechanism. The SE operates using attention mechanism, 

where the most effective feature map has a higher weight, and 

the less effective feature map has a lesser weight. This makes 

the model biased toward high frequency traffic which can 

easily lead to overfitting. Bayat et al [10] used CNN and GRU 

(gated recurrent unit) to classify traffic. They classified traffic 

according to server name indication (SNI), reaching an overall 

accuracy of 82.3%. Which is relatively low.  

Shapira et al [5] used only CNN to classify internet traffic. 

They converted the extracted features (packet size and arrival 

time) into images of traffic flows. The generated images were 

then fed to a simple CNN model for the task of classification. 

Their model produced accuracies ranging from 67.8% - 

98.4%. A high point of their design is its ability to classify 

unknown traffic. In our paper, we adopt their [5] image 

generation method and use a deeper model to improve 

classification generalization strength. Vu et al [4] used LSTM 

for traffic classification by analysing internet traffic in time 

series. They combined both the payload and flow-based 
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technique to properly represent the behaviour of traffic. They 

extracted seven features from packets to complete this task. 

Source port, destination port and protocol were used to 

identify the direction of a flow. Data length was used to 

represent unique application traffic. The last three features 

TCP/UDP header, application header and application data (all 

represented with byte values) made up the IP payload. They 

achieved a 𝐹1 score of 98% not considering accuracy as a 

metric.  

Recent papers on traffic classification laid more emphasis 

on model design than the data to be analysed. Datasets used 

for model training were imbalanced and assessing a model 

with such data will have a direct impact on accuracy. It is 

therefore important to properly augment dataset before the 

task of classification is performed, this will show the true 

performance of the model across all classification tasks. Other 

gaps like model simplicity leading to poor generalisation 

(especially for low frequency data), overfitting and poor 

granularity are issues with current designs. 

 

3 Proposed Architecture 

 

 

 

After reviewing recent works that addressed a similar topic, 
we developed a new model. The proposed architecture uses 
the flowpic [5] method to generate traffic images, then 
combines the LeNet5 [11] and VGG16 [12] model to develop a 
deeper classifier. Distinctive layers are added to make the 
algorithm deeper and curb the tendency of the model 
overfitting.  

Our goal is to develop a model with a simple design that 

has optimal generalization strength. When developing a deep 

learning model, the task the model aims to perform should be 

a deciding factor in determining how deep the model should 

be. The traffic classification problem as defined by [5] has 

been reduced to an image classification problem. This is to 

properly visualise traffic behaviour for proper classification. 

The image generation process as outlined in Figure 1 involves 

extracting the metadata from every packet, preparing the data 

which involves data wrangling and features scaling, then 

generating images corresponding to traffic flows. The process 

is defined in-depth in section 4.2. We design our CNN model as 

described in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Proposed Convolutional Neural Network based classifier 

Figure 1b: Proposed Convolutional Neural Network based classifier 

 

Figure 1: Image generation process 

Figure 1a: Image generation process 
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The model has a total of eleven layers which consists of, 

four convolution layers, two max pooling layers, two dropout 

layers, one flatten layer and two dense layers (one used as the 

soft max classifier). New layers are labelled for clarity. The 

model takes input images of size 224x224, hence we process 

our images as such. The size was chosen based on empirical 

study done on image classification. Richer et al [13] conducted 

experiments with different image sizes (32x32, 224x224, and 

1024x1024) to ascertain the effect of image size on a model’s 

accuracy. When the size was reduced to 32x32 the model’s 

accuracy dropped by 8.78% and when it was increased to 

1024x1024 the model’s accuracy dropped by 6.49%. The 

model achieved its best accuracy when trained with 224x224 

sized images. We also adopt this format because the 

renowned VGG16 model [12] processed images in this format 

and used them for classification task. All the hidden layers are 

equipped with the rectified linear unit (ReLU) non-linearity.  

The first two layers are a stack of convolutional layers. The 

intuition behind stacking two convolutional layers is because 

the next layer is a pooling layer which decreases the image 

dimension exponentially. The pooling action, while decreasing 

dimensionality causes loss of spatial information. It is 

therefore important to build up better representation of the 

images before passing it through a pooling layer. Zisserman & 

Simonyan [12] demonstrated the advantages of stacking 

multiple convolutional layers without the pooling in-between. 

By this practice, they were able to increase the effective 

receptive fields and make the decision function more 

discriminative. A kernel size of 3x3 with a stride of 2 is used to 

perform the convolution operation on all layers. Choosing a 

kernel size with a small receptive field is important to capture 

features from all notions. The same kernel size and stride was 

used across all convolutional layers in the model. After taking 

an input image of 224x224 the first convolutional layer gives 

an output image of 112x112. A channel of 32 is chosen for the 

first two convolutional layers for the model to learn properly. 

The intuition behind the channel size is efficiency and 

memory. Literatures like Mao et al [14] used more channels 

starting with 128, empirically this didn’t have much effect on 

the model’s accuracy as image dimensions kept changing after 

each layer. Using a large number of channels can cause a 

model to overfit. The second convolution layer takes the 

output of the first as its input. Using the same filter, kernel 

size, stride, and activation (ReLU) it gives an output shape of 

56x56.  

The next layer is the pooling layer, a max pool operation is 

performed on this layer with a kernel of size 2x2 and stride of 

2. An output shape of 28x28 is gotten from this layer. Max 

pooling is used to preserve the effective receptive field of the 

previous layer. The choice of a max pool operation amongst 

other options is due to its ability to adapt to features with low 

probability of activation, Boureau et al [15] demonstrated the 

recognition performance of pooling operations and max 

pooling stood out as the best technique.   

The fourth and fifth layers are a stack of convolution 

layers with an increased channel size of 64. The increment in 

channel size is because of the reduction in output shape, more 

channels will be needed to increase the learning capacity of 

the model. An increment by a multiple of 2 was chosen based 

on empirical study conducted, Zisserman & Simonyan [12] 

increased their channels from 64 till it reached 512. The 

fourth layer gives an output shape of 14x14 while the fifth 

layer gives an output shape of 7x7. The reduction in output 

shape is a direct function of the kernel used for convolution. 

By sliding the kernel across the image array an output image 

of a smaller dimension is obtained.  

A dropout layer with rate 0.25 is introduced as the sixth 

layer. This is to tackle the problem of over fitting as discussed 

in the previous section. The rate of 0.25 was chosen because 

we want our model to retain as many features as possible. Wu 

& Gu [16] conducted experiments placing dropout layers at 

unique positions in their design. They achieved the lowest 

error when dropout was placed after the max pooling and 

fully connected layers. In our model we use dropout after the 

second convolution stack and second fully connected layer, as 

this is where we achieved the lowest loss and highest 

accuracy from our experiments.  

The seventh layer is another max pooling layer with 

kernel size of 2x2 and stride of 2, the addition of this layer is 

to give depth to the model and improve its learning capability. 

The eighth layer is a flatten layer which converts the pooled 

feature map into a single column. It converts the mapped 

features into a one-dimensional (1D) array. The next layer is a 

fully connected layer which is simply a feed forward neural 

network. This is fed to a second dropout layer with rate 0.5 to 

check the model for overfitting again. The final layer is a 

SoftMax layer which is edited based on the defined number of 

classifications required.  

The proposed model was designed after an empirical 

review of well-known image classification models was carried 

out. The VGG I6 and flowpic model [5], [12] became the 

baseline for our design after this review. The flowpic model 

[5] was selected because of its ability to classify traffic with 

high accuracy while having a simple design, The LeNet5 [11] 

design. Accuracies of 98.4% and 99.7% were attained for VPN 

traffic class and application identification tasks respectively. 

This implies that making the model deeper will improve the 

classification accuracy and generalization strength. The model 

can also classify unknown applications. The VGG16 model 

[12] designed by Zisserman & Simonyan was one of the best 

performing models in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2014 [24]. The model 

achieved an accuracy of 92.7% on the popular ImageNet 

dataset which contains 14,197,122 million images of 21,841 

categories. The VGG 16 model stacks its convolution layers 

and uses a 3 x 3 kernel size for the convolution operation. We 

combine the deep structure of the VGG16 model and the 

simple structure of Shapira’s design to build our CNN model. 
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While designing our model we took into consideration the 

limitations of the baseline models. The VGG16 [12] model, 

which is well known for its classification strength, suffers 

some major drawbacks: it is very slow to train and has a very 

large architecture of over 530MB. Shapira & Shavitt’s [5] 

model is not deep enough and possesses low generalization 

strength. 

 

4 Experimental Setup and Methodology 

The experimentation process is divided into four major parts, 

as follows. The datasets, Data preparation and processing, 

Implementation and training, Performance Evaluation.  

4.1 The Datasets 

The University of New Brunswick (UNB) developed numerous 

datasets for different tasks of traffic classification. This dataset 

is made public and has been utilized by research universities 

and organizations for numerous research purposes. In this 

paper we used two of their datasets VPN-nonVPN traffic 

dataset (ISCXVPN2016) [27] and Tor-nonTor dataset 

(ISCXTor2016) [28]. 

The VPN-nonVPN traffic dataset [27] is currently one of 

the most popular datasets for traffic classifications tasks. 

Reviewed literatures like [4], [5] [7], [8], [9] used this dataset 

for traffic classification task. It is also used for comparative 

analysis. To generate this dataset the UNB Canadian Institute 

for Cybersecurity team, created accounts for Alice and Bob to 

use services (applications). A summary of the traffic created is 

described below in Table 1. 

The Tor-nonTor dataset [28] is also a popular dataset used 

for traffic classification task. Recent papers like [17], [18] used 

this dataset for encrypted traffic analysis. The traffic 

categories for the (ISCXVPN2016) and (ISCXTor2016) dataset 

are the same, hence Table 1 can be used to describe both 

datasets. The datasets are 28gb and 22gb respectively. Traffic 

for Bit torrent, Google, Twitter, FTPS, ICQ were low below 

1000 samples, and we had to augment to make up. The files 

are in pcap format. 

 
Table 1: Dataset Summary 

 

Traffic Category Content 
Browsing Firefox and Chrome 
Email SMTPS, POP3S and IMAPS 
Chat ICQ, AIM, Skype, Facebook, and 

Hangouts 

Streaming (Audio) Spotify 
Streaming (Video) Vimeo and YouTube 
File Transfer Skype, FTPS and SFTP 
VoIP Facebook, Skype, and Hangouts 
P2P (Transfer) uTorrent and Transmission 

(BitTorrent) 
VPN (All) Same as above but captured 

using VPN 

4.2 Data Preparation and Processing 

The goal is to generate images from traffic flows with their 

corresponding labels. These images are then fed to a 

convolutional neural network for the task of classification. To 

generate images, we extracted two features from each packet 

(packet size and packet arrival time). In wireshark the 

columns frame.len and frame.time_relative represents the 

extracted features. 

To create images, each pcap file was split into window 

sizes of 15-, 30- and 60-seconds based on the 

frame.time_relative. We used different window sizes to have 

abundance of image samples for augmentation and to address 

the problem of traffic arrival time disparity. Traffic arrival 

time disparity happens when no packet arrives within the 

selected window leading to a blank image Figure 3c. 

The packet size was capped at 1500 bytes (maximum 

transmission unit), packets greater than 1500 bytes were not 

considered during analysis. The extracted features were 

converted to csv format. The values were plotted on a scatter 

plot, the y-axis signified frame.len and x-axis signified 

frame.time_relative. The y-axis was capped at 1500 and x-axis 

was capped based on the time window size used (15, 30, 

60secs). 

The resulting images were saved as JPEG files. The images 

generated from this process are called flowpics [5]. Images 

were classified into three encryption categories, https (Non-

VPN), VPN and TOR. For each encryption category the images 

were further classified into application type (e.g., Facebook 

Netflix, skype etc.) and traffic type (e.g., Video, Chat, Audio 

etc.).  

Data augmentation was heavily applied to the images to 

balance the data for the training and testing phase. Shorten & 

Khoshgoftaar (2019) conducted a survey of data 

augmentation techniques for DL, they achieved a higher 

accuracy when geometric transformation techniques like, 

flipping, cropping, rotating, colour space transformation was 

used to augment image data [25]. Hence, we use image 

rotation and flipping as augmentation techniques.  

The images are further processed to 224x224 pixel images on 

Keras before being fed to the model for training. Table 2 

shows the total number of images for each window size. 

 

Table 2: Number of images generated for different time 
windows 

 

Datasets 
Images Created 

60 Secs 30 Secs 15 Secs 

VPN-nonVPN 2693 5386 10772 

TOR 2482 4964 9928 

Figure 3a-c shows three sample of traffic flow images 

(flowpics) 3a is a flowpic for FTP when the TOR browser is 

used and 3b is a YouTube flowpic. Figure 3c shows the 



AISC 2022, February 14 – 18, 2022, Brisbane, QLD, Australia Z. Okonkwo et al. 

 

 

 

problem of traffic arrival time disparity, leading to an almost 

blank flowpic.  

 

  

Figure 3: Traffic flow images (Flowpic) 

4.3 Implementation and Training 

The model was trained for seven different experiments 
(Identification problems) as show in  
Table 3 below. Applications classes and Traffic type classes 
are defined in Section 4.1 as contents (Facebook, twitter etc) 
and categories. 
 

Table 3: Experiment Content 
 

Experiment Description 
1  non-VPN applications Identification  
2  non-VPN Traffic Type Identification 
3 VPN Application Identification 
4 VPN Traffic type Identification 
5  TOR Application Identification 
6 TOR Traffic type Identification 
7  Encryption Type Identification 

 
The following specifications are used for training. 

Implementation and experiment configuration are done with 

Keras API [29] using TensorFlow [21] (python 3.8.8) as its 

backend. The environment is a windows 10 pro-64-bit 

operation system the processor is an Intel (R) Core (TM) i5-

6300U CPU @ 2.40GHz 2.50 GHz, 8 GB ram size. For all 

experiment conducted we divided the data (images) into three 

sets, 80% training set, 10% validation set and 10% testing set. 

The hyperparameters of the model are as follows: batch size is 

10, a small batch size is used due to storage limitation, epoch 

is 60, Adam optimizer is used to improve the categorical cross 

entropy loss function with learning parameters of 0.0001 

learning rate. The decay rates 𝛽1, 𝛽2 and ∈ are set to their 

default values of 0.9, 0.999 and 10−8 respectively. We used the 

same training specifications for all experiment. 

Figure 4a-g Shows the training and validation accuracy 

curves for all seven experiments 

 

 

Figure 4: Training and validation curves of experiments 
 



A CNN based encrypted network traffic classifier AISC 2022, February 14 – 18, 2022, Brisbane, QLD, Australia 

 

 

From Figure 4a-g the curves show gradual increment in 

accuracies for all experiments. For most of the experiments, 

the validation accuracy graduated faster than the training 

accuracy due to the difference in sample size (80% training 

set, 10% validation/testing sets). DL models learn faster but 

not properly when the dataset is small, this does not affect the 

training process. Both training and validation curves have 

similar convergence properties, however in  Figure 4c the 

training accuracy graduated slowly but didn’t converge when 

trained for 60 epochs, it converged when the epoch was 

within 100 – 200.  Too many epochs can cause overfitting. 

4.4 Performance Evaluation 

To properly assess the usefulness of the developed model, its 

performance was evaluated. Performance evaluation is an 

important aspect of deep leaning, it is necessary for trusting a 

model as it gives an unbiased analysis of the model. The 

evaluation metrics used for our model are defined below: 

 

Classification Accuracy: Accuracy can be defined as the total 

number of predictions a model gets correct against the total 

number of predictions in the model. Mathematically it can be 

defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

Accuracy can also be calculated in terms of positives and 

negatives, as define with the formular below: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 

Precision: This can also be called the positive predictive 

value; it is used to find out the proportion of positive 

identifications that are correct. It is defined as the ratio of 

relevant instances amongst all instances received. It can be  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

Recall: This is used to find the proportion of actual positives 

that was identified correctly. It can be defined as the ratio of 

the number of correct results to the number of results that 

should have been returned. Recall can also be known as 

sensitivity, hit rate or true positive rate. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

𝑭𝟏-Score: This is used to assess the accuracy of a model on a 

dataset. It is called the harmonic mean as it combines the 

recall and precision scores of a model. It is used to give a 

picture of the model’s true performance. Mathematically it can 

be defined as: 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

Confusion Matrix: This is a technique used for summarizing 

the general performance of a model. It shows how the 

classification model is confused when it makes prediction, by 

giving a table of true labels against predicted labels. It gives 

the count of correct and incorrect classifications in normalized 

or non-normalized form. 

 

 

5 Results 

After training the model across all seven experiments. We 
tested the model using the standard metrics discussed in 
section 4.4.   
Figure 5a-g shows the confusion matrix of the test carried 

out. The matrix is used to show how well our model matches 

an input (image) to its correct label. It shows how well the 

model predicts and where it gets confused. 
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From Figure 5a-g our model shows good classification 
strength for the range of experiments conducted, however for 
some identification tasks it gave wrong predictions. 
The anomalies observed were found to be directly related to 

the imbalanced nature of the dataset. From Figure 5 The 

model couldn’t correctly classify “File_Transfer” images for 

non-VPN Traffic identification (5b). Email application images 

were not correctly classified for VPN application identification 

(5c). For TOR traffic identification the model couldn’t 

accurately classify audio and chat traffic types (5f). Not every 

application class and traffic type were considered during the 

training and testing phase because of data imbalance. 

Augmentation was heavily implemented to supplement low 

frequency data. After augmentation, classes with low image 

samples (less than 150) were dropped. The traffic class 

“browsing” was excluded when analysing the nonVPN and 

VPN application and traffic type classification because it 

wasn’t properly defined by the  
originators of the dataset. 

Relatively, our model performed well as no value is below 
the 91% mark. Table 4 shows the overall performance 
summary of our model based on the standard metrics. The 
average precision is 94.86% and values for recall and  F1   
Score are 94.29%. This interprets to an overall good 
generalization strength when compared to other literatures as 
seen in the next section. 

 

6 Discussion 

To further analyse the performance of our model, we compare 

our results with other literatures using [5] as the baseline 

model. Table 5 shows the summary of comparisons. In 

comparing our work to others, we use accuracy as the metric. 

This is because accuracy is the generally accepted metric for 

assessing DL and ML models.  Although, the flowpic [5] model 

performed better in two experiments, it gives inconsistent 

values for accuracy across all the conducted experiment.  

Figure 5: Confusion matrix of all experiments 
during model testing 
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Table 4: Overall performance summary 

 

Table 5:Result summary comparison 

 
For the task of non-VPN traffic type identification, our 

model outperformed the baseline model by 6%, ending up 

with an accuracy of 91%. For the task of non-VPN application 

identification, the baseline model outperformed our model. 

We ended up with an accuracy of 93% while [5] ended up 

with 99.7%. This result was unexpected but can be associated 

with the imbalanced nature of the dataset. 

For VPN traffic type identification, the “browsing” class was 

dropped due to its poor definition. The baseline model once 

again outperformed the proposed model. Our model achieved 

an accuracy of 96% while the baseline model achieved an 

accuracy of 98.6%. For the TOR traffic type and application 

identification. Our model outperformed the baseline model, 

reaching an accuracy of 91% for both experiments. The 

proposed model showed good generalization strength across 

all experiments. When the weighted average accuracy is 

calculated, the model has an overall 93.86%. The weighted 

accuracy can be misleading as one cannot properly assess the 

model’s strength or weakness. It is therefore important to 

consider individual accuracies along with precision, recall and 

𝐹1 score (Table 4) when assessing a model’s classification 

strength. 

One of the major problems encountered was the issue of 

having an imbalanced dataset. While this didn’t directly affect 

the training model because of the augmentation techniques 

utilized. It affected the validation accuracy in some 

experiments, e.g., in interpreting the validation accuracy curve 

for VPN application identification task in Figure 4c. The 

model shows overfitting tendencies and is slightly biased 

towards the training data. A similar issue was noticed for Tor 

application classification task Figure 4e. The problem of 

traffic arrival time disparity as discussed in section 4.2 can 

also be detrimental to the learning process of the model 

because it reduces the learnable features of the images. This 

goes to show that a more systematic feature extraction 

process will be needed to improve the current design. From 

the training/validation curves for loss and accuracy, our 

model showed a gradual rise in accuracy and drop in loss for 

all identification tasks. When we introduced the test (unseen) 

data the accuracies did not drop below 91% across all 

experiments conducted. Overfitting occurs when a model 

achieves a good fit “only” for the training data i.e., the model is 

heavily biased towards the training data that it does not 

perform optimally when a test (unseen) data is introduced. By 

this definition, our model does not overfit. 

Overall, our model does a better job of generalization as 

values for accuracy remain stable (within the 90th percentile). 

The proposed model performed well across all experiment 

with the accuracy not dropping below 91%. 

 

7 Conclusion 

This work presents a convolutional neural network (CNN) 

based classifier for the problem of encrypted traffic 

identification. One major issue facing encrypted network 

traffic is the problem of accurate traffic classification. This 

issue as discussed previously, can cause a ripple effect of other 

cybersecurity problems. The CNN-based classifier is used to 

classify encrypted internet traffic based on specific tasks. An 

existing design based on the popular LeNet-5 architecture was 

PROBLEM  Accuracy  Precision Recall 𝑭𝟏 Score  

non-VPN Application Identification 93%  97%  96%  96%  

non-VPN Traffic Type Identification 91%  91%  91%  91%  

VPN Application Identification 96%  96%  96%  96%  

VPN Traffic Type Identification 96%  96%  96%  96%  

TOR Application Identification 91%  92%  91%  91%  

TOR Traffic Type Identification 91%  93%  91%  91%  

Encryption Type Identification 99%  99%  99%  99%  

Average  93.86%  94.86%  94.29%  94.29%  

 

PROBLEM 

Accuracy 

Our Model Flowpic [5]  Other work 

Non-VPN Applications Identification 93% 99.7% 93.9 % [19] 

Non-VPN Traffic Type Identification 91% 85.0% 84.0 % [20] 

VPN Applications Identification 96% - - 

VPN Traffic Type Identification 96% 98.4% 98.6% [6] 

TOR Applications Identification 91% - - 

TOR Traffic Type Identification 91% 67.8% 84.3 % [20] 

Encryption Type Identification 99% 88.4% 99. % [6] 
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modified and trained on a range of datasets. The extracted 

features of packet size which is important for defining 

applications, and packet arrival time which defines temporal 

features of a network packet was used to generate unique 

images for different application classes. After the images were 

generated, they were fed to the designed CNN classifier for 

seven (7) different classification tasks. The proposed model 

gave the best result when identifying different encryption 

types (99%). It achieved its worst results of 91% for the tasks 

of non-VPN (Traffic type), TOR (Application) and TOR (Traffic 

type) Identification. Overall, our model achieved its aim based 

on the results gotten, the proposed model was found to have 

good generalization strength and didn’t overfit or underfit for 

any task. This design can serve as a baseline for security 

researchers when building a classifier, thereby reducing the 

initial burden of selecting a model or algorithm for the work. 

To improve the current or similar design. The feature 

extraction process needs to be more systematic from the 

initial stages of data processing to the final stages of model 

testing. Data augmentation also needs to be systematic to deal 

with low frequency traffic. Finally, classifiers should be 

trained on more applications and encryption range as this will 

improve granularity and generalization strength.  

 

REFERENCES 
[1] Google Transparency Report, (2021). HTTPS encryption on the web. 

Google. https://transparencyreport.google.com/https?hl=en  
[2] Nie, S., Jiang, L., Sun, H., Ma, C., Liang, Y., Zhou, Y., & Zuo, Y. (2020). 

Network traffic classification model based on multi-task learning. Journal 
of Physics. Conference Series, (1693) 012097. (p 2) 
http://doi:10.1088/1742-6596/1693/1/012097  

[3] Australian Cyber Security Centre (ACSC). Annual Cyber Threat Report  
 2020-21.  Retrieved  October  22,  2021,  from  

https://www.cyber.gov.au/acsc/view-all-content/reports-
andstatistics/acsc-annual-cyber-threat-report-2020-21  

[4] Vu, L., Thuy, H. V., Nguyen, Q. U., Ngoc, T. N., Nguyen, D. N., Hoang, D. T., & 
Dutkiewicz, E. (2018). Time series analysis for encrypted traffic 
classification: A deep learning approach. 2018 18th International 
Symposium on Communications and Information Technologies (ISCIT), 
(pp 121–126). https://doi: 10.1109/iscit.2018.8587975  

[5] Shapira, T., & Shavitt, Y. (2019). FlowPic: Encrypted internet traffic 
classification is as easy as image recognition. IEEE INFOCOM 2019 - IEEE 
Conference on Computer Communications Workshops (INFOCOM 
WKSHPS), (pp 680–687). https://doi: 10.1109/infcomw.2019.8845315  

[6] Wang, W., Zhu, M., Wang, J., Zeng, X., & Yang, Z. (2017). End-to-end 
encrypted traffic classification with one-dimensional convolution neural 
networks. 2017 IEEE International Conference on Intelligence and 
Security Informatics (ISI), 43–48. http://doi:10.1109/isi.2017.8004872  

[7] Rasteh, A., Delpech, F., Aguilar-Melchor, C., Zimmer, R., Shouraki, S. B., & 
Masquelier, T. (2021). Encrypted Internet traffic classification using a 
supervised Spiking Neural Network. In arXiv [cs.LG]. (pp 5–19). 
http://arxiv.org/abs/2101.09818  

[8] Lu, B., Luktarhan, N., Ding, C., & Zhang, W. (2021). ICLSTM: Encrypted 
traffic service identification based on Inception-LSTM neural network.  
Symmetry,  13(6),  1080.  (pp  4–14).   https:// 
doi.org/10.3390/sym13061080  

[9] Hu, F., Zhang, S., Lin, X., Wu, L., Liao, N., & Song, Y. (2021). Network traffic 
classification model based on attention mechanism and spatiotemporal 
features. In Research Square. (pp 7–28). 
https://doi.org/10.21203/rs.3.rs-353938/v1  

[10] Bayat, N., Jackson, W., & Liu, D. (2021). Deep learning for network traffic 
classification. In arXiv [cs.NI]. 1-10. http://arxiv.org/abs/2106.12693  

[11] LeCun, Y., Boser, B., Denker, J. S., Howard, R. E., Habbard, W., Jackel, L. D., & 
Henderson, D. (1989). Handwritten digit recognition with a 
backpropagation network. In Advances in neural information processing 

systems (NIPS) 2. 396–404. Morgan Kaufmann. 
http://doi/10.5555/109230.109279  

[12] Simonyan, K. and Zisserman, A. (2015) Very Deep Convolutional 
Networks for Large-Scale Image Recognition. The 3rd International 
Conference on Learning  Representations  (ICLR2015), 3-6. 
https://arxiv.org/abs/1409.1556  

[13] Richter, M.L., Byttner, W., Krumnack, U., Schallner, L., & Shenk, J. (2021). 
Size Matters. 4-6. ArXiv, abs/2102.01582.  

[14] Mao, J., Zhang, M., Chen, M., Chen, L., Xia, F. et al. (2021). Semi supervised 
Encrypted Traffic Identification Based on Auxiliary Classification  
Generative Adversarial Network. Computer Systems Science and 
Engineering, 39(3), 373–390. http://doi:10.32604/csse.2021.018086  

[15] Boureau, Y., Ponce, J., Lecu, Y., (2010). A Theoretical Analysis of Feature 
Pooling in Visual Recognition. Conference: Proceedings of the 27th 
International Conference on Machine Learning (ICML-10), 6-7. 
https://dl.acm.org/doi/10.5555/3104322.3104338  

[16] Wu, H., and Gu, X., (2015). Towards Dropout Training for Convolutional  
 Neural  Networks.  Neural  Networks  (71),  8-10.  

Doi:10.1016/j.neunet.2015.07.007  
[17] VishnuPriya., Singh, H. K., SivaChaitanyaPrasad., & JaiSivaSai. (2021).  

RNN-LSTM based deep learning model for tor traffic classification. Cyber- 
 Physical  Systems,  1–18.  

https://doi.org/10.1080/23335777.2021.1924284  
[18] Hodo, E., Bellekens, X., Iorkyase, E., Hamilton, A., Tachtatzis, C., & 

Atkinson, R. (2017). Machine learning approach for detection of nonTor 
traffic. Information 2018, 9(9), 231. http://arxiv.org/abs/1708.08725 

[19] Yamansavascilar, B., Guvensan, M. A., Yavuz, A. G., & Karsligil, M. E. (2017). 
Application identification via network traffic classification. 2017 
International Conference on Computing, Networking and 
Communications (ICNC), 843–848. 
http://doi:10.1109/iccnc.2017.7876241  

[20] Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I., and Ghorbani, A. A. (2016). 
“Characterization of encrypted and vpn traffic using time-related 
features,” in Proceedings of the 2nd International Conference on 
Information Systems Security and Privacy - Volume 1: ICISSP,, INSTICC. 
SciTePress, 2016, pp. 407–414.  

[21] TensorFlow. (n.d.). Tensorflow.Org. Retrieved October 18, 2021, from 
https://www.tensorflow.org/ 

[22]  WatchGuard threat lab reports 91.5% of malware arrived over encrypted 
connections in Q2 2021. (n.d.). Watchguard.Com; WatchGuard 
Technologies. Retrieved November 17, 2021, from 
https://www.watchguard.com/wgrd-news/press-
releases/watchguardthreat-lab-reports-915-malware-arrived-over-
encrypted  

[23] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. Adaptive 
computation and machine learning. MIT Press. ISBN: 9780262035613  

[24] ImageNet. (n.d.). Image-Net.Org. Retrieved November 17, 2021, from 
https://www.image-net.org/challenges/LSVRC/2014/  

[25] Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for  
 Deep  Learning.  J  Big  Data  6,  60  (2019).  7-11  

.https://doi.org/10.1186/s40537-019-0197-0 
[26] Sarker, I. H. (2021). Deep learning: A comprehensive overview on      

techniques, taxonomy, applications and research directions. In Preprints. 
https://doi.org/10.20944/preprints202108.0060.v1 

[27] UNB, 2016. www.unb.ca.(n.d.). VPN 2016 UNB. 
http://www.unb.ca/cic/datasets/vpn.html 

[28] UNB, 2017. www.unb.ca.(n.d.). Tor 2017. 
http://www.unb.ca/cic/datasets/tor.html   

[29] Chollet, F., et al., (2015 ). Keras: Deep Learning for humans. (n.d.). 
https://github.com/fchollet/ker 
 
 

http://arxiv.org/abs/2101.09818
http://arxiv.org/abs/2101.09818
http://arxiv.org/abs/2106.12693
http://arxiv.org/abs/2106.12693
http://doi/10.5555/109230.109279
http://doi/10.5555/109230.109279
http://doi/10.5555/109230.109279
http://arxiv.org/abs/1708.08725
https://www.tensorflow.org/
https://doi.org/10.20944/preprints202108.0060.v1
http://www.unb.ca/cic/datasets/vpn.html
https://github.com/fchollet/ker

