A Formal Method for Evaluating the Performance of
TSN Traffic Shapers using UPPAAL

Wang Guo', Yanhong Huang*, Jianqi Shif, Zhe Hou?, Yang Yang'
National Trusted Embedded Software Engineering Technology Research Center,
East China Normal University, Shanghai, China
{wang.guo,yang.yang} @ntesec.ecnu.edu.cn
{yhhuang, jqshi}@sei.ecnu.edu.cn
1Griffith University, Australia
z.hou @griffith.edu.au

Abstract—Deterministic low latency network plays an impor-
tant role in control systems, such as industrial control sys-
tem(ICS), Advanced Driver Assistance Systems (ADAS), et al.
There are quite tight timing requirements in these areas. The
IEEE 802.1 Time-Sensitive Networking (TSN) task group has
proposed several traffic shapers to satisfy real-time communi-
cations requirements. Traditionally, the performance of TSN is
analyzed by simulations, whereas these methods cannot cover all
corner cases. With limited knowledge, this paper firstly presented
formal models of the TSN’s time-aware and peristaltic shapers
using UPPAAL, tactically solving the problem mentioned above.
Afterwards, we verified some real-time critical properties of the
shapers models, of which the results could evaluate whether these
shapers are able to satisfy strict timing requirements or not.
Based on the shapers models, we can make a further discussion
about the performance of time-critical frames combining the
preemption mechanism. Preemption is used to handle the conflict
in scheduling data frames with different priority levels. Moreover,
we can also analyze the resource utilization and transmission
latency. Under the time properties analysis and verification of
TSN traffic shapers, we can provide engineers with an accessible
reference which may assist them in developing the TSN.

Index Terms—IEEE 802.1TSN, Preemption, Performance
Analysis, Real-Time, UPPAAL

I. INTRODUCTION

With the rapid development of various areas including
intelligent manufacturing, autonomous vehicles, the Internet
of things, and other automation fields, bandwidth and deter-
ministic delay requirements are becoming highly necessary for
the network. Unfortunately, traditional network like CAN or
FlexRay have been unable to meet the requirements. Instead,
Ethernet has gradually become a backbone network in those
areas to satisfy the scalability and ultra-high-speed require-
ments. It also supports complex topology [1]. However, The
deterministic timing guarantees for critical traffic are essential
to the complex temporal behavior of Ethernet. Therefore, 8
traffic classes have been defined in the standard Ethernet IEEE
802.1Q [2]. These classes can be scheduled in order by a strict
priority in the non-preemptive (SPNP) scheduler at each output
port of each switches and endpoints. But this order introduces
a major source of delayor the reason that critical traffic might
be blocked by lower priority traffic.To cope with this problem,

*Corresponding author.

the IEEE 802.1 TSN Task Group develops several shapers
, such as time-aware (TAS) and peristaltic shapers (PS) [3].
These shapers are capable of accommodating hard real-time
traffic with deterministic end-to-end delays. The TSN network
stations communicate up to 18 times faster than with any
protocol available on the market today. This opens up new
possibilities in areas such as tightly synchronized motion and
control applications.

Although a number of common methods have appeared
for evaluating network performance, there is a lack of ef-
fective methods for real-time performance analysis. Among
those methods for evaluating network performance, the most
common one is simulation [4], which is used to assess a
network’s response to a given set of stimuli. However, due to
the extremely high reliability requirements, simulations often
require long simulation runs and usually do not expose all
corner cases. Another common method is real-time calculus.
It’s impossible to automate the verification, and only the
worst-case scenario can be assessed, which can lead to rather
pessimistic conclusions for engineers.

To address these challenges, we recommend applying model
checking [5] in this paper. Model checking is one of the most
important and successful automatic techniques for verifying
highly sensitive systems such as security protocol. It exhaus-
tively searches the state space of the system to cover all corner
cases. In order to analyze the timing requirements about TSN,
we specifically adopt a timed model checker UPPAAL [6] to
model the TSN traffic shapers.

UPPAAL is an integrated tool for modeling, simulation
and verification of real-time systems [7]]. It is well suited
for verifying such systems that can be modeled as non-
deterministic processes [8[|-[10]. During the modeling of sys-
tems, the simulator may detect possible problems existed. The
verifier may check the safety and liveness properties of the
system by searching the system state space on-the-fly.

With UPPAAL, we model the shaping process at each router
node. Each process is modeled as a timed automaton. In
particular, Window automata deal with the time slots division
of the cycle. Traffic automata deal with the data forwarding
processes. Moreover, we provide the models of the traffic
shapers combining preemption mechanism. We validate our

models using the simulator and verify some properties of
our models. Furthermore, we conduct a formal analysis that
focuses on resource utilization of networks and end-to-end
delay of time-critical frames under four scenarios respectively,
i.e., TAS, TAS with preemption, PS, PS with preemption.

The main contributions of this article can be summarized
as follows.

1) Modeling and Verification: We build formal models

of the TSN time-aware and peristaltic shapers mech-
anisms as well as those with preemption mechanism
using UPPAAL. Based on the shapers models, we verify
several properties, i.e., deadlock-free, reachability of
preemption, and low latency.
Timing Analysis: We analyze the resource utilization of
shapers and the transmission latency of real-time critical
frames. We provide the formal performance analysis of
TSN traffic shapers and preemption mechanism.

2)

Related Work There have been some work on the analysis
of TSN in related industries and academia. Bello et al. [11]
gave an overview of TSN in industrial systems. This paper
identified validation and verification as one of the TSN re-
search challenges. Luxi Zhao et al. [[12] proposed a network
calculus-based approach to determine the worst-case end-to-
end delays of audio/video bridging traffic with non-preemption
and preemption. Peng Zhang et al. [[13] presented an analysis
framework of TSN to analyse the worst-case latency through
real-time calculus. Although the above two approaches can
calculate the worst-case delay by arithmetic, they rely too
much on parameters and cannot automatically calculate. [|14]]
used network simulation tool NeSTiNg to investigate the TSN
scheduling mechanism. However, it’s very time consuming
and can not cover all cases. In [15]], IEEE 802.1i security
protocol is modeled and verified based on timed automata
using model checker UPPAAL. It could check correctness
of the communication protocol automatically and provide
better security. In this article, we recommend applying model
checking.

In our paper, we consider the real-time performance of time
critical frames under the time-aware and peristaltic shapers
with preemption and non-preemption. To the best of our
knowledge, there is no other study to model and verify the
TSN’s TAS and PS for evaluation.

Paper Organization The remainder of this paper is or-
ganized as follows: a brief overview of TSN protocol and
UPPAAL is given in Section II. In Section III, we give the
formal models of the TSN traffic shapers using UPPAAL.
Section IV presents experimental configuration, verification
and formal analysis of the TSN shapers. Section V concludes
this article.

II. PRELIMINARIES

The IEEE 802.1 TSN has defined new mechanisms that
enable real-time systems using Ethernet technologies. Specifi-
cally, TSN defined time-aware and peristaltic shapers to allow
the convergence of low-latency scheduled traffic (ST) and
standard best-effort (BE) Ethernet traffic on the same network.

SWITCHING FABRIC

Schedule Table
| Gate Control List
T0:00111111
T1:01000000
Queue 0 Queue 1 Queue 2 Queue 7 T2:10000000
T3:00111111
T4:01000000
Ti Gate Til Gate Ti Gate Time-Aware Gate
[|
Tn=repeat
TRANSMISSION SELECTION
N cyclen cycle n+1
\
(TAS)

cycle n cycle n+1

(PS)

Fig. 1. Operation of Shapers.

Data frames for scheduled traffic are real-time frames, smaller
in size, but more demanding in terms of real time. Data frames
for best-effort traffic are larger in size, but less demanding for
real-time.

As shown in Fig[T] there are eight queues to accommodate
the two types of data frames mentioned above. A time-aware
gate on each queue port controls the timing of data frame
forwarding. The number O in the scheduling table on the
right indicates that the gate is closed and transmission is
suspended. The number 1 indicates that the gate is open
and transmission is allowed. In the module of transmission
selection algorithm, the engineering developer can choose
various scheduling algorithms depending on the latency needs
of different applications.

The bottom part of Fig[l] shows the time slots division of
the periodic time cycle shaped by TAS and PS. The shaping
rules in the corresponding time slots are described as follows.

A. IEEE 802.1 Qbv: Time Aware Shaper

Time-aware shaper defines a mechanism for time-driven
control and scheduling of data frames. It is designed to
separate the communication into fixed length and repeating
time cycles. In this paper, each cycle is further divided into
three time slots. As shown in the TAS at the bottom of Fig[l]
the time slot BE allows for standard best-effort Ethernet traffic
to be sent and the time slot ST only allows the transmission of
low-latency scheduled traffic with high priority. The time slot
GB is called guard band which is explained in the following
scenario.

As shown in Fig[2] the top row shows a typical conflict
scenario. A new best-effort (BE) frame transmission is started
in time slot 70 (BE time slot) and it infringed the following
time slot 7/ (ST time slot). By partially or completely blocking
the time-critical ST time slot, the real-time frames ST1 and
ST2 can be delayed up to the point where they cannot meet
the application requirements any longer. In the non-preemptive
mode (NP in the second row), time-aware shaper handles this
conflict by setting a guard band in front of 7. The duration

NP

T0 : T

Fig. 2. Time-Aware Shaper (TAS)

of the guard band is as long as the length of the maximum
best-effort frame. None of new frame transmission is allowed
to start within guard band. While the guard bands manage to
protect the time slot with high-priority traffic, they also have
a significant drawback. They waste bandwidth for traffic on
the Ethernet link.

B. IEEE 802.1 Qch: Peristaltic Shaper

Peristaltic shaper provides a traffic shaping method that can
deliver deterministic and easily calculated latency for time-
sensitive traffic. As shown in the PS at the bottom of Fig[l]
peristaltic shaper also divides the transmission time of data
frames into fixed length and consecutive time cycles. The
peristaltic phase is dependent on the required maximum end-
to-end latency the width of real-time frames. PS divides a
time cycle into two equal-length slots (ODD and EVEN time
slots). In addition, each time slot allows for both scheduled
traffic and best-effort traffic to be sent. PS specifies that data
frames arriving in ODD time slot are required to wait until
the following EVEN time slot to send, and vice versa [|16].

=
vy

v

EVEN OoDD EVEN

Fig. 3. Peristaltic Shaper (PS)

As shown in Fig[3] the top row shows a typical conflict
scenario. When a real-time frame ST arrives before the start
of the ODD, there is a best-effort frame BE being transmitting.
Unfortunately, the frame BE is too large to fit into the time slot
ODD. The frame ST will be blocked, because the transmission
of the frame BE cannot be interrupted. In non-preemptive
mode (NP in the second row), the frame ST is forwarded
until the frame BE to complete transmission. The worst-case
ST frame delay can be two cycles.

C. IEEE 802.1 Qbu: Frame Preemption

IEEE 802.1Qbu has specified the frame preemption tech-
nology [17]. Preemption allows one or more express (higher-
priority) frames to interrupt the transmission of a preemptable

(lower priority) frame. It also defines procedures to resume
the transmission of the preemptable frames once the express
frames have been transmitted.

To mitigate the negative effect from the guard bands in Qbv
and improve the real-time performance of frame ST in Qch,
we recommend the frame preemption technology. The bottom
row (P) in Fig[]indicates the preemption behavior of the real-
time frames ST1 and ST2 in Qbv. They can be forwarded as
soon as they arrive. Likewise, the bottom row (P) in Fig[3]
means that the frame ST is allowed to be forwarded at the
start of the following time slot ODD with preemption in Qch.
As a result, preemption can reduce the end-to-end latency of
real-time frames.

D. UPPAAL Model Checker

The core functionality of UPPAAL is model-checking of
hard real-time properties on timed automata models. It is
supported by a verifier and simulator, which enables manual
and random tracing through the model. All the clocks progress
synchronously. The simulator can be used in three ways: 1) the
user can run the system manually and choose which transitions
to take, 2) the random mode can be toggled to let the system
run on its own, or 3) the user can go through a trace to see
how certain states are reachable. By the ways, we can cover
all corner cases. The main purpose of a model checker is to
verify the model against requirement specifications.

UPPAAL gives a pseudo-formal semantics for the require-
ment specification language. UPPAAL uses A [] to represent
AG of CTL. A[] p evaluates to true only when every reachable
state satisfies predicate p. The property A <> p to represent
AF of CTL, which evaluates to true only when all possible
transition sequences eventually reach a state satisfying p. the
property 2 <> p to denote EF of CTL that evaluates to true if
and only if there is a sequence where there exists a reachable
state satisfying p. The state property deadlock evaluates to true
for a state only when there is no action successor.

III. MODELLING THE TRAFFIC SHAPERS

In this section, we formally model the processes of the TSN
time-aware and peristaltic shapers using UPPAAL.

A. Abstracting Data Structures in TSN Protocol

In the text below, We define abstract data structures in the
TSN protocol. The terminal station generates data frames that
are sent to the switch.

Definition 1 (Data Frame). A data frame F' is defined as a
tuple (FrameSize, ReceiveTime, Class, Framelnterval),
where each component is explained below.

e FrameSize indicates the byte size of the data frame.

e ReceiveTime is the arrival time of the frame.

e Class gives the priority of the frame, i.e., ST and BE
frames.

o Framelnterval indicates how often the data is sent.

Definition 2 (Queue). A queue Q is defined as a quadruple
(Array[n], Class, Head, Tail), where

Array[n] indicates a sequence of frames in the queue,
and the length of the sequence is n.

o Class is the priority of the queue, ranging from 0 to 7.
e Head is the index of the first element in the queue.

e Tail is the index of the last element in the queue.

initial newFrame(F) send

time[F.class]==F.Framelnterval

enqueue(F)

queue@

Fig. 4. Terminal Station

time[F.class]=0

As shown in the Figld] we create an automaton that sim-
ulates the process of data producing. In the initial location,
if the global clock variable time[*] equals to the value of
F.Framelnterval, the terminal station starts to generate a frame.
newFrame(F) is a function used to generate a frame. Then the
frame is queuing in the switch. enqueue(F) is responsible for
queuing the frame. The process will repeat according to the
frame interval.

B. Transmission Substandards Models

We abstract the shaping behavior of the time-aware and
peristaltic shapers into two parts. One part is about the time
slots division, which is represented as Time Window Automata.
The other part is about controlling the data traffic transmission
within the corresponding time slots. The part is described as
Traffic Automata. A complete shaping process is described as
a network of timed automata with the two parts above.

TABLE I
ABSRTACT TIMING STATES IN SHAPERS

States Description

BE Best-effort traffic transmission time slots

GB Guard band time slots

ST Scheduled traffic transmission time slots
ODD/EVEN Odd/Even time slots
preempted Preempting transmission time slots
resumeBE Resuming transmission time slots
waitTimeout Waiting for timeout error

Locations: We extract some states of time slots in the com-
munication. Table m lists the time slots states {BE, GB, ST}
under TAS rules, states {ODD, EVEN} under PS rules and
states {preempted,resumeBE} under the preemption behavior.
The state BE (ST) allow for only BE(ST) frames transmission.
The state GB represents time slots Guard Band. There is no
new frame allowed to start within GB. The states ODD (EVEN)
means that the current time slot is marked as ODD (EVEN).
The mark is used as a basis for determining whether data
frames can be forwarded or not. The state preempted indicates

the point where the preemption happen, and state resumeBE is
for resuming BE frames transmission. The state waitTimeout
warns that the the waiting time of real-time frames has expired.

Channels: Time Window Automata and Traffic Automata
synchronise over shared channels and exchange data via shared
variables. Table [l lists several channels. The channels act as
synchronization signals to trigger the transmission of related
frames. Further explanation will be given later.

TABLE 11
ABSTRACT CHANNELS IN TSN PROTOCOL

Channels Functionalities
tranBE Sync signal used to transmit best-effort frames
tranST Sync signal used to transmit real-time frames
preempt Sync signal used to trigger preemption

resume Sync signal used to trigger resumption transmission

1) Modeling the TAS mechanism: This section presents
the modeling process of TSN’s Time-aware shaper (TAS),
including TAS Window Automaton and TAS Traffic Automata.

initial BE GB
© tranBE! O time>=GB_start
time=0 time<=BE_end time<=GB_end
count++
I
time>=ST_end transT!

time>=ST_start
time<=ST_end

ST
N\

Fig. 5. TAS Window automaton

TAS Window Automaton: The time slots division rules
for TAS are given in part A of the preliminaries before.
As shown in Figl5] the TAS window imitates a time cycle
throughout the system. We denote the three time slots in the
cycle with locations BE, GB, and ST. The variables GB_start
and ST _start are the start moments of time slots GB and ST,
respectively. The variables BE_end, GB_end and ST _end are
the end moments of time slots BE, GB, and ST, respectively.

The TAS window starts in Initial location, where the global
clock variable time records the elapsed time. The window
determines whether to move by comparing the current time
with the starting values of different time slots. When the
window enters the BE (ST) location, the BE (ST) Traffic
Automaton gets the permission tranBE!(tranST!) to transmit
with tranBE?(tranST?) synchronisation. The variable count
records the total number of time cycle and can be used to
calculate the resource utilization.

TAS Traffic Automata: The rules for the data traffic
transmission have been given in part A of of the preliminaries
above. Figlo] displays the ST Traffic Automaton in TAS.

Firstly, the ST frames are in the wait location, where they
wait to receive the permission (tranST?). By the waiting delay
waitDelay, we can make a judgment that whether the critical

frames meet the real-time performance requirements or not.
In the preST location, if the waiting delay is greater than the
maximum, then the error warning waitTimeout will be issued.
If the waiting delay is acceptable, then function Empty() will
check that whether the queue is empty or not. If it is not empty,
then the frames is started to transmit.

Secondly, we define the variable tranDelayST, which in-
dicates the length of time to transmit a single ST frame.
The clock variable watch records the duration of the frame
transmission. By comparing watch and tranDelayST in sendST
location, we can see whether a single ST frame is completely
transmitted or not. The variable fotalTimeST records the total
transmission duration of ST frames in the whole task. It is
used to analyze resource utilization later.

Finally, in the tranSuccess location, the ST traffic automaton
determines whether to move to the next time slot by comparing
time with ST_end. The transmission process of the BE Taffic
Automaton is similar to this, so we do not repeat it.

waitTimeout
Empt

o G
tranST?

aitDelay>MAX, stch<=tranDelayST

‘ IEmpty()&& watch=0 sendST
waitDelay+=GB_end aitDelay<=MAX
ime>=ST_end time<ST_end

watch==tranDelayST
totalTimeST+=tranDelayST

tranSuccess @
&/

Fig. 6. ST Traffic automaton in TAS.

2) Modeling the PS Mechanism: This section presents the
modeling process of TSN’s peristaltic shaper(PS).

PS Window Automaton: The time slots division rules for
PS are given in part B of the preliminaries before. As shown
in Fig[7} the PS window imitates a time cycle throughout the
system. There are two equal length time slots in every cycle,
namely ODD and EVEN. count records the slot tag. SLOT
(CYCLE) is the length of one time slot (cycle). By comparing
the elapsed time with the SLOT and CYCLE, the window
enables the rotation of time slots. Once the window switches
the time slot, the signal judegel! synchronises with judgel?
in the traffic automata. Then the traffic autoamta will check if
frames meet the transmission conditions or not.

Initial @ oDD
time=0,count++ judge1! time<=SLOT
ime>=CYCLE time>=SLOT
EVEN count++
time<=CYCLE judge1!
C

Fig. 7. PS Window automaton.

PS Traffic Automata: The transmission rules have been
given in part B of the preliminaries above. Fig[g] displays the
ST Traffic automaton in PS.

Firstly, the ST frames are in the wait location. Step 1,
the function Empty() detects if the queue is empty or not.
If it is empty, waiting again. If it is not empty, frames
are ready in preST location. The method to evaluate the
wait timeout is similar to the one above in TAS window.
Step 2, when the time slot is switched (judgel?), or the
frame being transmitted is finished (judge2?), frames in the
queue will check themselves to see if they meet the sending
conditions (count! = Receivelime) or not. At this point,
if the conditions are met, then frames go to the next step.
Step 3, variable lock indicates whether the network channel is
occupied or not. When the lock equals 0, the channel is idle.

waitTimeout
waitDelay>MAXA count==ReceiveTime S2
IEmpty() judge1?
preST judge2?
lock!=0 count!=ReceiveTime

S1

inished! lock=0

waitDelay+=tranDelayBE

totalTimeST+=tranDelayST sendST
watch==tranDelayST @ _tranST! lock==0
lock=2 watch=0

S3

tranSuccess watch<=tranDelayST

Fig. 8. ST Traffic automaton in PS.

)
O Idle
ranBE?

tranST?

S judge?2!

inished?

Busy
N\

Fig. 9. Gate in PS.

Secondly, frames transmission starts in sendST location. ST
frames occupy the network channel by lock=2. The signal
tranST! synchronise with franST? in gate, shown in Fig[9]
The role of watch and totalTimeST here are the same as the
ones of the ST Traffic Automaton in TAS above.

Finally, in tranSuccess location, the frames transmission
are completed and unlock the network channel. The signal
finished! informs the gate to go to idle. The transmission
process of the BE Traffic Automaton is similar to this, so we
do not repeat it.

3) Modeling the TAS with Preemption Mechanism: This
section presents the modeling process of time-aware shaper
combined with the preemption mechanism in TSN. We imitate
the preemption behavior based on the TAS automata and create
the automata for the preemption process.

TAS with Preemption Window Automaton: When TAS
is combined with preemption, the guard band mechanism is

no longer used here. The time cycle is divided into BE and
ST slots. Preemption may occur in the scenario. When the ST
frame arrives during the BE slot, there is a BE frame being
transmitted.

©

preBE Watch<=tranDeIayE$,\ preen%tte?rru

C

IEmpty() watch=0 sendBE watch2=0
watch==tranDelayBE send!
ime>=BE_end| time<BE_end
JotalTimeBE+=tranDelayB preempted
resume?

tranSuccess <
otalTimeBE+=tranDelayBE
watch2<=tranDelayBE+tranDelayST

watch2==tranDelayBE+tranDelayST resumeBE

Fig. 10. BE Traffic automaton in TAS with Preemption.

TAS with Preemption Traffic Automata: The preemption
rules have been given in part C of the preliminaries above.
Fig[T0] demonstrates that how frame preemption works based
on BE Traffic Automaton in TAS. The transmission process of
BE frames is similar to the transmission process of ST frames
in TAS described above. During the process of sending a BE
frame, if the ST frame arrives, it synchronises with the BE
Traffic Automaton. This is done by the channel synchronisation
preempt? on the transition to interrupt location, where the BE
frame is suspended.

Then the ST frame starts transmission and the BE frame
enters the preempted state. When the ST frame transmission
is completed, the interrupted frame transmission is resumed
in resumeBE location. The following process is similar to the
BE Traffic Automaton in TAS described above. The rest of
automata are not shown here due to the space issues.

count==ReceiveTime S2

IEmpty() judge1?
preBE udge2? - -
finished! lock=0 lockl=g | ~ Counti=ReceiveTime
tranSuccess watch<=tranDelayBE S3

totalTimeBE+=tranDelayBE /)
watch==tranDelayBE sendBE
otalTimeBE+=tranDelayBE

atch==tranDelayBE+tranDelayST
watch<=tranDelayBE+tranDelayST

tranBE! lock==0,
lock=1,watch=0

preempt?

resumBE resume? preempted

Fig. 11. BE Traffic automaton in PS with Preemption.

4) Modeling the PS with Preemption Mechanism: This
section presents the modeling process of peristaltic shaper
combined with the preemption mechanism in TSN.

For PS with preemption window, the time slot rules remain
unchanged.

PS with Preemption Traffic Automata: The transmission
process of BE frames is similar to the transmission process
of ST frames in PS described above. Fig[TT| demonstrates that

how frame preemption works based on BE Traffic Automaton
in PS. The preemption process is similar to that in TAS with
preemption above.

TABLE III
TRAFFIC CLASSES.

Class ST BE
FrameSize 128B 256B
TransTime 12us 25us

Framelnterval 200pus 125us
Priority HP LP

IV. VERIFICATION OF SHAPERS MODELS

This section validates and verifies our traffic shapers models
by using the simulator and verifier in UPPAAL, respectively.

A. Experimental Configuration

In our experimental study, we consider two classes of data
frames: ST and BE frames. Table |IlI| shows the parameters of
these frames, whose explanations can be found as follows:

o FrameSize indicates the frame size in bytes. The size is
made up of the payload of a message plus its header, i.e.,
Size = Payload + Header.

e TranTime denotes the frame transmission time (or the
length), which is calculated by the size of the frame
and the network bandwidth. In this paper, we assume
the bandwidth is 100 Mbps.

e Framelnterval indicates how often the data is sent.

e Priority HP stands for high priority and LP stands for
low priority.

According to IEEE 802.1 TSN, the period of cycle in TAS is
500 ps. The length of guard band equals the maximum-sized
best-effort frame, Lgb = 25 us. IEEE 802.1TSN specifies the
maximum end-to-end latency for real-time frames over 5 hops
to be 100us.

B. Verifying Fundamental Properties

To vlidate that the model in this paper follows the rules
of shapers, we define properties 1-7. To verify that the real-
time frames meet the real-time performance requirements, we
define property 8. The verification results and analysis are also
presented in Table [IV]

Property 1 (Deadlock-freedom (DF)). This property ensures
that the system never moves to a (deadlock) state where no
moves are possible. A deadlock may lead to data loss or even
system breakdown. It can be specified in CTL as

Al] not deadlock

This formula states that, for all paths, the system will never
enter a deadlock state.

Property 2 (Frame Mutual Exclusion (FME)). This property
ensures that the shaping mechanism does not transmit frames

of different priorities at the same time. We specify this property
as the conjunction of the below formulae:

TAS : Al] not (window.BE and window.ST)
PS: A[] not (window.ODD and window.EV EN)
PS/TAS : A[] not (ST _traf fic.sendST and
BE_traf fic.send BE)

The first formula indicates that the time slot BE state and
ST state of process window must not occur at the same time in
TAS. The second formula means that the time slot ODD state
and EVEN state of process window must not occur at the same
time in PS. The third formula indicates that the best-effort and
scheduled traffic must not occupy the communication channel
at the same time. BE_traffic and ST_traffic denote the traffic
automata.

Property 3 (Liveness of Forwarding Processes (LFP)). It
is crucial that the forwarding process of a data frame is
eventually completed; otherwise, there might be data loss. We
specify this property as the conjunction of the formulae below.

PS/TAS : A <> (ST _traf fic.sendST imply
ST _traf fic.tranSuccess)

With the above formula, the model checker can verify if the
frame has finished the forwarding process or not.

Property 4 (Non-interleaving (NI)). This property guarantees
that the BE data frames cannot be transmitted within the ST
interval, and vice versa. We formulate this property as below.

TAS : A[| window.ST imply not BE_traf fic.send BE

The formula states that ST frames cannot be transmitted
during time slot BE.

Property 5 (Sequentiality of Traffic (ST)). This property
checks that when a data frame has arrived, it must wait until
a later time slot to be forwarded. We express this property in
CTL below.

PS: A< > ST traffic.sendST imply
(ReceiveTime | = count)

Property 6 (Reachability of Preemption (RP)). When the
transmission of low-priority frames blocks the transmission of
real-time critical frames, the latter may interrupt the former
and take precedence over the transmission. We formulate this
event as below.

TAS/PS : E <> BE_traf fic.preempted

and ST _traf fic.preemption

The above formula indicates that preemption events can
occur during the BE frames transmission.

Property 7 (Low Latency (LL)). IEEE 802.1TSN specifies
the maximum end-to-end latency for time critical frames over

5 hops as 100us. We formulate the latency requirement as
below.

TAS/PS Al] not (ST _traf fic.waitTimeout)

This property checks whether the ST frames meet the la-
tency requirement. We can use this property to verify concrete
real-time performance.

C. Verification Results

TABLE IV
VERIFICATION RESULTS

Category TAS PS TAS+Qbu PS+Qbu
DF YES YES YES YES
FME YES YES YES YES
LFP YES YES YES YES
NI YES / NO /
ST / YES / YES
RP NO NO YES YES
LL NO NO YES YES

The results of verification are shown in Table An entry
of YES indicates that the property has passed the verification
while NO indicates otherwise. The blank entries indicate that
the property is no relevant to the shaper. The value of the
property NI in TAS+Qbu is NO, which means the preemption
can not happen. It is same as the reason why the values of
the property RP in TAS and PS are NO. Therefore, the results
of properties 1-7 prove that our models follow the time-aware
and peristaltic shaper’s shaping rules.

By observing and analysing the diagnostic traces generated
in the simulator of UPPAAL, we give the reasons why the
property LL can not pass the verification in 7AS and PS below.
For TAS, if the real-time frames arrive at the start instant of BE
time slots, they will be blocked for a long time. The waiting
delay is too long for time-critical frames For PS, the time slot
is very short. When best-effort frames are being transmitted,
they will occupy the next time slot. In the worst case, the
waiting delay of the real-time frames exceed two time slots,
which is far greater than the delay requirement.

For TAS+Qbu, the preemption guarantees that the latency
of real-time frames will meet the maximum delay requirement.
Real-time frames do not need to wait for the length of BE
time slot or the guard band. When the real-time frames
arrive, they can be transmitted first. For PS+Qbu, real-time
frames will not be interfered by best-effort frames with low-
priority anymore. They can be sent immediately after sufficient
residence time, so the waiting delay is much shorter. Fig[T2]
shows that the shapers with preemption mechanism can satisfy
the time requirement.

D. Timing Analysis

By running and simulating on the shapers models we have
established, we can obtain the recorded total time, the total
transmission time, waiting delay and other variables. As shown

TABLE V
TIME PERFORMANCE ANALYSIS

Mechanism Tsum Tyiobal Utilization

TAS 916us 1000us 91.6%
1836us 2000us 91.8%

2754 us 3000us 91.8%

3642us 4000us 92.1%

TAS+Qbu 976us 1000us 97.6%
1956us 2000us 97.8%

2943 us 3000us 98.1%

3928us 4000us 98.2%

in Table [V] and [VIl we analyze the time performance of
experiments based on these data. T4 represents the value of
global clock time after all frames have been transmitted. Ty,
denotes the total transmission time of all frames. The resource

Status

A[] not deadlock

Verification/kernel/elapsed time used: 0s / 0s [0.001s.
Resident/virtual memory usage peaks: 8, 744KB / 28,832KB.
Property is satisfied.

Status

All not (ST_trafficwaitTimeout)

Verification/kernel/elapsed time used: 0s / 0s / Os.
Resident/virtual memory usage peaks: 9,016KB / 29,316KB.

Property is satisfied.

Fig. 12. Verification results.
utilization rate can be roughly calculated by the formula:

T.
utilization = —2" % 100%
global

In Table [V] we calculate the resource utilization rate when
Ty10bar = 1000, ...,4000. It shows that the resource utilization
of TAS is much lower than that of TAS with preemption
mechanism. Table shows the maximum delay time that an
ST frame may have to wait. Experimental results show that
when the payloads increase, the preemption mechanism can
significantly improve the latency of time-critical frames and
the resource utilization of the original protocol.

TABLE VI
DELAY ANALYSIS OF ST FRAMES

Mechanism maxDelay/frame
TAS 250 ps
PS 40 ps
PS+Qbu 20 ps
TAS+Qbu 2 us

V. CONCLUSION

Time-sensitive network is an effective solution to transmit
real-time traffic in control systems. Meanwhile, the feasibility

analysis of TSN is particularly important. Motivated by this,
this paper presents formal models of the TSN traffic shapers.
In order to evaluate whether these shapers are able to satisfy
the strict timing requirements or not, we applied CTL formulas
to describe the properties of the TSN protocol, i.e., deadlock-
freedom, frame mutual exclusion,liveness of forwarding pro-
cesses, non-interleaving, sequentiality of traffic, reachability of
preemption and low latency. These properties could be verified
by the verifier in UPPAAL. Besides, we also conducted a
formal analysis of different shapers based on our models.
In particular, we compared the resource utilization and the
transmission latency of real-time frames with and without
preemption. We found that the preemption mechanism can
not only reduce the end-to-end latency but also significantly
improve resource utilization. Through our models, designers
and engineers can easily understand and develop the TSN
better with higher reliability and hard real-time performance.

ACKNOWLEDGMENT

This work is partially supported by National Key Research
and Development Program (2019YFB2102602).

REFERENCES

[1]1 C. E. Spurgeon, Ethernet: the definitive guide. ” O’Reilly Media, Inc.”,

2000.

“Ieee standard for local and metropolitan area networks—bridges and

bridged networks,” 2014.

[3] L of Electrical and E. E. (2019), “Time-sensitive networking task group.
accessed: Jul. 6 [online],” 2016.

[4] G. Alderisi, A. Caltabiano, G. Vasta, G. Iannizzotto, T. Steinbach, and
L. L. Bello, “Simulative assessments of ieee 802.1 ethernet avb and
time-triggered ethernet for advanced driver assistance systems and in-car
infotainment,” in 2012 IEEE Vehicular Networking Conference (VNC),
pp. 187-194, IEEE, 2012.

[5] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
in Formal methods for the design of real-time systems, pp. 200-236,
Springer, 2004.

[71 K. G. Larsen and P. Pettersson, “Wang yi,” Uppaal in a nutshell. STTT,

vol. 1, no. 1-2, pp. 134-152, 1997.

S. Saini and A. Fehnker, “Evaluating the stream control transmission

protocol using uppaal,” 2017.

[9] M. Kamali, “Modeling and verifying the olsr protocol using uppaal,”

2014.

J. Bengtsson and D. Griffioen, “Automated verification of an audio-

control protocol using uppaal,” The Journal of Logic and Algebraic

Programming, vol. s 52-53, no. 1, pp. 163-181, 2002.

L. L. Bello and W. Steiner, “A perspective on ieee time-sensitive

networking for industrial communication and automation systems,”

Proceedings of the IEEE, vol. 107, no. 6, pp. 1094-1120, 2019.

L. Zhao, P. Pop, Z. Zheng, and Q. Li, “Timing analysis of avb traffic

in tsn networks using network calculus,” in 2018 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), pp. 25-36,

IEEE, 2018.

P. Zhang, Y. Liu, J. Shi, Y. Huang, and Y. Zhao, “A feasibility analysis

framework of time-sensitive networking using real-time calculus,” IEEE

Access, vol. 7, pp. 90069-90081, 2019.

D. Hellmanns, J. Falk, A. Glavackij, R. Hummen, S. Kehrer, and F. Diirr,

“On the performance of stream-based, class-based time-aware shaping

and frame preemption in tsn,” in 2020 IEEE International Conference

on Industrial Technology (ICIT), pp. 298-303, IEEE, 2020.

Y. Lu and M. Sun, “Modeling and verification of ieee 802.11 i security

protocol for internet of things.,” in SEKE, pp. 270-269, 2018.

M. J. Teener, “Peristaltic shaper in clause 8 style,” 2013.

IEEE, “802.1gbu—frame preemption,” 2015.

[2

—

[8

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

	Introduction
	Preliminaries
	IEEE 802.1 Qbv: Time Aware Shaper
	IEEE 802.1 Qch: Peristaltic Shaper
	IEEE 802.1 Qbu: Frame Preemption
	UPPAAL Model Checker

	Modelling the traffic shapers
	Abstracting Data Structures in TSN Protocol
	Transmission Substandards Models
	Modeling the TAS mechanism
	Modeling the PS Mechanism
	Modeling the TAS with Preemption Mechanism
	Modeling the PS with Preemption Mechanism

	VERIFICATION OF SHAPERS MODELS
	Experimental Configuration
	Verifying Fundamental Properties
	Verification Results
	Timing Analysis

	Conclusion
	References

