
A Digital Twin Runtime Verification Framework for
Protecting Satellites Systems from Cyber Attacks

Zhé Hóu∗, Qinyi Li∗, Ernest Foo∗, Jin Song Dong∗† and Paulo de Souza∗
∗Griffith University, Australia, {z.hou, qinyi.li, e.foo, j.dong, paulo.desouza}@grffith.edu.au

†National University of Singapore, dcsdjs@nus.edu.sg

Abstract—This paper presents the conceptualisation of a
framework that combines digital twins with runtime verification
and applies the techniques in the context of security monitoring
and verification for satellites. We focus on special considerations
needed for space missions and satellites, and we discuss how
digital twins in such applications can be developed and how
the states of the twins should be synchronised. In particular,
we present state synchronisation methods to ensure secure and
efficient long-distance communication between the satellite and
its digital twin on the ground. Building on top of this, we develop
a runtime verification engine for the digital twin that can verify
properties in multiple temporal logic languages. We end the paper
with our proposal to develop a fully verified satellite digital twin
system as future work.

Index Terms—model checking, runtime verification, satellite,
spacecraft, digital twins, cybersecurity

I. INTRODUCTION

Satellite communications are critical for data and space asset
control. Jamming of satellite communications is a known capa-
bility of several nations. However, jamming signals is a blunt
tool. Adversaries that can access satellite communications can
obtain data collected by the satellite and log information stored
on the satellite, including previous settings and locations of
the satellite and the data that was collected. For example,
satellite communication is now assumed to transmit high-speed
financial information, as well as strategic military informa-
tion. Breach of such data may lead to catastrophic events.
Satellites also control space assets such as the Mars rover,
which relays communications and control commands via the
Mars Reconnaissance Orbiter, a satellite in orbit above Mars.
Adversaries that control satellite communications can inject or
modify command messages to change the satellite’s location
and trajectory or any other linked space assets. Therefore, it
is essential that satellite functionality and deep space network
communications are protected and secured.

The current trend in satellite design is to have smart
satellites with more features and modules to ensure that more
efficient communications and secure onboard analysis can
occur. However, those more complex systems are more likely
to be vulnerable to cyber-attacks.

The two major challenges facing the protection of deep
space satellites include (1) addressing the isolated nature of
the deployed satellite and (2) the high latency and high error
environment that communications must travel in. The other
major challenge is the limited processing capacity on board of

the satellite, specifically as power is mainly provided from a
solar battery. Although modern satellites employ faster CPUs,
many models are still significantly slower than consumer
desktops [1], [2]. Running formal verification directly on
satellites may take up too much computational resource that
could have been allocated to communication and other tasks.

One of the efficient ways to monitor and verify the security
of satellites and other space assets is runtime verification. In
fact, NASA has developed a runtime verification technique
that can be applied to check autonomous agents running on the
PLASMA planning system [3]. However, new solutions must
be developed if we want to further offload the computational
tasks onboard the satellite.

The US Air Force is using a digital twin of the Lockheed
Martin GPS IIR satellite to detect cybersecurity issues by
performing penetration testing on the digital replica of the
satellite. Their approach demonstrates the feasibility and po-
tential of performing security analysis for satellite systems
using digital twins. In this paper, we aim to improve the above
approaches by combining runtime verification with digital
twins and extending the application to both low-orbit satellites
and deep-space satellites.

The combination of digital twins and runtime verification is
still a very young idea that has only been briefly explored
in the analysis of cyber-physical systems recently [4], [5].
However, there is a significant lack of technical details in the
literature. Moreover, the aforementioned challenges require an
innovative design of the communication protocols to factor in
the delays while maintaining the security of communication
and synchronisation of digital twins. Thus, this paper focuses
on the application in satellites and space missions and the
foundations of the involved techniques.

The main contributions of this paper are as follows: First,
we present a conceptual framework of a digital twin sys-
tem specialised for satellites and space communications. We
then present an efficient and secure communication protocol
for maintaining state between the digital and physical twin.
Our future plans include formally verifying the design and
implementation of the digital twin system and the protocols
using Process Analysis Toolkit (PAT) [6]. Towards building an
integrated system that combines required functionalities and
verification tools, we propose implementing runtime monitor-
ing and verification of the digital twin system using PAT as
well. This way, we can minimise the overall system design and

software development load. Therefore, this paper also develops
a versatile runtime verification tool driven by PAT that can deal
with multiple temporal logic languages.

II. PRELIMINARIES

A. Cybersecurity of Satellites

The main purpose of satellites is to enable communications
over the horizon or to a location in deep space such as the Mars
rover. Satellite communications consist of a ground station
transmitter, the satellite and the receiving entity. Satellites can
broadcast messages to multiple receiving entities.

In addition to the communications payload, satellites have a
Tracking Telemetry and Control (TT&C) system. The TT&C
system is a two-way communications link between the ground
station and the satellite. The TT&C system allows the satel-
lite to be controlled from the earth, maintain its orbit and
temperatures, and operate other systems. Telemetry that can
be collected from the satellite includes temperature, electrical
voltages and other information on satellite system status.

Of all the components of the satellite communication sys-
tem, the ground station is the main target of attackers. From the
ground station, attackers can use the TT&C system to control
the satellite in orbit. Compromise of the ground station also
allows attackers to control the data payload transmitted to the
satellite. Another option for attackers is to compromise the
authentication system and conduct man in the middle attacks
between the ground station and the satellite. It is also possible
for attackers to embed malicious code in the satellite during
maintenance or even before it is launched.

In this paper we propose an additional system to provide
defence in depth for the satellite system. The use of digital
twin systems will also allow the monitoring of satellite systems
for indicators of compromise and the ability to simulate and
verify the best response actions. In particular, the digital twin
system will continuously monitor 1) the integrity of satellite
systems and 2) authenticity of satellite communications.

B. Digital Twins

The concept of a digital twin is the creation of a digital rep-
resentation of a physical object, process or system. System and
sensor data from the physical twin are sent to the digital twin
to maintain the latter. The digital twin simulates the physical
twin, analyses the outcomes of the simulations, determines the
best course of action and then sends the commands necessary
to undertake those actions back to the physical twin. The cycle
of update, analyse and respond continues.

There are several challenges for digital twin systems. To
be effective, the digital twin must be able to synchronise
states with the physical twin. The digital twin simulation
and analysis need to be such that there is enough bandwidth
to transmit state data from the physical twin and enough
processing power to ensure efficient simulations to ensure
effective decisions can be made in a timely manner. Our
proposed synchronisation protocol will help with this.

The advantage of the digital twin is that it allows the
more powerful simulation and analysis tools to be deployed

at the digital twin that may not have been able to be run
on the physical twin alone. Digital twins can be used in
single object systems and complex multiple node systems. This
technology has mainly been used to optimise and maintain
systems, so exploring the possibilities in runtime monitoring
and verification for space assets is a new angle.

C. Runtime Verification with Temporal Logic

Runtime verification [7] monitors the execution of a soft-
ware or hardware system and checks user-specified properties
against the currently observed execution trace of system states.
It is computationally cheaper than other formal verification
methods such as model checking and theorem proving because
it only concerns a single execution trace. In contrast, model
checking attempts to check every possible execution trace
of the system. This work is focused on runtime verifying
properties that are specified using temporal logics.

Linear Temporal Logic (LTL) [8] is a widely used language
for specifying properties such as safety, fairness, liveness, etc.

Definition II.1 (Syntax of LTL). The syntax of LTL is given
in the Backus–Naur form (BNF) below.

F ::= > | p | ¬F | F ∧ F | X F | F U F

There are two temporal modalities in the above syntax: X
is written prefix and means next, and U is written infix and
means until.

The formal semantics of LTL is often defined using a Kripke
model M , which is a tuple M = (S, I,R, L) where

• S is a finite set of states,
• I ⊆ S is a set of initial states,
• R ⊆ S × S is the transition relation between states,
• L : S → 2AP is a labelling function that maps a state to

a subset of atomic propositions. Here, AP is the set of
all atomic propositions.

A (possibly infinite) sequence of states is called a path,
which is denoted by w. Assuming that the indexing starts with
0, we write w[i] for the (i+ 1)th state in w, and we write wi

for the sub-path starting from the (i+ 1)th state.

Definition II.2 (Semantics of LTL). The Kripke-style seman-
tics of LTL is defined via a forcing relation |= as below.

M,w |= > iff always
M,w |= p iff p ∈ L(w[0])
M,w |= ¬A iff M,w 6|= A
M,w |= A ∧B iff M,w |= A and M,w |= B
M,w |= X A iff M,w1 |= A
M,w |= A U B iff there exists i ≥ 0 s.t. M,wi |= B,

and for all 0 ≤ j ≤ i, M,wj |= A

We say the pair (M,w) of a model M and a path w force an
atomic proposition p, written as M,w |= p, when p belongs to
the subset of atomic propositions in the first state in w. The
classical logic connectives are interpreted in the usual way.
M,w force X A if and only if M and the path w1 starting
from the next state force A. In other words, A is true in the

next state. M,w force A U B if B is true in the future, and
before that, A must be true.

Traditionally, the semantics of LTL is defined on infinite
paths. However, this paper is focused on runtime verification,
which usually concerns a finite sequence of states extracted
from an execution instance. Consequently, runtime verification
often adopts some variants of LTL, such as LTL on finite traces
(FLTL) and three-valued LTL (LTL3) [9]. This paper adopts
FLTL with strong next. That is, X A is true when the next
state exists and makes A true; otherwise, X A is false. In this
semantics, F A is only true when there is a future state that
makes A true; otherwise, it is false.

Past-time LTL (PTLTL) [10] is another useful language for
specifying security-related properties [11]. PTLTL has two
distinct temporal operators called previously (P) and since
(S). Their semantics are defined on past state traces, which
are symmetric to FLTL, which looks into the future. In PTLTL,
P A is true when the previous state exists and makes A true;
this is symmetric to X A in FLTL. A S B is true if 1) the
current state makes B true, or if 2) B was true sometime in
the past, and since then, A has been true. The semantics of
A S B in PTLTL is symmetric to A U B in FLTL.

III. OUR APPROACH

A. Overview of the Digital Twin system

Satellite (Physical Twin)

Secure
Communication
Protocol

Ground Station (Digital Twin)

PAT

FLTL PTLTL

Sync
States

Runtime
Verification

Controller Interpreter Monitor

Synthesizer

Space Environment

Fig. 1: An overview of the proposed digital twin run-time
verification framework.

We present a simplified view of the overall system in Fig-
ure 1. The top element in Figure 1 is the physical twin, which
runs on the actual space asset. The physical twin collects,
monitors and interprets engineering data such as control and
sensor raw data. This component will periodically synthesise
engineering data into scientific data such as processed datasets,
which in our framework contains the states to be synchronised
and checked, and send them to the ground station.

The scientific data are transmitted to the ground station
using our delay-tolerant communication protocol. Our pro-
tocol guarantees the correctness of the synchronised states
and the security of transmitted information via cryptographic
algorithms.

Finally, the ground station, which runs the digital twin,
simulates the state of the satellite using processed data and
performs computationally heavy tasks. More specifically, the
digital twin models two essential aspects of the satellite: the
physical behaviour, captured by sensor data, and the commu-
nications, captured by transmitted messages. We assume that
even if the satellite is under attack, the sensors will still provide
the correct data of the physical behaviours, and the system can
still provide the correct log of event executions. In this work,
we perform runtime monitoring and verification on the digital
twin. In future, we will perform more complicated tasks such
as static verification, AI-based planning and goal reasoning,
model and plan update, etc. on the digital twin.

B. Secure Time Synchronisation for Digital Twins

Runtime verification for digital twins relies on correct (i.e.,
non-corrupted) state data. It is also crucial for the verifier to
know the freshness of the state data (to decide if they are
still available for current-time verification or be discarded).
While the correctness of data can be achieved via standard
data integrity/authentication techniques (e.g., message authen-
tication codes and digital signatures), the latter is particularly
challenging considering that the satellite communication suf-
fers from unpredictable delays. Thus, we focus on establishing
a proper level of time synchronisation among digital twins.
The time synchronization (usually established by a protocol)
between the satellites and the ground station relies on the
communication network which is exposed to potential attacks.
These attacks may sabotage the time synchronisation by
preventing the packets being correctly transmitted, rendering
inaccurate synchronization and further making runtime verifier
receive and check an outdated or manipulated state. Thus, time
synchronisation protocols must be sufficiently robust against
active adversaries. Once an accurate time synchronization is
established, the subsequent network packets containing state
information can be time-stamped and then authenticated to
allow the verifier to decide if the received state information
is fresh for runtime verification. We note that we are not
aiming for reducing network delays which is another technical
problem and beyond the scope of this work. Our design is
to ensure such delay can be detected and measured by the
receiver so outdated packets can be identified, even in presence
of active attacks.

Traditionally, time synchronization is implemented by the
NTP (Network Time Protocol). However, it is not a direct
option for us as the NTP does not offer a reasonable level of
security against active attacks. An existing secure time sychro-
nisation protocol called Authenticated Network Time Protocol
(ANTP), designed by Dowling et al. [12] achieves properties
close to our needs. ANTP consists of two phases. The client
and the time server negotiate cryptographic algorithms and

Ground Station Satellite
(server/digital twin) (client/physical twin)
k for MAC k for MAC

Time synch phase
p = 1, . . . , n

state← in-progress
r ← {0, 1}256
t1 ← Now()

m1 ← t1||r
m1−−→ t2 ← Now()

... (processing time or delay)
t3 ← Now()
τ ← MAC(k,m1||t1||t2||t3)

m2←−− m2 ← τ ||t1||t2||t3
t4 ← Now()
RTT ← (t4 − t1)− (t3 − t2)
if RTT > E then state← reject
verify τ = MAC(k,m1||t1||t2||t3)
if verify fails then state← reject & abort
offset = (t3 + t2 − t1 − t4)/2
timep ← Now() + offset
state← accept
if p = n then terminate

TABLE I. Authenticated Time Synchronization Protocol for satellite digital twins.

keys in the first phase. Then a time synchronization process is
run in which the message flows are authenticated (using mes-
sage authentication codes). No encryption is performed. ANTP
comes with a security proof in the well-established Bellare-
Rogaway model [13]. However, the cryptographic negotiation
of ANTP needs separate implementations and as it is different
from the maturely deployed TLS handshake protocol.

In our scenario, authenticity is the major concern when
executing time synchronization. That is, at the completion
of the time synchronization protocol, the client and the time
server can confirm that they have been synchronized in terms
of time with each other (rather than someone else). We see
confidentiality as a less important requirement for the time
synchronization protocol - the attackers are assumed to know
that the time is being synchronized and the time difference
between the client and server1.

With this consideration, we adopt the ANTP protocol which
uses message authentication codes (MACs) as the only cryp-
tographic tool to provide authenticity. Furthermore, we greatly
simplify the cryptographic algorithm and key establishment of
the ANTP protocol by simply specifying the MAC algorithm
storing the keys the MAC in the satellite and the ground
station. In Table I, we give the description of the time
synchronization protocol, which is based on [12]. We write
|| for the concatenation of messages. We note that, the first
phase of ANTP is to establish a MAC algorithm and a shared
secret key. Here we assume the MAC algorithm and the key
is securely pre-established. So, the security and correctness of
the protocol follows directly from ANTP.

1The actual time difference between the client and server can be caused
by the time used to transfer the time synchronization protocol packets. It is
mostly determined by the physical distance between the satellite and ground
station which is generally known by the attacker.

The time synchronization protocol starts with a pre-specified
message authentication code MAC and pre-shared key k. The
variable state represent the state of the client in terms of the
time synchronization protocol. The procedure Now() returns
the participant’s current time. RTT denotes the total round-trip
delay that the satellite observes. This can be bounded by the
desired accuracy E. timep stands for the time of the satellite
after the synchronization. Here we can use any secure message
authentication code for MAC which given a secret key and
message deterministically produce a tag, e.g., CBC-MAC.

We emphasise that the value offset approximately repre-
sents the network delays and can always be checked by the
protocol initiator (e.g., ground station), allowing it to decide
the freshness of current data. The delta of our time synchro-
nisation process, (i.e., the actual time difference between the
ground station and satellite), is defined as ∆. ∆ is bounded by
the propagation time from the satellite to the ground station
θ1, and the propagation time from the ground station to the
satellite θ2. According to [12], ∆ ≤ 1

2 · |θ1 − θ2| ≤ RTT
where the round-trip delay RTT = (t4 − t1) − (t3 − t2). ∆
therefore defines the freshness of the state of the digital twins
being verified, i.e., the state that is being verified is at earliest
tc−∆. Depending on the communication distance, ∆ can vary
from around a few microseconds to dozens of minutes when
considering the communication from earth to low-earth orbits
(as low as 200km) to deep space (up to 30,000km). According
to the protocol, we can manually set the RTT bound E to fail
the synchronization when RTT grows to too large.

Finally, we note that malicious activities that 1) modify
packets containing t1, t2, t3 will results abortion of the
protocol thanks to the MAC, and 2) delay the packets will
not make ∆ exceed RTT (and thus E) without causing the
abortion of the protocol.

C. Runtime Verification

The secure time synchronisation protocol protects against
malicious entities that are not part of the digital twin system.
However a compromised satellite can send incorrect state
information. Runtime verification can be used to confirm the
behaviour of the satellite by verifying state information.

We propose a runtime verification framework that supports
both FLTL and PTLTL in one package and is driven by
the model checker Process Analysis Toolkit (PAT) [6], [14].
Although model checking is considered a harder problem than
runtime verification, it is not unprecedented to use model
checking to solve runtime verification problems. For example,
Kejstová et al. [15] proposed a novel idea of adapting a model
checker to perform precise runtime verification for a full-stack
consisting of an operating system, libraries, and programs. In
the same vein, we propose to take advantage of the advanced
algorithms built in PAT and develop an extension that can
check different languages in runtime verification.

a) Modelling: In our satellite application, we are mainly
interested in verifying properties over the state variables of
the system. Let us name the state variables var1, var2, · · · . A
state S is simply a snapshot of the values of state variables,
i.e., S ::= {var1 = val1, var2 = val2, · · · }. In PAT, we
model a state via a process in Communicating Sequential
Processes [16] with C# (CSP#) [6]. The process performs
variable assignments as below.

1 S() = s{var1 = val1; var2 = val2; ...} -> Skip;

A final trace T is a sequence of states, modelled as below.
1 T() = S1(); S2();...

The user can define properties over state variables. For
example, the below code defines a proposition that states
“var1 is not 0.”

1 #define v1Safe (var1 != 0);

We can then use PAT to check a safety property that “var1
should never be 0” using the temporal modality G , which is
written as [] in PAT.

1 #assert Trace() |= [] v1Safe;

b) Verification: The foundation of our runtime verifica-
tion framework is based on the observation that verifying LTL
with finite traces in PAT corresponds to verifying FLTL with
strong next/future.

Lemma III.1. Let T be a finite state trace, MT be a model of
T in CSP# defined above, and P an LTL property. T |= P in
FLTL with strong next/future if and only if MT |= P returns
positive in PAT.

Moreover, based on the observation of symmetry between
FLTL and PTLTL in Section II-C, we can simply reverse the
trace and check the symmetric properties in PTLTL. We denote
T the reversed trace of T . That is, if T = S1;S2;S3, then
T = S3;S2;S1.

Lemma III.2. Let T be a finite state trace, MT be a model of
T in CSP# defined above, and A, B be propositions. T |= P A

in PTLTL if and only if MT |= X A returns positive in PAT.
T |= A S B in PTLTL if and only if MT |= A U B returns
positive in PAT.

Therefore, we can integrate runtime verification of both
FLTL with strong next/future and PTLTL into one verification
framework driven by PAT. A similar form of bidirectional
temporal logic verification has been realised in tools such
as Formula Builder [17]. The above result further allows
integration with more complex modelling languages, such as
(Probabilistic) CSP#, that are supported by the PAT verifica-
tion engine.

c) Security Properties: The security properties that this
paper considers are integrity and authentication. The integrity
property ensures that the operation of the satellite remains
correct during a specified period of time. Runtime verification
will verify that current states are within specified tolerances for
sensor readings. Formally, the cases of integrity we consider
are generally in the following form: “since the pre-condition
holds, the state variable should hold a value within a certain
range until the post-condition holds”. This can be expressed
as two formulae, one in PTLTL and the other in FLTL, as
below, where pre stands for the pre-condition, post the post-
condition, l the lower-bound of the variable, and u the upper-
bound of the variable.

(l ≤ v ≤ u) S pre
(l ≤ v ≤ u) U post

The authentication property ensures that the communica-
tions from the ground station are valid. For the authenti-
cation property, we will model signal strength, terrestrial
location, and cryptographic verification. The combination of
these features is used to determine whether the satellite is
communicating with the correct target. The instances of such
a property take the following form, where sig is a variable
for signal strength, x, y, z are location coordinates of the
target, li, ui, 1 ≤ i ≤ 4 are upper bounds and lower bounds
of variables, verified is a Boolean variable that indicates
whether the target signature has passed the cryptographic
verification in our synchronisation protocol, and connect is
a Boolean variable that indicates that the communication
connection is established:

connect→
P ((l1 ≤ x ≤ u1) ∧ (l2 ≤ z ≤ u2) ∧ (l3 ≤ y ≤ u3)∧

(l4 ≤ sig ≤ u4) ∧ verified)

d) Monitoring: We have developed an extension of PAT
that provides the following interfaces to the satellite digital
twins system:

• init: initialise the monitor and set up state variables.
• addState: adds a new state to the trace.
• check: automatically constructs a CSP# model of a

finite state trace and calls PAT to verify the model. This
interface has two modes: one checks FLTL properties and
the other checks PTLTL properties.

Since the CSP# model is a linear sequence of states, there
are no branches in the state-space, and therefore we do not
have the state-explosion problem of model checking. PAT can
usually return the verification result in a second, which is fast
enough for our purpose. The above interface is then integrated
into our digital twin system for continuous security monitoring
and verification.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have discussed an approach that combines
digital twins and runtime verification to provide trustworthy
and secure communication for satellites. Building on top of
this protocol, we design a digital twins system for satellites
with a focus on security monitoring and verification. Finally,
we develop a runtime verification framework based on PAT
that supports multiple temporal logics. The above form a self-
contained system that provides enhanced security for satellites
and other space assets.

Equipped with the digital twin system of this paper, we
plan to perform penetration testing and attack simulation for
satellites in the future. We will generate a large amount of data
while performing penetrating testing, including the status of
the system and the parameters of the attacker and the defender
(called agents in what follows). From the data, we can use
clustering to obtain the states of the agents and learn how their
states evolve over time. With the states and their transitions,
we will model the behaviour of agents in Markov decision
processes and use reinforcement learning to train the agents
towards optimal policies: most efficient hacks for the attacker
and best counteractions for the defender. With the AI-based
simulations, we expect to check more corner cases that might
have been missed by human attackers.

Part of the reason why we chose to build the runtime verifier
on PAT instead of using an existing one or developing one
from scratch is that our bigger plan is to formally verify the
entire satellite communication system, which includes satel-
lite behaviour, synchronisation protocol, digital twins system,
among others, and PAT will be used to model and verify
many components of the system. In particular, we plan to
describe the correct behaviour of space assets in Petri-nets [18]
and then model the Petri-nets in PAT. We will then express
desired properties of the system as reachability, deadlock-
freeness, liveness, or temporal logic formulae and then verify
those properties in PAT. With PAT as a central verification
engine, we can also extend this work with other temporal logic
variants and even customised languages that suit our specific
application requirements. We will adopt theorem provers such
as Isabelle/HOL when an exhaustive check is not suited, and
inductive reasoning is required. To ensure that the new key
establishment protocol and end-to-end secure communication
protocol achieve the security properties for the deep-space
DTN environment, we will formally prove the protocol using
a provable security framework [19], [20] commonly used to
evaluate cryptographic protocols. Our goal is to provide a fully
verified execution stack for satellites and other space assets
such as rovers.

The final test of our approach includes running the proposed
framework in a simulation environment based on Gilmore
Space Technologies’ Electrical Ground Support Equipment
satellite simulator. The new simulation environment will reim-
plement both the satellite and the digital twin, as well as their
communication methods. Once the final tests are passed, we
plan to launch a test satellite with Gilmore Space Technologies
in mid-2022.

REFERENCES

[1] Gaisler, “Leon5 processor,” https://www.gaisler.com/index.php/products
/processors/leon5, 2021.

[2] Z. Hóu, D. Sanán, A. Tiu, Y. Liu, K. C. Hoa, and J. S. Dong, “An
isabelle/hol formalisation of the SPARC instruction set architecture and
the TSO memory model,” JAR, vol. 65, no. 4, pp. 569–598, 2021.

[3] A. Goldberg, K. Havelund, and C. McGann, “Runtime verification for
autonomous spacecraft software,” in 2005 IEEE Aerospace Conference,
2005, pp. 507–516.

[4] F. Flammini, “Digital twins as run-time predictive models for the
resilience of cyber-physical systems: a conceptual framework,” Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 379, no. 2207, p. 20200369, 2021.

[5] J. Leng, D. Wang, W. Shen, X. Li, Q. Liu, and X. Chen, “Digital twins-
based smart manufacturing system design in industry 4.0: A review,”
Journal of Manufacturing Systems, vol. 60, pp. 119–137, 2021.

[6] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible verification
under fairness,” ser. Lecture Notes in Computer Science, vol. 5643.
Springer, 2009, pp. 709–714.

[7] E. Bartocci and Y. Falcone, Lectures on Runtime Verification: Introduc-
tory and Advanced Topics. Springer, 2018, vol. 10457.

[8] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science. IEEE, 1977, pp. 46–57.

[9] A. Bauer, M. Leucker, and C. Schallhart, “Comparing LTL semantics for
runtime verification,” J. Log. and Comput., vol. 20, no. 3, p. 651–674,
Jun. 2010.

[10] A. Bauer, R. Goré, and A. Tiu, “A first-order policy language for history-
based transaction monitoring,” in Theoretical Aspects of Computing -
ICTAC 2009, M. Leucker and C. Morgan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 96–111.

[11] X. Du, A. Tiu, K. Cheng, and Y. Liu, “Trace-length independent runtime
monitoring of quantitative policies,” IEEE Trans. Dependable Secur.
Comput., vol. 18, no. 3, pp. 1489–1510, 2021.

[12] B. Dowling, D. Stebila, and G. Zaverucha, “Authenticated network time
synchronization,” in 25th {USENIX} Security Symposium ({USENIX}
Security 16), 2016, pp. 823–840.

[13] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Annual international cryptology conference. Springer, 1993, pp.
232–249.

[14] H. Bride, C. Cai, J. S. Dong, R. Goré, Z. Hóu, B. P. Mahony, and
J. McCarthy, “N-PAT: A nested model-checker - (system description),”
in International Joint Conference on Automated Reasoning, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part II, 2020, pp. 369–377.

[15] K. Kejstová, P. Ročkai, and J. Barnat, “From model checking to runtime
verification and back,” in Runtime Verification, S. Lahiri and G. Reger,
Eds. Cham: Springer International Publishing, 2017, pp. 225–240.

[16] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, p. 666–677, 1978.

[17] S. Jörges, T. Margaria, and B. Steffen, “Formulabuilder: A tool for
graph-based modelling and generation of formulae,” in Proceedings of
the 28th International Conference on Software Engineering, ser. ICSE
’06. New York, NY, USA: Association for Computing Machinery,
2006, p. 815–818.

[18] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia, vol. 3, no. 4, p.
6477, 2008, revision #91647.

[19] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseu-
dorandomness, ser. Algorithms and Combinatorics. Springer, 1998,
vol. 17.

[20] J. Katz and Y. Lindell, Introduction to Modern Cryptog-
raphy, Second Edition. CRC Press, 2014. [Online]. Avail-
able: https://www.crcpress.com/Introduction-to-Modern-Cryptography-
Second-Edition/Katz-Lindell/p/book/9781466570269

APPENDIX

Lemma A.1. Let T be a finite state trace, MT be a model of
T in CSP# defined above, and P an LTL property. T |= P in
FLTL with strong next/future if and only if MT |= P returns
positive in PAT.

Proof. By inspection of the semantics. In particular, if T |=
X A, then the next state must exist and make A true, in which
case MT |= X A should return positive in PAT. If the next state
does not exist or if it exists but does not make A true, then
T 6|= X A and MT |= X A should return negative. Similarly,
if there is not a future state in the current trace that makes A
true, then T 6|= F A, and MT |= F A should return negative
in PAT. Otherwise, T |= F A, and MT |= F A should return
positive in PAT. The semantics of other language components
can be checked in a similar way.

Lemma A.2. Let T be a finite state trace, MT be a model of
T in CSP# defined above, and A, B be propositions. T |= P A
in PTLTL if and only if MT |= X A returns positive in PAT.
T |= A S B in PTLTL if and only if MT |= A U B returns
positive in PAT.

Proof. Based on the symmetry of the semantics of FLTL
with strong next/future and PTLTL. For simplicity, we only
consider next and until as first-class temporal operators in
FLTL and previous and since as first-class temporal operators
in PTLTL. T |= P A in PTLTL is equivalent to T |= X A
in FLTL with strong next — they both require that the
previous/next state exists in the trace and makes A true.
T |= A S B in PTLTL is equivalent to T |= A U B in

FLTL with strong next. There are two cases: 1) B holds in
the current state, then both T |= A S B and T |= A U B. 2)
B holds in the past in T , which means that B holds in the
future in T . In this case, T |= A S B requires that A holds in
every state from the state when B holds to the current state;
and T |= A U B requires that A holds from the current state
until the point where B holds. Clearly, T |= A S B in PTLTL
iff T |= A U B in FLTL with strong next/future. In all other
cases, both formulae do not hold in the respective logic.

The other formulae can be checked similarly. The cases for
classical logic formulae are straightforward as the semantics
is the same in both logics.

Finally, let F be a formula in PTLTL, and F be the
corresponding symmetric formula in FLTL. By Lemma A.1,
T |= F in FLTL with strong next/future iff MT |= F
returns positive in PAT, and by the above arguments, these
are equivalent to T |= F in PTLTL.

