
A Graph Representation Framework for Encrypted Network Traffic
Classification⋆

Zulu Okonkwoa,∗, Ernest Fooa, Zhe Houa, Qinyi Lia and Zahra Jadidia

aGriffith University, QLD, Australia

A R T I C L E I N F O
Keywords:
Network Traffic Classification
Neural Networks
Internet security
Encryption
Graphs

A B S T R A C T
Network Traffic Classification (NTC) is crucial for ensuring internet security, but encryption presents
significant challenges to this task. While Machine Learning (ML) and Deep Learning (DL) methods
have shown promise, issues such as limited representativeness leading to sub-optimal generalizations
and performance remain prevalent. These problems become more pronounced with advanced obfus-
cation, network security, and privacy technologies, indicating a need for improved model robustness.
To address these issues, we focus on feature extraction and representation in NTC by leveraging the
expressive power of graphs to represent network traffic at various granularity levels. By modeling
network traffic as interconnected graphs, we can analyze both flow-level and packet-level data. Our
graph representation method for encrypted NTC effectively preserves crucial information despite
encryption and obfuscation. We enhance the robustness of our approach by using cosine similarity
to exploit correlations between encrypted network flows and packets, defining relationships between
abstract entities. This graph structure enables the creation of structural embeddings that accurately
define network traffic across different encryption levels. Our end-to-end process demonstrates
significant improvements where traditional NTC methods struggle, such as in Tor classification,
which employs anonymization to further obfuscate traffic. Our packet-level classification approach
consistently outperforms existing methods, achieving accuracies exceeding 96%.

1. Introduction
The surge in cyber-attacks has heightened interest in Net-

work Traffic Classification (NTC), which categorizes net-
work traffic into various classes. Encryption has complicated
this task, prompting the adoption of deep learning (DL) to
analyze patterns, characteristics, and contents of encrypted
traffic. Before DL, NTC methods ranged from port-based
classification to statistical techniques [16, 35, 26, 44]. Recent
and previous research [27, 24, 33] leveraged statistical fea-
tures due to the non-contextual nature of encrypted network
traffic. This led to a new wave of Machine Learning based
practices and now Deep Learning methods [38, 9, 39, 49, 35,
26]. Early statistical approaches relied on hand-crafted flow-
based features, which posed challenges for real-world classi-
fication due to disparities between long and short flows. Re-
cent classification strategies also use network metadata, such
as packet length and inter-arrival time. Understanding the
differences between network metadata and actual encrypted
traffic is crucial for effective NTC.

Network Traffic Classification (NTC) is generally re-
garded as a classification problem in the field of ML and DL,
(see Figure 1). Effective NTC requires structured data repre-
sentation for ML/DL analysis. Traditional approaches [41,
42, 35, 26] have transformed network traffic into grey-
scale or colored images, inspired by DL’s success in im-
age classification. While these methods yield good results,
they often capture network characteristics rather than ap-
plication behavior, leading to poor generalization. Given
the time-series nature of network traffic, temporal features

∗Corresponding author
zulu.okonkwo@griffithuni.edu.au (Z. Okonkwo)

ORCID(s):

are also vital for classification. Recurrent Neural Networks
(RNNs), particularly Long Short Term Memory (LSTM)
networks [21, 47], have been used to extract these features,
inspired by advances in natural language processing (NLP).
These methods analyze raw traffic, simplifying feature selec-
tion and showing promising results. Combining DL meth-
ods [21, 40, 1] has further improved classifier performance.
However, the unstructured nature of encrypted traffic still
poses challenges, especially for DL analysis of NTC. CNN-
based methods [41, 42, 35, 26] often involve manual fea-
ture selection and extraction, emphasizing network behav-
ior rather than application behavior, which results in poor
generalization. LSTM approaches analyze all traffic simi-
larly, leading to sub-optimal performance under enhanced
encryption. Combining DL methods increases network com-
plexity and the risk of overfitting. This critical challenge
underscores the need for novel approaches in representing
encrypted traffic. Hence, our research question emerges: how
can encrypted network traffic be represented to enhance
the accuracy of detection, identification, and classification?
Addressing this question is essential for advancing the field
of NTC, particularly in the face of evolving encryption
techniques.

Recent works, such as [51, 11, 23] have demonstrated the
effectiveness of processing both payload and header data for
classification tasks. These studies reported remarkable per-
formance, despite the inherent lack of pattern in encrypted
payloads. Inspired by these results, we incorporate payload
data in our experiments to evaluate its potential contribution
to classification accuracy. This approach aims to determine
whether the inclusion of payload data can indeed enhance
classification performance, despite the challenges posed by
encryption.

Okonkwo et al.: Preprint submitted to Elsevier Page 1 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Figure 1: A Typical Encrypted Network Traffic Classification
Model Task

Geometric deep learning (GDL) [2] have been effec-
tively employed to unstructured data, enabling node, link,
or entire graph prediction. By examining graph compo-
nents and their topological structures, GNNs can handle
complex classification tasks. The application of GNNs to
network traffic classification (NTC) has shown promising
advancements [26, 11, 30, 52, 51, 3]. Despite recent ad-
vancements, significant challenges persist. Just as distinct
features aid in image recognition, graphs must encapsulate
the expressive nature of entities before deep learning com-
putations. Enhancing this capability requires careful design
of graph structural properties, focusing on feature extrac-
tion and representation methodologies. Studies by Huoh et
al. (2021) and Okonkwo et al. (2023) applied GNNs to
NTC but fell short in leveraging the full potential of graph
expressiveness, producing simplistic graphs with minimal
topological distinctions [11, 26], resulting in path graphs
with no structural distinction. This approach is inadequate
for granular, multi-classification tasks in encrypted NTC.
To advance the field, it is crucial to develop methods that
enhance the expressive nature of graph representations, al-
lowing for more effective deep learning computations and
improved classification accuracy in encrypted NTC tasks.
This calls for innovative approaches in feature extraction
and graph generation, addressing the limitations of current
methodologies and harnessing the full potential of GNNs in
NTC.

This paper addresses representation for encrypted NTC
using graph-based analysis at the flow and packet levels
to create interconnected graphs. We introduce two types
of edges to enrich graph structure: chronological edges
preserving time series data, and similarity edges facilitat-
ing communication between similar nodes while enhancing
topological distinctions. Using cosine similarity, we estab-
lish secondary node relationships by creating edges when a
similarity threshold is met. This promotes interaction among
similar nodes, generating structural embeddings essential for
graph definition. We evaluate our method on four public
datasets using GNN variants, emphasizing models that retain
higher-order information for effective graph classification.
Our Contributions:
1. We propose novel methods to represent network traffic

as graphs, constructing interconnected graphs at both

flow and packet levels by analyzing sequences of network
packets and streams of bytes, respectively.

2. We design an effective GNN-based classifier for network
graphs. We test various Graph Neural Network architec-
tures, focusing on whole graph classification, defining a
baseline model, and building customizations. Our experi-
ments identify an architecture that excels in both flow and
packet-level classification.

3. We extensively evaluate our methodology, conducting
comparative analyses with related work and providing ex-
perimental explanations. These explanations reveal how
our network graph structures enhance the classification
process by preserving crucial structural information for
encrypted network traffic classification.

This paper is organized as follows: Section II defines the
preliminaries of network traffic and our adopted Graph Neu-
ral Network (GNN). Section III introduces our approach
to defining and creating network graphs, as well as our
classification model. Section IV details the dataset used
and provides an in-depth experimental analysis. Section V
discusses key observations from the novelty of our approach.
Section VI reviews related literature, and Section VII con-
cludes the work.

2. Preliminaries
This section introduces network properties and GNNs.

2.1. Encrypted Network Traffic Classification
In packet-switched networks, a flow is defined as a

sequence of packets sharing common parameters: src/dest
IP, src/dest port, and protocol (the 5-tuple). For simplicity,
we reduce traffic flows to time windows. We segment traffic
flows 𝑇𝐹 into smaller subsets, referred to as flows, based
on time windows of 𝑛 seconds. Let 𝑇𝐹 be a traffic flow,
using a time window of 𝑛 seconds we split 𝑇𝐹 into separate
fragments of flows 𝑇𝑓𝑖, where 𝑖 ∈ {1, 2, ..., 𝑚} and 𝑇𝑓𝑖 ∈ 𝑇𝐹and we overload the set notations for lists. Mathematically,

𝑇𝐹 =
{

𝑇𝑓1, 𝑇𝑓2, ..., 𝑇𝑓𝑚
}

, (1)
where 𝑇𝑓1, 𝑇𝑓2 etc, refer to fragments of traffic flows re-
turned after splitting 𝑇𝐹 . Network packets are the basic units
of data transferred over a network, combining to form larger
messages and network flows. A flow 𝑇𝑓𝑖, can be broken
down into individual packets 𝑃𝑖1 , 𝑃𝑖2 , ..., 𝑃𝑖𝑚 . Let

𝑇𝑓𝑖 =
{

𝑃𝑖1 , 𝑃𝑖2 , ..., 𝑃𝑖𝑚

}

, (2)
where 𝑃𝑖𝑚 denotes an individual packet in the flow, 𝑚 rep-
resents the packet sequence and the length of the flow in
this case. 𝑖 is an identifier that ties the packet to a flow,
like a label. Basically, 𝑃𝑖𝑚 is the 𝑚-th packet of the 𝑖-th
traffic flow. An encrypted packet is a byte stream capped
at a maximum transmission unit of 1500 bytes. For packet-
level classification, we analyze the byte sequence of packets.

Okonkwo et al.: Preprint submitted to Elsevier Page 2 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Given a flow 𝑇𝑓𝑖 and a packet 𝑃𝑖𝑚 from this flow, we can
break down 𝑃𝑖𝑚 into its byte stream. The byte 𝑏𝑖𝑚𝓁 represents
the 𝓁-th byte of the 𝑚-th packet in the 𝑖-th traffic flow. Let

𝑃𝑖𝑚 =
{

𝑏𝑖𝑚1, 𝑏𝑖𝑚2, ..., 𝑏𝑖𝑚𝓁
}

, (3)
where 𝓁 represents the byte position, m is an identifier that
ties the byte to its packet, and 𝑖 is an identifier that ties the
byte to its traffic flow in 𝑏𝑖𝑚𝓁 .

Encrypted traffic classification categorizes network traf-
fic by applications, services, protocols, etc. This paper fo-
cuses on classifying applications and services (e.g., video,
audio, chat, file transfer). We propose two methodologies
for representing network traffic as graphs. The classification
tasks involve training a model on labeled sample graphs and
predicting the labels of an unseen sample set. The trained
neural network maps a sample of unlabeled flow graphs
𝑇𝑓𝑥 or packet graphs 𝑃𝑖𝑥 where 𝑥 ∈ {1, 2, ..., 𝑛} to labels
𝐿𝑠 = 0, 1, 2..., 𝑁 − 1.

2.2. GNN Preliminaries
Graph Neural Networks (GNNs) perform optimizable

transformations on graph attributes while preserving permu-
tation invariance and equivariance. GNNs typically employ
a message-passing mechanism where neighborhood infor-
mation is aggregated to form new node representations. In
the context of NTC, we focus on graph classification, aiming
to predict the properties of entire graphs. A simple graph
𝐺 = (𝑉 ,𝐸) consists of a set nodes 𝑉 (𝐺) and edges 𝐸(𝐺).
Nodes are initialized with an attribute matrix representing
the feature vector 𝑋𝑣 for 𝑣 ∈ 𝑉 . Let be set of graphs such
that {𝐺1,… , 𝐺𝑁

}

⊆ and be a set of labels for such
that {𝑙1,… , 𝑙𝑁

}

⊆ the graph classification task aims to
learn a representation vector ℎ𝐺𝑁

which is used to predict
the label 𝑙𝑁 of the entire graph 𝐺𝑁 .

GNN layers aggregate neighborhood information to up-
date node representations. The basic propagation rule is:

𝐡(𝑙+1) = 𝜎
(

𝐀,𝐡𝑙,𝐰𝑙) , (4)
where 𝐡(𝑙+1) is the feature representation at layer “(𝑙 + 1)”,𝐀
is the adjacency matrix defining graph connectivity, 𝐡𝑙 is the
feature representation at layer 𝑙 and𝐰𝑙 is the trainable weight
parameter at layer 𝑙. The non-linear function 𝜎 is used during
training. Variants of GNNs modify this propagation rule 4 to
enhance performance.

In this paper, we adopt the methodology proposed
by Morris et al. [25], which performs message passing
between sub-graph structures rather than individual nodes,
enhancing the capture of structural information in graphs for
encrypted NTC.
As stated earlier a graph 𝐺 is a pair (𝑉 ,𝐸), and 𝐸 ∈ {(𝑢, 𝑣) ∣
(𝑢, 𝑣) ∈ 𝑉 2 & 𝑢 ≠ 𝑣}. The neighbourhood 𝑁(𝑣) of a node 𝑣
in 𝑉 (𝐺) is defined as 𝑁(𝑣) = {𝑢 ∈ 𝑉 (𝐺) ∣ (𝑣, 𝑢) ∈ 𝐸(𝐺)}.
Let 𝑉 (𝐺)𝑘 denote a set of all 𝑘-elements subsets of 𝑉 (𝐺)
containing 𝑘 nodes. For 𝑠 ∈ 𝑉 (𝐺)𝑘 and 𝑠 = {𝑠1, ..., 𝑠𝑘}, the
neighbourhood of 𝑠 is defined as

𝑁(𝑠) =
{

𝑡 ∈ 𝑉 (𝐺)𝑘 s.t. |𝑠 ∩ 𝑡 ∣= 𝑘 − 1
}

, (5)

The local neighbourhood 𝑁𝐿(𝑠) consists of all elements in
the set 𝑡 ∈ 𝑁(𝑠) such that (𝑢, 𝑣) ∈ 𝐸(𝐺) for unique 𝑢 ∈ 𝑠 ⧵ 𝑡
and unique 𝑣 ∈ 𝑡 ⧵ 𝑠. To clarify Equation 5: For a given
integer 𝑘, we consider all sets of 𝑘 vertices from a graph 𝐺,
denoted as 𝑉 (𝐺)𝑘. Let 𝑠 ∈ 𝑉 (𝐺)𝑘 be a set of 𝑘 vertices,
represented as {𝑠1,… , 𝑠𝑘}. The neighborhood of 𝑠, 𝑁(𝑠), is
defined as the collection of sets 𝑡 ∈ 𝑉 (𝐺)𝑘 where |𝑠 ∩ 𝑡| =
𝑘 − 1. Essentially, 𝑁(𝑠) contains sets that differ from 𝑠 by
exactly one vertex. The local neighborhood, 𝑁𝐿(𝑠) consists
of all 𝑡 ∈ 𝑁(𝑠) that has a unique edge (𝑢, 𝑣) ∈ 𝐸(𝐺) such
that 𝑢 ∈ 𝑠 ⧵ 𝑡 and 𝑣 ∈ 𝑡 ⧵ 𝑠. For a k-set 𝑡 to be in the local
neighborhood 𝑁𝐿(𝑠) there must exist:
• A unique vertex 𝑢 ∈ 𝑠 ⧵ 𝑡 (i.e., a vertex that is in 𝑠 but not

in 𝑡)
• A unique vertex 𝑣 ∈ 𝑡 ⧵ 𝑠 (i.e., a vertex that is in 𝑡 but not

in 𝑠)
• an edge (𝑢, 𝑣) ∈ 𝐸(𝐺) (i.e., there must be an edge in the

graph 𝐺 connecting 𝑢 and 𝑣)
Consider the graph 𝐺 with vertices 𝑉 (𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4},
and edges 𝐸(𝐺) = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4)}.
Choosing 𝑘 = 2 yields,
𝑉 (𝐺)𝑘={(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣1, 𝑣4), (𝑣2, 𝑣3), (𝑣2, 𝑣4), (𝑣3, 𝑣4)}Selecting 𝑠 from 𝑉 (𝐺)𝑘 as 𝑠 = {𝑣1, 𝑣2}From Eq 5, 𝑁(𝑠) = {{𝑣1, 𝑣3}, {𝑣1, 𝑣4}, {𝑣2, 𝑣3}, {𝑣2, 𝑣4}}The local Neighbourhood 𝑁𝐿(𝑠) = {𝑣1, 𝑣3} because it
satisfies the three conditions.
The local propagation of feature vectors at layer 𝓁 is given
by:

𝑓 (𝓁)
𝑘, L(𝑠) = 𝜎

(

𝐖(𝓁)
1 ⋅ 𝑓 (𝓁−1)

𝑘, L (𝑠) +𝐖(𝓁)
2 ⋅

∑

𝑗∈𝑁𝐿(𝑠)
𝑓 (𝓁−1)
𝑘, L (𝑗)

)

,

(6)
where 𝑓 (𝓁−1)

𝑘, L (𝑠) is the feature vector of the set of nodes 𝑠 at
layer 𝓁 − 1, and ∑

𝑗∈𝑁𝐿(𝑠) 𝑓
(𝓁−1)
𝑘, L (𝑗) represents the aggrega-

tion of the local neighborhood set of 𝑠. For simplicity, this
can be denoted as:

𝐱′𝑖 = 𝐖1𝐱𝑖 +𝐖2
∑

𝑗∈ (𝑖)
𝑒𝑗,𝑖 ⋅ 𝐱𝑗 , (7)

where 𝐖1 and 𝐖2 are trainable weight parameters, 𝐱𝑖 is the
feature vector of node 𝑖, ∑𝑗∈ (𝑖) is the aggregation of the
local neighborhoods of 𝑖, 𝑒𝑗,𝑖 is the edge weight, and 𝐱𝑗 is
the feature vector of the neighbors. A non-linear function
like ReLU, Tanh, or Sigmoid is used during computation.

3. Our Approach
In this section, we detail our network graph generation

process at both flow and packet levels, providing formal and
logical explanations for our edge creation process, which
enhances the structural richness of our graphs. We also intro-
duce our classification model, which employs a higher-order
Graph Neural Network (GNN) to leverage graph structure
during computation. Figure 2 shows our end-to-end model.

Okonkwo et al.: Preprint submitted to Elsevier Page 3 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Figure 2: Model Overview. Graph generation starts with processing the PCAP samples then graphs are created based on the
specified task. After splitting PCAP samples into flows, individual packets of flows are analysed. For flow classification, the edge
creation process comes next. For packet-level classification, the byte stream of individual packets is analysed before edge creation.
Padding is applied at the byte-level to ensure uniformity of data. Truncation is applied at the packet-level to ensure graphs are
not dense. The graph data is labelled, processed and stored in memory. Training and testing is described in Section 4.2.2.

3.1. Flow-level Traffic Graph Generation
The flow-level graph generation process involves creat-

ing graphs from traffic flows 𝑇𝑓𝑥, with nodes representing
packets 𝑃𝑖𝑥, within these flows. As discussed in Section 2.1,
defining an optimal time window is crucial. Peng et al. [31]
identified 5-7 packets as optimal for early traffic identifi-
cation. Establishing a TLS connection requires up to six
packets, so we extend this threshold to 10 for regular TLS
traffic and 20 for more complex traffic, such as Tor. To
determine the time window, we need at least 20 packets per
window. Given 𝑃 as the total number of packets and 𝐷 as the
total duration of the traffic capture, the average packet rate
𝑅 is 𝑃

𝐷 . The time 𝑇 to capture 20 packets is calculated as:

𝑇 ≥ 20
𝑅

= 20𝐷
𝑃

, (8)
The variables 𝑃 and 𝐷 are obtained from the traffic capture
and not calculated. To effectively parse traffic samples, we
utilized "splitcap" a tool that enables the selection of a
time window for splitting pcap samples. Since we exclude
handshake packets and concentrate on application packets,
a carefully selected time window is crucial to ensure an
adequate number of packets remains post-elimination of un-
wanted packets. After calculation we observed that different
traffic samples have varying times and the need to stan-
dardize the time became important. This varying calculated
time windows illustrates the complexity and potential tedium

of manual window selection. Consequently, we propose a
standardized time window of 15 seconds, which was de-
termined after averaging all the observed time distribution.
The time 15 seconds is optimal across all datasets mitigating
the complexities associated with manual adjustments. From
Equation 8 we determined that a 15-second window size is
optimal for all flow-level experiments. To define connectiv-
ity between packets, we introduce two edge types, namely
non-trivial and trivial edges.
3.1.1. Non-trivial edges

The non-trivial edges define the time series relation-
ship between packets, therefore preserving the chronolog-
ical arrangement of network packets. Creating a relation-
ship between nodes 𝑣1, 𝑣2, ..., 𝑣𝑛 such that the edges are
{(𝑣1, 𝑣2), (𝑣2, 𝑣3),… , (𝑣𝑛−1, 𝑣𝑛)}. This edge type generates a
network path graph drawn such that all of its vertices lie on a
single straight line. While this edge type adds no topological
distinction to the graphs, it remains important to the overall
design as communication between preceding and succeeding
nodes is preserved. Huoh et al. [11] and [26] demonstrated
the importance of this edge type for a similar task. Given
nodes 𝑖, 𝑗, we define the edges through the adjacency matrix
𝑎 of nodes 𝑖, 𝑗 as

𝑎𝑖𝑗 =

{

1, if 𝑗 = 𝑠𝑢𝑐(𝑖)
0, Otherwise. (9)

Okonkwo et al.: Preprint submitted to Elsevier Page 4 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

That is, an edge is created only if node 𝑗 is a successor of
node 𝑖 in a packet sequence. We denote an edge creation with
the numeral 1 and otherwise with 0. This edge ensures the
sequential order of packets in a flow is maintained during
processing and analysis. The node attributes are the packet
contents, converted from raw byte to decimal form, normal-
ized, and padded to a vector length of 1500 bytes which is
the maximum transmission unit (MTU). For effective graph
classification, structural distinction is essential. While our
non-trivial edges create connected graphs, they provide no
topographical distinction.

The key to graph classification lies in identifying a
single defining property for the entire graph. In ML and
DL, parameter size directly correlates with performance.
In GNN tasks, enhancing node communication is crucial
for effective graph classification. However, this must be
done systematically to prevent over-smoothing. To create
graphs with rich structures we therefore propose defining a
new edge type that uniquely identifies various traffic types
while enhancing node communication without causing over-
smoothing.
3.1.2. Trivial edges

Encrypted payloads appear meaningless until decrypted.
Attempting to analyze these encrypted payloads in their raw,
encrypted state invariably leads to representations that lack
meaningful insight. To address this, we employ a method of
transforming packet data as shown in Figure 3, transforming
them into data points that can be analyzed more effectively.
Each vector represents a packet’s data content, and by com-
paring these vectors, we can infer how similar or dissimilar
different packets are, despite the encryption.

Figure 3: Raw packets are converted from their hexadecimal
representation to decimal, then normalized. All our analyses
are performed on the normalized data

Upon transforming these packets, a notable pattern
emerges in the distribution of non-zero vectors relative to
zero vectors. Specifically, we observe that larger payloads
tend to contain a higher proportion of non-zero vectors.
This observation is intuitive, given that larger payloads
inherently have more data and therefore more variability.
In the context of information theory and entropy, a zero-
vector signifies no variation or data, representing a complete
absence of uncertainty and information. Our findings lead
us to a significant insight: larger encrypted payloads tend
to have more information because they contain less zero-
vectors than smaller payloads. We therefore streamline our
task to analyse how correlated these non-zero vectors are.

In the pursuit of analyzing the correlation among vectors,
especially within the domain of encrypted data, it becomes
imperative to recognize that traditional correlation measures

often fall short. Random variables representing encrypted
data typically yield correlation results indicative of no mean-
ingful relationship. Thus, conventional statistical measures
of correlation are not suitable for our purpose. We rede-
fine the concept of correlation to examine the similarity of
transformed network packets by analyzing how encryption
perturbs different similarities between packets in a flow. For
traffic classification tasks such as fingerprinting, properties
that remain consistent over time are usually preferred for
classification due to their stability and uniqueness. We there-
fore aim to define a similarity metric that is robust enough
to withstand variations introduced by encryption.

In our study, we randomly selected 120 flows each from
four applications in the Ieee-im dataset [5]. Each flow is
processed by converting packets to vectors (see Figure 3),
removing handshake packets, retaining only application data
packets and then removing packet headers. As stated in
Equation 3, a packet is made up of a string of bytes. A byte
can represent a number between 0 - 255 in decimal. This
conversion is applied to every packet resulting in a string
of integers. We then normalise the values to fall between
zero and one and use this as our vectorized payload rep-
resentation. To analyse the correlation between the vectors
we select five distinct similarity metric: Cosine Similarity,
Euclidean Distance, Jaccard Index, Manhattan Distance, and
Pearson Correlation Coefficient. These metrics were care-
fully selected due to their extensive application in natural
language processing (NLP) tasks, such as clustering, and
classification. For each flow, we compute the similarity of
packets, averaging the upper triangle of the resulting similar-
ity matrix. To ensure a fair comparison, values are normal-
ized to fall between 0 and 1. From Figure 4, it is evident that
cosine similarity is consistently the least perturbed across all
experiments. To substantiate this observation, we calculated
the standard deviation (SD) of the similarity values, which
quantifies the amount of variation or dispersion. A lower SD
indicates values closer to the mean, suggesting less variation
or perturbation, while a higher SD indicates more spread-
out values, suggesting greater variation. Cosine similarity
exhibited the lowest SD across all plots: 0.0906 for plot 4a,
0.1031 for plot 4b, 0.0569 for plot 4c, and 0.0464 for plot 4d.

Our analysis thus pivots towards examining the geo-
metric properties of vectors. Specifically, we focus on non-
zero vectors and evaluate their correlation by examining the
cosine of the angle between them. This method, provides
a more nuanced understanding of the relationships among
vectors in high-dimensional spaces. By measuring the cosine
of the angle, we can effectively quantify the directional
alignment of the vectors, offering insights into their intrinsic
geometric relationships. This approach aligns well with the
broader objective of uncovering structures within encrypted
data.

To avoid the pitfalls of generating mathematically com-
plete graphs with indistinguishable structure, we define a
similarity threshold for edge creation. By establishing this
threshold, we ensure that only sufficiently similar nodes are
connected, thereby creating edges that facilitate meaningful

Okonkwo et al.: Preprint submitted to Elsevier Page 5 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

(a) telegram (b) discord

(c) messenger (d) whatsapp

Figure 4: Comparison of Similarity Metrics Across Encrypted Traffic Flows: For each application, 120 random traffic flows are
analyzed to understand how encryption impacts flow similarity. The graphs display the behavior of five different similarity metrics:
Cosine, Euclidean, Jaccard, Manhattan, and Pearson. Across all applications, Cosine similarity exhibits the least perturbation.
This is followed by Jaccard, Euclidean, Pearson, and Manhattan similarities, in descending order of stability. The consistency of
Cosine similarity is evident, with the lowest standard deviation values, making it our go to choice.

communication while managing computational efficiency.
These edges are weighted by their similarity values and
are termed “trivial edges”. The designation “trivial” reflects
their artificial introduction to enhance structural distinction
and communication within the graph, which is crucial for
entire graph classification. We rely on descriptive statistics,
specifically percentile, a high percentile value ≥ 85 is cho-
sen to establish this threshold. Percentiles help to adaptively
set the threshold based on the distribution of the similarity
scores rather than choosing an arbitrary value.

Given a set of node feature vectors, compute the pairwise
cosine similarity scores. Let 𝑆 = {𝑠𝑖𝑗 ∣ 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗}
represent the set of all cosine similarity scores between node
pairs, where 𝑉 is the set of nodes. Select a high percentile
value to determine the threshold 𝜃. Formally, the selected
threshold 𝜃 is:

𝜃 =

{

𝜃90, if 𝜃85 = 𝜃90 = 𝜃95
max(𝜃85, 𝜃90, 𝜃95), otherwise

Here we compare the calculated percentile values 𝜃85, 𝜃90,
and 𝜃95 for their representativeness. If these values are equal,
we select the median percentile value. If not, we choose the
largest value among them. Using the threshold 𝜃, we define
the adjacency matrix 𝑎 as follows:

𝑎𝑖𝑗 =

{

𝑠𝑖𝑗 , if 𝑠𝑖𝑗 ≥ 𝜃
0, otherwise (10)

Here, 𝑎𝑖𝑗 represents the edge weight between nodes 𝑖 and 𝑗.
The edge weight 𝑎𝑖𝑗 is assigned the cosine similarity score
𝑠𝑖𝑗 if the score is greater than or equal to the threshold 𝜃;
otherwise, no connection edge is created between the nodes.
Our calculated values produced thresholds of 0.7 for vpn,
nonvpn, ieee-im and ustc datasets. The calculated threshold
for Tor is 0.95. Figure 5 and 6 shows flow level graphs for
some selected applications of the Ieee-im dataset with some
similar structures highlighted.

The Algorithms, define our graph creation process for
the flow traffic graphs. For brevity we assume the pcap
files are past the initial Pre-processing as described in Sec-
tion 4.2.1 which involves: splitting into traffic flows, deletion
of unwanted flows and packets, IP address and port masking,
Ethernet header removal and TCP/UDP header padding.
Hence, We have a folder of the initially processed traffic
flows.
Algorithm 1 Flow-level features
Input: Folder containing processed pcap flows
Output: 2D array 𝑋 of dimension 𝑛 × 1502

1: Initialize an empty 2D array 𝑋 of dim 𝑛 × 1502
2: for file in Input do
3: for packet in file do ⊳ Extract packets from flow
4: Convert packet to raw bytes
5: Convert bytes to decimal values
6: Normalize to [0, 1]
7: if len(packet) < 1500 then
8: Pad to length 1500
9: end if

10: Extract packet_label and flow_number
11: Append packet_data, label, and flow_number to

𝑋
12: end for
13: end for
14: return 𝑋

Algorithm 1 operates on the folder containing the split
traffic flows then returns as 2D array of dimension 𝑛×1502.
Every row represents a packet with its data in columns 1 −
1500. The last two columns “packet_label” and “flow_number”
indexed as 1501𝑎𝑛𝑑1502 represents the class label and the
traffic flow each packet belongs to respectively.

Algorithm 2 returns the threshold for initializing the
trivial edges by operating on a modified version of array
𝑋. The array 𝑋′ represents the packet payload vector with

Okonkwo et al.: Preprint submitted to Elsevier Page 6 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Figure 5: The figure presents a series of flow-level graphs generated using our method for the Gmail application of the IEEE-im
dataset [5]. Each graph represents the structural patterns of network flows within Gmail application. The two edge types, non-trivial
edges are represented as solid black lines and trivial edges are represented as dashed blue lines. The two highlighted formations
(in colours orange and green) indicate multiple underlying structures unique to the application class. Below we display more
applications with distinct structures.

(a) Signal (b) Whatsapp

(c) Teams (d) Telegram

Figure 6: The graph structures represent unique flow-level graphs for four application classes of the IEEE-im dataset. The images
are intentionally kept small to focus on the distinctive structural patterns of each class.

Okonkwo et al.: Preprint submitted to Elsevier Page 7 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

dimension 𝑛 × 1500, where each row represents a packet.
Line 1 drops the columns added by line 11 of Algorithm
1 to ensure that only the actual vectorized payloads are
considered. Line 2 computes the cosine similarity 𝑆 of all
the rows in𝑋′. This results in a 𝑛×𝑛matrix that is symmetric
(i.e., the upper and lower triangular elements are the same,
and the diagonal elements are 1 because they represent the
similarity of a vector with itself). Line 3 extracts all the
similarity values focusing only on the upper triangle (since
both upper and lower are the same). Line 4, 5, 6 calculates
the 85𝑡ℎ, 90𝑡ℎ and 95𝑡ℎ percentiles, ensuring that the values
are rounded up to two decimal places. Line 7, 8, 9 and 10
checks the conditions for threshold selection as stated in
Section 3.1.2. If the values are equal then the middle value
which is the 90𝑡ℎ percentile, is chosen. if this is not the case,
the maximum percentile which is the 95𝑡ℎ is chosen. Line
11 ends the conditional statement and line 12 returns the
threshold value.

Algorithm 3 computes trivial edges and their corre-
sponding weights based on cosine similarity. Given an input
array𝑋 of dimensions 𝑛×1502, the algorithm produces a 2D
array 𝑌 of dimensions 𝑚 × 3 with columns representing the
source node, destination node, and weight. Initially, the last
two columns of 𝑋 are dropped to obtain 𝑋′, and a similarity
threshold 𝜃 is computed. The outer loop iterates over the
packets in steps of 10, the middle loop iterates over the next
9 packets, and the inner loop compares each pair of packets
within this window. Cosine similarity is calculated for each
pair, and if the similarity exceeds the threshold, the edge is
recorded in 𝑌 .

Algorithm 4 computes non-trivial edges and their cor-
responding weights. Given an input array 𝑋 of dimensions
𝑛×1502, the algorithm produces a 2D array 𝑌 of dimensions
𝑚×3 with columns representing the source node, destination
node, and weight. Initially, the last two columns of 𝑋 are
dropped to obtain𝑋′. The outer loop iterates over the packets
in steps of 10. For each packet 𝑖, the middle loop compares

Algorithm 2 Similarity threshold
Input: Array 𝑋 of dimension 𝑛 × 1502
Output: Threshold value 𝜃

1: 𝑋′ ← drop last two columns of 𝑋
2: Compute cosine similarity matrix 𝑆 from 𝑋′

3: Extract upper triangular part of𝑆 excluding the diagonal
as similarity_scores

4: 𝜃85 ← round(percentile(similarity_scores, 85))
5: 𝜃90 ← round(percentile(similarity_scores, 90))
6: 𝜃95 ← round(percentile(similarity_scores, 95)) ⊳ in

line 4,5 and 6, the values are rounded up to two decimal
places.

7: if 𝜃85 = 𝜃90 = 𝜃95 then
8: 𝜃 ← 𝜃90
9: else

10: 𝜃 ← max(𝜃85, 𝜃90, 𝜃95)
11: end if
12: return 𝜃

Algorithm 3 Trivial edges
Input: Array 𝑋 of dimension 𝑛 × 1502
Output: 2D array 𝑌 of dimension 𝑚 × 3 with headers:
src_node, dest_node, weight

1: 𝑋′ ← drop last two columns of 𝑋
2: 𝜃 ← Similarity threshold(𝑋′)
3: Initialize an empty 2D array 𝑌 of dim 𝑚 × 3
4: for i = 1 to n by 10 do
5: for j = i to i+9 do
6: for k = j+1 to i+9 do
7: 𝑠𝑖𝑗 ← cosine_similarity(𝑋′[𝑖], 𝑋′[𝑗])
8: if 𝑠𝑖𝑗 ≥ 𝜃 then
9: Append [𝑖, 𝑗, 𝑠𝑖𝑗] to 𝑌

10: end if
11: end for
12: end for
13: end for
14: return 𝑌

Algorithm 4 Non-trivial edges
Input: Data array 𝑋 of dimension 𝑛 × 1502
Output: 2D array 𝑌 of dimension 𝑚 × 3 with headers:
src_node, dest_node, weight

1: 𝑋′ ← drop last two columns of 𝑋
2: Initialize an empty 2D array 𝑌 of dim 𝑚 × 3
3: for i = 1 to n by 10 do
4: for j = i to i+9 do
5: 𝑘 ← 𝑗 + 1
6: if 𝑘 ≤ 𝑖 + 10 then
7: Append [𝑗, 𝑘, 1] to 𝑌
8: end if
9: end for

10: end for
11: return 𝑌

it with the next packet within the group of 10, ensuring that
the destination index 𝑘 does not exceed the boundary of
the current group. The resulting pairs and their associated
weights are then appended to 𝑌 .

Algorithm 5 prepares the final files used to create traffic
flow graphs from a folder containing pcap files, producing
four arrays: 𝑉 (node embeddings), 𝐸 (edges with source
node, destination node, and weight), 𝑁 (node index and flow
number), and 𝐹 (flow number and label). The algorithm
begins by initializing all packets into a 2D array 𝑋. It
then extracts node embeddings 𝑉 by dropping the last two
columns of 𝑋. Trivial and non-trivial edges with weights are
computed from 𝑉 , resulting in the array 𝐸. The arrays 𝑁
and 𝐹 are initialized and populated with node indices, flow
numbers, and labels by iterating through the rows of 𝑋 and
unique flow numbers. Finally, the algorithm returns the four
arrays, which are used to create the traffic flow graphs.
3.2. Packet-level Traffic Graph Generation

The packet-level traffic graph generation aims to gener-
ate graphs from individual network packets 𝑃𝑖𝑥.... We utilise

Okonkwo et al.: Preprint submitted to Elsevier Page 8 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Algorithm 5 Flow-Level graph files
Input: Folder containing pcap files
Output: Four arrays: 𝑉 , 𝐸, 𝑁 , 𝐹
𝑉 (𝑚 × 1500) ⊳ node embeddings
𝐸 (𝑘 × 3) ⊳ src_node, dest_node, weight
𝑁 (𝑚 × 2) ⊳ node_index, flow_number
𝐹 (𝑓 × 2) ⊳ flow_number, label

1: 𝑋 ← Flow-level features(Input)
2: 𝑉 ← drop last two columns of 𝑋
3: 𝐸 ← Trivial edges(𝑉)
4: 𝐸 ← Non-trivial edges(𝑉)
5: 𝑁 ← Initialize an empty 2D array of dim 𝑚 × 2
6: 𝐹 ← Initialize an empty 2D array of dim 𝑓 × 2
7: for each row in X do
8: Append (node_index, flow_number) to 𝑁
9: end for

10: for each unique flow_number in X do
11: Extract corresponding label
12: Append (flow_number, label) to 𝐹
13: end for
14: return 𝑉 ,𝐸,𝑁, 𝐹

the bytes sequence 𝑏𝑖𝑚𝓁... to model nodes. Having exploited
vectors directional orientation by similarity calculation for
our flow level graphs in Section 3.1, we extend the same
concept to create packet level graphs, but this time to bit
sequences in a packet at a time. Sengunta et al. [34] used bit
sequence based features to exploit the differences in the
randomness of data generated by different applications. By
Algorithm 6 Flow to packet-level features
Input: Folder containing processed pcap flows
Output: 2D array 𝑌 of dimension 10𝑛 × 152

1: Initialize an empty 2D array 𝑌 of dimensions 10𝑛×152
2: 𝑋 ← Flow-level features(Input)
3: 𝑋′ ← drop last two columns of 𝑋
4: Initialize 𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥 ← 0
5: for each row in 𝑋′ do do
6: for i = 0 to 9 do do
7: Extract columns 𝑖×150 to (𝑖+1)×150−1 from

the row and assign to 𝑌 [𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥, 0 ∶ 149]
8: Assign packet label from 𝑋 to

𝑌 [𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥, 150]
9: Assign flow number from 𝑋 to

𝑌 [𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥, 151]
10: 𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥 ← 𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥 + 1
11: end for
12: end for
13: return 𝑌

extracting features based on the correlation and divergence
of the Fast Fourier Transforms (FFT) of consecutive packets,
they were able to distinguish Android-based apps from one
another. They posited that the difference was attributed to
the dissimilarities in encryption implemented by different
applications. He et al. [10] treated the payload of network

packets as a language-like string for introducing NLP pro-
cessing. To initialize tokenization, they took bit sequences
of the raw payload as pairs of bytes for basic character units
to generate bi-gram strings for their NLP model. This bit
and byte level information mining by both methods [34, 10]
shows that encrypted bits of data when processed can be
used for classification tasks. The bit-byte sequence analysis
of network traffic information is analogous to the n-gram
method used frequently in NLP, where a collection of 𝑛 items
in a text document is analysed in a successive manner. By
considering a sequence of bytes at a time, we can model
nodes with rich embeddings for every n-gram. We convert
every packet to its vector representation as in Figure 3 and
pad packets with zero up to the MTU size (1500bytes) for
data consistency. To increase the representative values of
nodes, we use non-overlapping n-grams with the value of
150 for n. Our choice of non-overlapping n-gram reduces the
tendency of having a lot of similar nodes as repetitive vectors
will increase the similarity between nodes. It also ensures
every node has a feature vector length of 150 and the vertex
cardinality of every graph is 10. Basically, our packet-level
graphs have 10 nodes and a node embedding size of 150. The
Graph generation process is consistent for both flow-level
and packet-level graphs, as both are created using the same
methodology. The packet-level graphs are an abstraction of
the flow-level graphs that emphasizes granularity. The only
difference is in the initial data-processing as outlined in
Algorithm 6, where we convert a packet of dimension (1 x
1500) to (10 x 150). Specifically, for packet-level processing,
a packet with dimensions (1 x 1500) is reshaped into (10 x
150) by stacking every 150 elements of the original array
to form a new array of dimensions (10 x 150). To create
the edges, we follow the trivial and non-trivial creation
process as described in Equations 9 and 10. The process
described for flow and packet-level graph generation lays the
basis for our graph creation process. Algorithm 6 operates
on the output of Algorithm 1 and converts flow graphs to
packet graphs by taking the array 𝑋 and dropping the last
two columns to obtain 𝑋′. Each packet (row in 𝑋′) is then
split into 10 non-overlapping vectors of length 150. Each
non-overlapping vector is treated as a new row, and the
corresponding label and packet flow number columns are
appended. The output is an array of dimension 10𝑛 × 152.
To get packet graph files, the same supporting algorithms
2-5 are followed, the only difference is the input array has to
be modified.
3.3. GNN Architecture and Design

Our approach to graph generation focuses on creating
fine-grained, interconnected graphs with crucial topological
distinctions for comprehensive classification. To leverage
these structural and representative differences, we employ a
deep learning model inspired by the postulations of Morris
et al. [25]. This GNN architecture is particularly effective
as it analyzes sub-graphs rather than just individual nodes,
enabling operation on higher-order graphs.

Okonkwo et al.: Preprint submitted to Elsevier Page 9 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Our architecture consists of five stacked GNN layers,
each followed by a batch normalization and pooling layer,
as illustrated in Figure 2. This choice of five GNN layers is
determined by Equation 11. In graph theory, the eccentricity
of a node is defined as the greatest distance from that node
to any other node within the graph, with the maximum
eccentricity representing the graph’s diameter. For optimal
message-passing neural network (MPNN) performance, the
number of layers 𝐿 in an MPNN should be at least equal
to the graph’s diameter 𝐷 [20] formalized as 𝐿 ≥ 𝐷.
Directly scaling with diameter can lead to excessively deep
networks, causing overfitting, over-smoothing, and compu-
tational overhead. To address this, we propose a practical
method to determine the optimal number of GNN layers,
given by the equation:

𝐿 ≈ max

(⌈

1
𝑁

𝑁
∑

𝑖=1
𝐷𝑖

⌉

, 𝐷𝑝85

)

(11)

In this equation, we compare the average diameter of the
graphs,

⌈

1
𝑁
∑𝑁

𝑖=1𝐷𝑖

⌉

to the 85𝑡ℎ percentile diameter 𝐷𝑝85

and select the larger value. Using the 85𝑡ℎ percentile pre-
vents the network depth from being unduly influenced by
outliers with unusually large diameters, while the average
diameter ensures that the network depth reflects the most
significant average structural spread in any graph. Based on
our calculations, the optimal number of GNN layers 𝐿 is
determined to be 5. This refined approach balances depth
and computational efficiency, facilitating effective message
propagation while avoiding common pitfalls of GNNs.

We utilize batch normalization to stabilize training and
mitigate overfitting, while dimensionality reduction is achieved
using a top-k pooling layer [7]. This layer selects the
top nodes via a trainable projection vector, simplifying
computation and emphasizing important nodes for robust
graph embeddings. As the graph traverses the network, we
compute global max and mean pools at each GNN layer,
concatenating these to form a single embedding. Each of
the five GNN layers produces its own embedding, resulting
in five embeddings that are concatenated into a final graph
representation. For classification, we employ a three-layer
multi-layer perceptron (MLP) with a softmax classifier as
the final layer, illustrated in Figure 2. Dropout layers after
each linear layer help prevent overfitting.

4. Experiments
4.1. Dataset

To validate our model, we conducted nine experiments
using four datasets. The ISCX VPN dataset, Non-VPN (IS-
CXVPN2016) [4] dataset, Tor (ISCXTor2016) [13] dataset.
USTC-TFC dataset [43] and the encrypted mobile instant
messaging dataset [5]. Table 1 describes the classes for
each dataset . Our selection of public datasets ensures effec-
tive reproducibility and comparative analysis. The datasets
captures network traffic at different levels of encryption
(VPN, Non-VPN and Tor). We conducted both flow-level

Table 1
Datasets used in our experiments.

Dataset Class description

non-vpn chat email file stream
voip

vpn chat email file stream
voip p2p

Tor audio browsing chat file
mail p2p video voip

ieee-im
b/ground discord gmail messenger
signal teams telegram browsing
whatsapp youtube

Ustc(m)
tinba zeus miuref geodo
shifu htbot neris cridex
virut nsis-ay

Ustc(b)
facetime skype torrent gmail
outlook warcraft mysql ftp
weibo SMB

and packet-level classification tasks. Further experiments for
impact analysis are discussed in this section. All datasets is
in “.pcap and pcapng” format.
4.2. Experimental Setup
4.2.1. Pre-processing

For the flow level experiments, we adopt similar pro-
cessing techniques for the VPN, Non-VPN, USTC-TFC,
IEEE-im dataset and a slightly different approach for the
Tor data. This is due to the tendency of noise occurring
within regular VPN and Non-VPN traffic and not in Tor.
In an earlier implementation by Platzer et al. [32], Tor is
described as an example of a network without generated
traffic noise to make traffic analysis more difficult. This is
due to the implementation of uniform packet sizes, circuit
construction and padding dummy traffic. We report results
on the VPN, Non-VPN and Tor dataset for flow and packet
level experiments. For the USTC-TFC and IEEE-im dataset
we focus on only flow traffic classification.

Our Data processing is performed as follows: Our win-
dow size is calculated as defined in 8. We delete flows with
no packets and remove handshake packets within flows. We
mask the IP address, and port numbers and strip off the
Ethernet headers of all packets. At the transport layer, the
TCP and UDP headers are mostly utilised; both protocols
have different header orientations, with TCP length being 20
bytes and UDP length 8 bytes, hence we pad UDP packets
with 12 bytes to ensure the lengths are uniform. The traffic
flows are converted to raw bytes and normalised as in 3.
The MTU of network packets is 1500 bytes, so we pad
packets less than 1500with zeros to ensure uniform length of
packets. Finally we truncate traffic flows to ensure 10 packets
per flow. For Tor traffic flows we truncate traffic flows to
ensure 20 packets per flow. The generated graphs have nodes
and edges with defining attributes. Nodes are represented by
the packets and edges are a synthesis of the non-trivial and
trivial edges. the edge weights are the similarity values of
packets. The calculated threshold for the trivial edge is 0.7

Okonkwo et al.: Preprint submitted to Elsevier Page 10 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Table 2
Classification Sample size distribution of datasets.

Dataset Sample Size
Training Test Val

non-vpn pac 13214 4405 4404
flow 1677 560 559

vpn pac 18000 6000 6000
flow 2421 807 807

Tor pac 9600 3200 3200
flow 3123 1041 1041

ieee-im pac 30000 10000 10000
flow 31833 10615 10607

Ustc(m) pac 25272 8424 8424
flow 12000 4000 4000

Ustc(b) pac 30000 10000 10000
flow 12000 4000 4000

for the VPN, Non-VPN, IEEE-im and USTC dataset. For the
Tor dataset, The calculated threshold for the trivial edge is
0.95 . We create our flow graphs from the processed data as
defined in 3.1 and label every graph with its corresponding
traffic class (label).

For the packet level experiment we perform the initial
deletion of unwanted packets, IP masking, Ethernet header
striping, TCP/UDP padding and normalization. To create
an even data distribution and tackle overfitting from the
onset, we ensure every traffic class has at least 5000 pack-
ets (5000 graphs). We create our packet graphs from the
processed data as defined in 3.2 and label every graph with
its corresponding traffic class (label). For the Tor dataset,
we adopt a slightly different approach after normalisation,
due to its similar packet structure. Duplicate vectors were
eliminated and the n-gram size was reduced. By removing
the duplicates, the possibility of having a similar byte value
distribution for every n-gram is eliminated. The maximum
vector length becomes 255. A more granular value for n-
gram takes into consideration the minute differences be-
tween packet byte sequences necessary for distinguishing
them. We model our Tor packet nodes as bi-grams and follow
up with the non-trivial and trivial edge creation.
4.2.2. Training Specification

The PyTorch geometric library with a Python 3.10 back-
end is used to generate the graphs, build, train, validate
and test our model. The hardware specification is a Linux
Dell 6.2.0-26-generic server, the processor is a 12th Gen
Intel(R) Core(TM) i9-12900, 125GB of physical RAM and
an NVIDIA RTX A4000 GPU. To reduce the impact of
the imbalance nature of the VPN and Non-VPN data we
trained with a weighted random sampler for the traffic flow
classification. For all experiments, we split our dataset into
three 60% training 20% validation and 20% testing (see
Table 2). The hyper-parameters are as follows, batch size
is 256, epoch is 500. Adam optimizer is used to improve the
categorical cross-entropy loss function with a learning rate
of 0.001, betas=0.9 and 0.999, epsilon=1e-08 and a decay
rate of 0.00001. We use the same training specifications

for all experiments. We evaluate our model using the four
standard classification metrics namely, Precision, Recall, 𝐹1
Score and Accuracy. We perform stratified cross validation
across our dataset with a fold of 5 to curb overt-fitting.
4.3. Results and Analysis

Table 3 and 4 shows a comparison of our work with
selected baseline literature. The selected papers applied AI
techniques to the task of traffic classification and can be
categorized into machine, deep learning and GNN papers.
Although GNN is an aspect of machine learning, we analyse
it separately because this paper focuses on GNN. While
we compare with various state of the art papers, a fair
comparison would be literature that processes data in a
similar way i.e. graph data. From the table, we can infer that,
DL methods seem to have an edge over ML methods, this
is due to the ability of DL methods to perform automatic
feature extraction on data. Traditional ML methods utilise
feature selection which entails manual hand-crafted features
for analysis. For DL methods, feature representation is key to
the classification process. Network traffic has to be converted
to a different form before analysis. While this method may
work for some classes of network traffic e.g. (VPN and
Non-VPN). Table 3 shows that enhanced encryption reduces
classification accuracy. Most models fail to classify Tor
traffic because Tor packets are very similar in nature. Hence
when feature representation is performed on Tor traffic there
is a tendency that the transformed traffic will also be similar.
Due to the granularity of our methods (especially packet
level), we are able to overcome this challenge and classify all
three traffic classes optimally. At the flow level, our method
depends on the packets to model graphs and at the packet
level we go even granular, analysing the byte stream of
packets for classification.

Our packet-level graphs outperform TFE-GNN [51] by
0.87% and 9.03% for the VPN and Non-VPN datasets re-
spectively. TFE-GNN by Zhang et al. [51] performs slightly
better than our model by 2.86% for Tor traffic due to their
dual embedding approach. By generating embeddings for
both headers and payload, they generate stronger represen-
tations of network traffic that fails to generalize optimally.
The complexity of their model might prove impractical
for real-time detection and induce latency to the network.
Overall, our packet-level classification outperforms all other
compared models.

Table 4 show results of flow and packet-level experi-
ments on the Ustc [43] and Ieee-im dataset [5] with our
method outperforming the baselines. For the USTC(Malware)
the flow-level results beats the packet-level by 0.010. This
demonstrates the impact of sample size and graph structure
on classification accuracy. The sample sizes for the Ustc
dataset [43] are evenly distributed and abundant hence the
inter-class accuracies are high, making the results balanced.
The Ieee-im dataset was used to simulate an open world
scenario with the presence of background noise traffic and
an uneven sample distribution. The packet level achieved the
best accuracy reaching 92% outperforming the baselines.

Okonkwo et al.: Preprint submitted to Elsevier Page 11 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Table 3
Comparison with existing methods. We focus on methods that use ML (CUMUL to K-FP), DL (MVML to Deep Packet), and
GNN (ECD-GNN to TFE-GNN). Our packet-level experiments proved superior for the VPN and Non-VPN classification tasks.

Datasets → ISCX-VPN ISCX-NonVPN ISCX-Tor
Models ↓ Acc Pr Rc 𝐹1 Acc Pr Rc 𝐹1 Acc Pr Rc 𝐹1
CUMUL [28] 0.766 0.753 0.785 0.764 0.619 0.594 0.597 0.590 0.669 0.535 0.490 0.500
FAAR [18] 0.836 0.822 0.840 0.829 0.737 0.751 0.712 0.725 0.697 0.592 0.488 0.481
AppScanner [38] 0.889 0.868 0.882 0.872 0.758 0.759 0.747 0.749 0.754 0.663 0.604 0.616
ETC-PS [46] 0.749 0.744 0.746 0.745 0.727 0.741 0.713 0.721 0.737 0.700 0.709 0.705
GRAIN [49] 0.813 0.808 0.811 0.809 0.667 0.653 0.666 0.660 0.541 0.525 0.535 0.523
Flowprint [39] 0.854 0.745 0.792 0.757 0.694 0.707 0.731 0.713 0.240 0.030 0.125 0.048
K-FP [9] 0.871 0.875 0.875 0.875 0.755 0.748 0.735 0.739 0.777 0.742 0.621 0.631
MVML [6] 0.649 0.723 0.620 0.615 0.513 0.575 0.471 0.481 0.634 0.391 0.410 0.375
DF [37] 0.895 0.855 0.871 0.853 0.886 0.839 0.861 0.846 0.713 0.710 0.724 0.695
FlowPic [35] 0.984 0.900 0.908 0.917 0.938 0.834 0.830 0.834 0.869 0.649 0.650 0.649
EDC [14] 0.784 0.776 0.814 0.789 0.709 0.719 0.709 0.706 0.757 0.542 0.537 0.530
FFB [50] 0.833 0.888 0.830 0.806 0.703 0.726 0.721 0.739 0.675 0.647 0.663 0.623
FS-NET [17] 0.939 0.923 0.912 0.915 0.932 0.909 0.926 0.914 0.848 0.842 0.781 0.783
ET-BERT [15] 0.953 0.944 0.951 0.947 0.917 0.925 0.923 0.924 0.954 0.924 0.961 0.942
Deep Packet [19] 0.920 0.920 0.920 0.920 0.951 0.960 0.950 0.955 0.430 0.570 0.440 0.497
ECD-GNN[11] 0.932 0.913 0.940 0.926 0.870 0.882 0.866 0.871 0.057 0.033 0.256 0.058
GraphDapp [36] 0.649 0.567 0.610 0.588 0.568 0.568 0.590 0.579 0.429 0.256 0.251 0.228
Okonkwo et al. [26] 0.975 0.975 0.975 0.975 0.871 0.872 0.871 0.871 0.758 0.757 0.692 0.692
TFE-GNN [51] 0.959 0.953 0.959 0.954 0.904 0.932 0.919 0.924 0.989 0.979 0.994 0.986
Our Work (flow) 0.947 0.948 0.947 0.947 0.964 0.966 0.964 0.965 0.928 0.929 0.928 0.929
Our Work (pac) 0.968 0.968 0.968 0.968 0.994 0.994 0.995 0.995 0.960 0.960 0.960 0.960

Table 4
Comparison of Baseline Models on USTC-TFC and IEEE-IM Datasets, our method outperforms the baselines. The USTC-TFC
dataset shows that when samples are balanced and abundant the flow-graphs can perform as good as the packet-graphs

Datasets → USTC-TFC (Benign) USTC-TFC (Malware) IEEE-IM
Models ↓ Acc Pr Rc F1 Acc Pr Rc F1 Acc Pr Rc F1
CUMUL 0.744 0.829 0.744 0.784 0.937 0.938 0.937 0.937 0.659 0.798 0.656 0.720
FAAR 0.901 0.905 0.903 0.904 0.958 0.953 0.958 0.955 0.699 0.772 0.699 0.734
AppScanner 0.733 0.710 0.733 0.721 0.956 0.956 0.956 0.956 0.799 0.809 0.799 0.804
ETC-PS 0.661 0.674 0.661 0.667 0.935 0.938 0.935 0.936 0.712 0.770 0.712 0.740
GRAIN 0.914 0.915 0.914 0.914 0.968 0.964 0.968 0.966 0.707 0.791 0.709 0.748
Flowprint 0.681 0.710 0.690 0.700 0.933 0.933 0.934 0.933 0.737 0.660 0.676 0.668
K-FP 0.654 0.716 0.654 0.684 0.827 0.832 0.827 0.829 0.823 0.848 0.823 0.835
MVML 0.648 0.673 0.648 0.660 0.890 0.903 0.890 0.896 0.685 0.770 0.685 0.725
DF 0.899 0.910 0.899 0.904 0.863 0.898 0.863 0.880 0.813 0.845 0.813 0.829
Flowpic 0.854 0.886 0.854 0.870 0.961 0.968 0.961 0.964 0.813 0.845 0.813 0.829
EDC 0.862 0.838 0.862 0.850 0.951 0.952 0.951 0.951 0.806 0.717 0.747 0.732
FFB 0.905 0.932 0.905 0.918 0.951 0.951 0.951 0.951 0.792 0.826 0.792 0.809
FS-NET 0.951 0.955 0.951 0.953 0.946 0.947 0.946 0.946 0.838 0.868 0.838 0.853
ET-BERT 0.966 0.975 0.966 0.970 0.963 0.964 0.963 0.963 0.827 0.851 0.827 0.839
Deep Packet 0.901 0.946 0.901 0.923 0.914 0.922 0.914 0.918 0.827 0.742 0.803 0.771
ECD-GNN 0.932 0.937 0.932 0.934 0.930 0.935 0.930 0.932 0.827 0.835 0.827 0.831
GraphDapp 0.966 0.974 0.966 0.970 0.969 0.969 0.969 0.969 0.815 0.841 0.815 0.828
Okonkwo et al. 0.983 0.983 0.983 0.983 0.966 0.966 0.966 0.966 0.822 0.822 0.819 0.820
TFE-GNN 0.956 0.956 0.956 0.956 0.960 0.960 0.960 0.960 0.850 0.860 0.850 0.855
Our Work (flow) 0.974 0.992 0.973 0.982 0.974 0.974 0.973 0.974 0.883 0.892 0.913 0.905
Our Work (pac) 0.982 0.983 0.982 0.982 0.964 0.965 0.964 0.964 0.920 0.920 0.920 0.919

4.3.1. Ablation Studies
To further analyze the impact of our proposed method,

we conducted an ablation study to assess the significance
of graph features and model depth on classification tasks.
Table 5 presents our results on the Non-VPN dataset for both

flow and packet-level classifications. In the first experiment,
we eliminated edge weights, resulting in a drop in accuracy:
flow classification decreased from 0.964 to 0.925, and packet
classification dropped from 0.994 to 0.988. In the second
experiment, we removed both trivial edges and weights,

Okonkwo et al.: Preprint submitted to Elsevier Page 12 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Table 5
Ablation Studies. The study assesses the importance of our graph features and the model’s depth. The Non-VPN dataset is used
to conduct experiments for the study. f | p in the second row signifies flow and packet-level experiments. For every classification
metric, results for the flow (on the left) and packet (on the right) experiments are displayed.

Method non-trivial trivial weighted Acc Pr Rc 𝐹1
Non-VPN (f|p) ✓ ✓ ✓ 0.964 | 0.994 0.966 | 0.994 0.964 | 0.995 0.965 | 0.995
1 w/o weights ✓ ✓ × 0.925 | 0.988 0.932 | 0.988 0.925 | 0.988 0.927 | 0.988
2 ✓ × × 0.786 | 0.929 0.823 | 0.928 0.818 | 0.929 0.817 | 0.928
3 w/o trivial ✓ × ✓ 0.780 | 0.981 0.839 | 0.981 0.784 | 0.981 0.807 | 0.981
4 3-GNN ✓ ✓ ✓ 0.929 | 0.976 0.929 | 0.976 0.929 | 0.976 0.928 | 0.976
5 4-GNN ✓ ✓ ✓ 0.925 | 0.981 0.927 | 0.981 0.925 | 0.981 0.925 | 0.981
6 6-GNN ✓ ✓ ✓ 0.925 | 0.985 0.926 | 0.985 0.925 | 0.985 0.925 | 0.985
7 7-GNN ✓ ✓ ✓ 0.943 | 0.947 0.949 | 0.947 0.943 | 0.947 0.944 | 0.947

causing a significant accuracy decline: flow classification
fell to 0.786, and packet classification to 0.929. These results
underscore the importance of trivial edges for classification.
Analysing the results of the packet experiments, its mini-
mum observed accuracy score is 0.929 and this occurs when
the trivial edges and weights are excluded from the graphs.
This outcome suggests that the granular nature of the packet-
level graphs allows it to retain the most salient characteristics
from the node embeddings leading to a strong learning per-
formance despite the removal of seemingly trivial elements.

To examine the impact of model depth, we restored the
baseline parameters and tested with varying GNN layers
(three, four, six, and seven). For packet-level experiments,
we observed a slight accuracy decrease as layers were re-
duced, while flow-level experiments showed the opposite
trend. Adding more layers initially maintained performance
but eventually led to a decline. This is directly related to our
data-processing strategy; for flow-level analysis, we truncate
flows to the first 10 packets, simplifying graph generation
but potentially weakening embeddings and leading to over-
smoothing with additional layers. Although avoiding trun-
cation could enhance performance, it would also increase
computational overhead. For efficiency, we applied minimal
truncation. These ablation studies confirm the crucial role of
trivial edges and weights in classification tasks.
4.3.2. GNN Variant Studies

In Table 6, we choose four variants of GNN, Graph Con-
volution (GCN), Graph Attention Networks (GAT), Graph-
sage [8] and Graph Isomorphism Networks (GIN) [45] for
our variant studies. While there exist other variants of GNNs,
we select these four as they are widely considered the most
powerful GNNs. Other GNNs are simply modifications of
the above four to perform neighbourhood aggregation and
propagation in different ways. In our experiments, we subject
the Non-VPN dataset to a variant studies at the packet
level. GCN achieves a score of 0.985 across all metric.
GAT achieves 0.503 accuracy on the Non-VPN dataset.
GraphConv, GIN and GraphSage perform the best. With
GraphConv and GraphSage having relatively similar values.
Table 6 shows that our network graphs can be adapted and
trained with other variants of GNNs. Our results, shown in

Table 6
Variant studies. The leftmost column GRAPHCONV is the
GNN adopted by our work; hence, our results from the packet-
level experiments in Table3 are given in the column.

Metric non-VPN
G_Conv GCN GAT GIN G_Sage

Pr 0.994 0.985 0.735 0.979 0.991
Rc 0.995 0.985 0.503 0.979 0.991
F1 0.995 0.985 0.467 0.979 0.991
Acc 0.994 0.985 0.503 0.979 0.991

the “GraphConv” column of Table 6, slightly outperform
the selected variants.
4.3.3. Explanability

GNN explainability aims to elucidate the inner workings
of graph neural networks. We illustrate this by addressing
how predictions are made on generated network graphs.
Our explainability analysis employs four methods. Firstly,
we assess the impact of packet header and payload data on
classification. As shown in Table 7, headers and payloads are
used independently for flow-level classification tasks, reveal-
ing that headers play a more crucial role in traffic detection.
While headers outperform payloads, the latter still achieve
accuracies of 88% for nonVPN and 83% for VPN traffic,
similar to findings in previous studies [51, 19, 1, 41]. This is
particularly noteworthy given that cryptographic algorithms
produce pseudo-random ciphertext. These results are rather
counter-intuitive, suggesting that further experiments are
warranted to uncover the mechanisms by which the payload
contributes to the classification.

To test this hypothesis, we conduct a feature importance
analysis on the nonVPN dataset using GNNExplainer [48].
GNNExplainer identifies the node features most informative
for the model’s output. As outlined in section 3.1, network
packets are modeled as graph nodes, with node features
representing raw packet bytes. By applying GNNExplainer,
we determine the bytes with the greatest importance and
trace these bytes back to their actual representation in the
original network packet. For optimal explanations, we an-
alyze batches of network graphs instead of individual in-
stances. Table 4.3.3 lists the top 10 features influencing

Okonkwo et al.: Preprint submitted to Elsevier Page 13 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Table 7
Header/Payload impact.

Metric Non VPN VPN
Header Payload Header Payload

Pr 0.930 0.885 0.938 0.871
Rc 0.921 0.880 0.932 0.834
F1 0.924 0.880 0.934 0.842
Acc 0.921 0.880 0.932 0.834

the model’s predictions, highlighting the predominance of
packet header contents. Specifically, the most important byte
corresponds to the Timestamp Echo Reply (TSecr) in TCP
packets, suggesting the model initially distinguishes TCP
from UDP packets through these bytes. It is important to
note that our data processing steps altered the positions of
bytes, akin to changes that occur with different packet header
configurations. For clarity, we have appended the relevant
information for each byte position.

In the next explainability analysis, we focus on elucidat-
ing the role of the trivial edges in classification, utilizing
the PGExplainer [22], a parameterized explainer for GNNs.
Our choice is driven by the distinct topological structures
produced in our graph generation process, necessitating an
explainer adept at providing topological explanations.

Consider an input graph 𝐺𝑜 comprising two sub-graphs
𝐺𝑠 and Δ𝐺, such that 𝐺𝑜 = 𝐺𝑠 + Δ𝐺. The sub-graph 𝐺𝑠significantly contributes to the GNN’s prediction, while Δ𝐺
consists of less critical nodes and edges. PGExplainer aims
to identify 𝐺𝑠 while maximizing the mutual information
between the GNN’s prediction and the underlying structure
𝐺𝑠. To examine this structural importance, we utilize the
Ieee-im dataset focusing on the Gmail application. After
training the model on the network graphs with parameters
as stated in Section 4.2.2, we train the explainer with the
following default parameters: the coefficient of size regu-
larization is set to 0.05, and entropy regularization is 1.0.
Epoch is set to 30, and temperatures 𝜏0 and 𝜏1 are 0.5
and 0.2, respectively. We randomly sample 40 sub-graphs
𝐺𝑠 for the application traffic using the trained explainer.
Figure 7 illustrates the minimal graph structures yielding
equivalent classification results. A noteworthy observation
from these sub-graphs 𝐺𝑠 is the prevalent occurrence of
trivial edges (non-sequential connections between nodes).
The presence of trivial edges in the sub-graphs underscores
their importance in the GNN’s prediction. Figure 7 akin to
5 reveal clear patterns, reinforcing the structural impact of
our generated graphs.

Finally, to better understand the factors driving our
model’s predictions, we resort to decision trees due to
their inherent interpretability. Jacobs et al. [12] developed
trustee, a system to probe ML/DL network traffic based
classifiers thereby elucidating the decision-making process.
Leveraging this framework, we generate explanations by
initially processing our network graphs with our classifier.
Instead of using linear layers for the final classification we
feed the embeddings to the trustee based decision tree. This

Table 8
Top 10 Features from GNNExplainer.

Byte TCP UDP
49 ts echo reply payload byte
41 tls record version payload byte
28 ack num payload byte
10 header checksum header checksum
40 content type payload byte
3 total length total length
8 time to live time to live
43 tls record version payload byte
51 echo reply payload byte
45 timestamp value payload byte

test is conducted on the non-VPN dataset, the resulting
decision tree, depicted in Figure 8, has a depth of 6 and
highlights that byte 3 (referred to as feature in the fig 8)
corresponding to the total length of the packet, emerges as
the most significant predictor. Additionally, bytes 2, 4, and
1 also contribute significantly. Bytes 2 and 3 (total length)
suggest that variations in packet length are highly indica-
tive of the class. This observation is further corroborated
by Table 4.3.3. Feature 1 represents the type of service
(TOS), and feature 4, representing identification, contributes
significantly to further splits within the tree, particularly
influencing the classification at intermediate nodes.

Upon further analysis, it is evident that the decision tree
can be effectively pruned to a depth of 4. However, persistent
confusion between chat and email classes, combined with
the requirements to achieve a gini value of zero, necessitates
deeper splits. These additional splits rely on random payload
bytes, which, due to encryption, are inherently random. This
reliance results in less robust decision-making. Our obser-
vations on decisions based on payload bytes are itemized as
follows:
Decisions based on payloads

• Node 𝐵3: Decisions are made based on byte 1096,
a payload byte. Confusion arises from one sample
(see value in node 𝐵3) finally classified as VoIP in
node 𝐵4. The decision tree, in its effort to minimize
gini impurity to zero and ensure pure leaf nodes, must
classify every sample. This results in additional nodes
until a the gini value of zero is reached, which weakens
the decision-making criteria. Pruning the tree involves
a trade-off between accuracy and depth. The decision
tree indicates that payload bytes cannot be used to
generalize optimally. Therefore, node 𝐵3 can be con-
sidered a leaf node for the class label “file” and nodes
𝐵4 and 𝐵5 can be pruned.

• Node 𝐴5: Decisions are based on byte 1448, another
payload byte. The decision here is due to two samples
classified as chat. Nodes 𝐴8 and 𝐴9 can be considered
a leaf node for the file traffic class, and its child nodes
can be pruned.

Okonkwo et al.: Preprint submitted to Elsevier Page 14 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Figure 7: Flow-Level explanatory graphs. The graphs are the corresponding explanations for the sampled graphs shown in Figure 5
and highlights the nodes and edges that are crucial for the model’s predictions. The distinctive structures, emphasized by our
trivial edges (represented by dashed blue lines connecting nodes), reveal unique patterns specific to the application class. This
underscores the intricate nature of trivial edges and their significant implications for traffic classification.

Figure 8: Decision tree depicting the classification of network traffic flows of the non-VPN dataset. Nodes represent decision points
based on features such as total packet length (feature 3), with colors indicating different classes. All the nodes are labelled on the
top left corner to aid identification. The tree structure highlights the hierarchical importance of features and their contribution
to the final classification.

Okonkwo et al.: Preprint submitted to Elsevier Page 15 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Figure 9: Decision tree depicting the classification of network traffic flows of the VPN dataset.

• Node 𝐴6: Decisions are based on byte 866, nodes
𝐴10 and 𝐴11 reveal two VoIP samples cause this
confusion. Node 𝐴6 can be considered a leaf node,
and its child nodes pruned.

• Node 𝐴7: This node spawns nodes 𝐴12 and 𝐴13.
However, it can be considered a leaf node for the email
traffic class, and nodes 𝐴12 and 𝐴13 can be pruned.

Figure 9 provides insights into how predictions are made on
the VPN dataset, and a comparison with Figure 8 highlights
key patterns in network traffic classification. Notably, the
header bytes such as 4, 1, 3, 0, 5, and 2 are prominent in both
decision trees, emphasising their critical role in influencing
classification decisions. The recurrence of these bytes across
both figures suggests that they are pivotal features, contribut-
ing directly to network traffic classification tasks. However,
in Figure 9, the payload bytes 1043 and 693 appearing in
nodes A6 and A10 differ from the payload bytes observed
in Figure 8, specifically 1096, 1448, and 866. This discrep-
ancy indicates potential challenges in generalizing the model
across different datasets. The variation in payload byte usage
across the two decision trees implies that direct reliance on
payload bytes for classification will lead to overfitting. This
outcome suggests that while payload data might provide
useful features for specific datasets, it lacks the robustness
necessary for broad generalization.

This analysis provides further insight into Table 7 demon-
strating that while payload features may improve classifi-
cation performance, overfitting to these features can sig-
nificantly impair the model’s generalization capabilities,
particularly when applied to varied datasets. The reliance
on payload bytes, which are random across different traffic
types, should thus be approached cautiously.

Our explainability studies reveal that header features di-
rectly influence the model’s predictions in a generalizable
manner. In contrast, using the payload directly as a feature
may result in poor generalizations that do not significantly
impact the model’s performance. However, the metadata
defining both the header and payload can indirectly enhance
the model’s efficacy. This suggests that systematically ex-
tracting structural information about the payload plays a
crucial role in improving accuracy and the overall decision-
making process.

5. Discussions
5.1. Encrypted Network Classification tasks

In the domain of encrypted network traffic classifica-
tion (NTC), the traditional approach focuses heavily on the
classification stage, often overlooking the complexities of
network traffic data. This oversight makes NTC particu-
larly challenging. Our approach, however, emphasizes the
data processing and feature representation stages, simplify-
ing the traffic structure and streamlining the classification
process. We propose two graph generation processes: flow
and packet. Each method has its distinct advantages and
drawbacks. The flow traffic approach enhances the rela-
tionships between network packets at the node level and
can extend to evaluate relations between traffic flows at the
graph level, which is crucial for network behaviour analysis.
However, a significant drawback is data imbalance. With
limited traffic flows, the generated graphs are insufficient
for training, reducing the model’s generalization capabil-
ity. While techniques to mitigate over-fitting exist, under-
represented classes still pose a challenge during classifica-
tion. Conversely, the packet-level approach, although supe-
rior in traffic classification tasks, might not be as effective for

Okonkwo et al.: Preprint submitted to Elsevier Page 16 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

Figure 10: Confusion matrices of experiments carried out VPN,
Non-VPN and Tor datasets. The packet-level experiments
show better results than flow-level experiments for all experi-
ments.

network behaviour analysis. Its fine granularity focuses on
the intricacies of individual packets, potentially overlooking
the broader network context. Our experiments, as illustrated
in Figure 10, demonstrate that packet-level classification out-
performs flow-level classification. This is primarily due to
the abundance of data samples in packet-level experiments,
ensuring balanced and well-represented classes during train-
ing. In summary, packet-level experiments tend to be more
straightforward than flow-level due to the availability of data
samples. The processed packet-level graphs maintain bal-
ance, allowing for a better representation of classes during
training and leading to more robust classification outcomes.
5.2. Impact of Trivial edges

In our secondary analysis, including ablation, variant,
and explainability studies, we primarily utilize the Non-
VPN dataset due to its imbalanced nature, which accurately
reflects real-world network data. In contrast, the VPN, Tor,
Ustc and Im datasets are relatively balanced. Our studies
reveal the critical role of trivial edges in overall task perfor-
mance and model generalization. Figure 11 highlights the

Figure 11: Confusion matrix of flow traffic classification on
the Non-VPN dataset. The left image shows results from only
non-trivial edges. The right results from both non-trivial and
trivial edges.

classification performance of graphs generated with only
non-trivial edges compared to those with both non-trivial
and trivial edges. The inclusion of both edge types en-
hances performance, particularly for traffic types like chat
and email. This differentiation underscores the varying be-
haviours of different traffic types when considering various
edge types. These findings indicate that seemingly seman-
tically meaningless application traffic contains subtle nu-
ances that aid in classification. The model’s generalization
strength is notably improved when both edge types are used
to construct graphs. The topological distinctions introduced
by trivial edges are pivotal in this enhancement. The im-
pact of the trivial edges can also be seen from figure 7.
The connected sub-graphs are evidence that incorporating
topographical distinction allows for a more nuanced un-
derstanding of encrypted NTC, enabling the classifiers to
discern subtle patterns that may be overlooked by methods
that do not consider these spatial relationships. The observed
superiority of the packet-level method in Table 3 is attributed
primarily to the granularity of the data processing stage,
which plays a crucial role in generating abundant and well-
balanced samples across all datasets. The flow-level method
is more prone to data imbalances and a reduced sample size
following data preprocessing, as illustrated in Table 2. These
factors can adversely affect the model’s accuracy, as shown
in Table 3. Conversely, when sample balancing becomes
an issue (a common real-world problem), the flow graphs
demonstrate a stronger dependence on the underlying graph
structure for accurate classification, This can be seen on
Table 5, as accuracy drops to 0.780 when trivial edges are
excluded.

6. Related Work
NTC has evolved from traditional methods like ports and

Deep Packet Inspection (DPI) to advanced statistical, ML,
and DL-based schemes [16, 35, 24, 33, 38, 9, 39, 49, 35, 26].
The dynamic nature of network traffic complicates the estab-
lishment of a universal classification scheme, necessitating
distinct approaches for different tasks and traffic classes. We

Okonkwo et al.: Preprint submitted to Elsevier Page 17 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

focus on literature employing DL approaches, particularly
GNNs, for NTC.

Early significant works, such as those by Wang et al. [42,
41] and Lotfollahi et al. [19], utilized raw bytes for traffic
classification. Lotfollahi’s Deep Packet framework lever-
aged CNNs and Stacked Autoencoders, performing well on
VPN and non-VPN tasks but struggling with Tor traffic. This
highlighted the insufficiency of traditional NTC methods
for handling various encryption schemes. Recent advance-
ments include Zhang et al. [51], who proposed a method
that processes packet headers and payloads separately then
concatenates their embeddings for enhanced classification.
By calculating the point Wise mutual information between
bytes, they [51] generated byte-level graphs for both headers
and payloads. As recent encryption algorithms are consid-
ered secure, the performance of their methodology sug-
gests a weakness in encryption which was not addressed.
Furthermore, their method did not leverage the temporal
information embedded in the byte sequences, instead relying
solely on the basic embeddings generated by their graphs for
downstream classification tasks. Their findings resulted that
the header embeddings were more crucial than the payload
embedding.

Huoh et al. [11] and others[26, 30] represented network
traffic as graphs, modeling packets as nodes and chronolog-
ical relationships as edges. However, the structural unifor-
mity of these graphs limited the full potential of GNNs.

Pang et al. [29] introduced an approach that leverages
the cumulative acknowledgment (ACK) mechanism of TCP
to create additional edges for network graphs, significantly
enhancing the classification of malicious traffic. However,
the scope of their network graphs is confined exclusively
to TCP traffic, which inherently limits the applicability of
their method to other communication protocols. This focus
on TCP traffic does not optimally address the challenges as-
sociated with representing encrypted traffic, as the generated
graphs tend to appear similar, thereby reducing the distinc-
tiveness needed for accurate classification. The cumulative
acknowledgment mechanism, while essential for ensuring
reliability in TCP communication, does not fully capture the
behavior of application-level traffic. Instead, it reflects the
state of the network, such as congestion and packet loss. This
reliance on the ACK(n) mechanism introduces volatility, as
its behavior can vary significantly depending on the net-
work environment. Consequently, while effective in certain
contexts, this approach may not be universally applicable,
particularly when dealing with diverse and encrypted traffic.

Zheng et al. [52] proposed a method that effectively
models traffic flows as graph nodes, with edges created when
flows share a common IP address. This approach allows for
the construction of a primary graph representing the entire
dataset, and the task of encrypted network traffic classifi-
cation (NTC) is framed as a node classification problem.
The methodology demonstrated strong performance on the
dataset utilized, showcasing its potential in certain contexts.
This methodology of edge creation creates a problem in
cases where shared IP addresses dominate edge formation

leading to a bias in learned representations, ultimately caus-
ing overfitting. Their method [52] performed well on the
dataset utilised however the static nature of the approach
limits the flexibility of the GNN to adapt to a more nuanced
relationships. Cai et al. [3] proposes a sophisticated method
that encodes packet length information into graphs. By con-
verting packet lengths flows into states and representing
these states as nodes in a graph, with edges reflecting the
transition probabilities between states, they capture both the
structural and sequential properties of the traffic flow. By
mapping packet lengths to a finite number of states (e.g., 10
states based on packet length ranges), there is an inherent
loss of granular information. Packets with different lengths
within the same range are treated identically, which might
obscure subtle variations in traffic patterns that could be
relevant for classification. The complexity of their model
also limits interpretability. while traditional methods have
laid the groundwork, contemporary research highlights the
potential of GNNs and advanced DL techniques to address
the nuanced challenges of NTC, emphasizing the need for
adaptable, environment-agnostic solutions.

7. Conclusion
In this paper, we propose a novel approach to encrypted

traffic classification that leverages the sequential and affinity
of network packets in geometrical space to generate struc-
turally rich graphs. Recognizing the significance of both
traffic flow and individual packet analysis, we introduce
methods for each. Flow graphs model traffic patterns and
behaviors, while packet graphs are crucial for granular multi-
classification tasks. To facilitate comprehensive analysis, we
employ a GNN that captures the structural properties essen-
tial for accurate classification. During data processing, we
account for the impact of various network security protocols
and privacy technologies. Our evaluation spans four public
datasets, benchmarking against several state-of-the-art base-
lines. Our approach consistently outperforms existing meth-
ods. Ablation and explainability studies further highlight the
effectiveness of our graph structures, revealing consistent
sub-graphs for similar classes. Our results demonstrate the
suitability of packet analysis for multi-classification tasks,
achieving high accuracies of 0.968 on VPN traffic, 0.994
on Non-VPN traffic, and 0.960 on Tor traffic. Our findings
show that despite encryption, network traffic can still be
analysed and fingerprinted. For future work, we aim to
conduct granular classification and fingerprinting tasks for
encrypted application traffic, with a particular emphasis on
open and real world testing. This approach will allow for a
more detailed and robust analysis, contributing significantly
to the field of network security and traffic analysis.

8.
References
[1] Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A., 2018. Mobile

encrypted traffic classification using deep learning, in: 2018 Network
traffic measurement and analysis conference (TMA), IEEE. pp. 1–8.

Okonkwo et al.: Preprint submitted to Elsevier Page 18 of 20

A Graph Representation Framework for Encrypted Network Traffic Classification

[2] Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.,
2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 18–42.

[3] Cai, W., Gou, G., Jiang, M., Liu, C., Xiong, G., Li, Z., 2021.
Memg: Mobile encrypted traffic classification with markov chains
and graph neural network, in: 2021 IEEE 23rd Int Conf on High
Performance Computing & Communications; 7th Int Conf on Data
Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), IEEE. pp. 478–486.

[4] Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.,
2016. Characterization of encrypted and vpn traffic using time-
related, in: Proceedings of the 2nd international conference on infor-
mation systems security and privacy (ICISSP), pp. 407–414.

[5] Erdenebaatar, Z., Alshammari, R., Zincir-Heywood, N., Elsayed, M.,
Nandy, B., Seddigh, N., 2023. Encrypted mobile instant messaging
traffic dataset. IEEE/IFIP Network Operations and Management
Symposium (NOMS 2023) URL: https://dx.doi.org/10.21227/ae

r2-kq52, doi:10.21227/aer2-kq52.
[6] Fu, Y., Liu, J., Li, X., Xiong, H., 2018. A multi-label multi-

view learning framework for in-app service usage analysis. ACM
Transactions on Intelligent Systems and Technology (TIST) 9, 1–24.

[7] Gao, H., Ji, S., 2019. Graph u-nets, in: international conference on
machine learning, PMLR. pp. 2083–2092.

[8] Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation
learning on large graphs. Advances in neural information processing
systems 30.

[9] Hayes, J., Danezis, G., 2016. k-fingerprinting: A robust scalable web-
site fingerprinting technique, in: 25th USENIX Security Symposium
(USENIX Security 16), pp. 1187–1203.

[10] HE, H., YANG, Z., CHEN, X., 2022. Payload encoding representation
from transformer for encrypted traffic classification. ZTE Communi-
cations 19, 90–97.

[11] Huoh, T.L., Luo, Y., Zhang, T., 2021. Encrypted network traffic
classification using a geometric learning model, in: 2021 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
IEEE. pp. 376–383.

[12] Jacobs, A.S., Beltiukov, R., Willinger, W., Ferreira, R.A., Gupta, A.,
Granville, L.Z., 2022. Ai/ml for network security: The emperor has
no clothes, in: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1537–1551.

[13] Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani, A.A., 2017.
Characterization of tor traffic using time based features, in: Inter-
national Conference on Information Systems Security and Privacy,
SciTePress. pp. 253–262.

[14] Li, W., Quenard, G., 2021. Towards a multi-label dataset of internet
traffic for digital behavior classification, in: 2021 3rd International
Conference on Computer Communication and the Internet (ICCCI),
IEEE. pp. 38–46.

[15] Lin, X., Xiong, G., Gou, G., Li, Z., Shi, J., Yu, J., 2022. Et-bert: A
contextualized datagram representation with pre-training transform-
ers for encrypted traffic classification, in: Proceedings of the ACM
Web Conference 2022, pp. 633–642.

[16] Lin, Y.D., Lu, C.N., Lai, Y.C., Peng, W.H., Lin, P.C., 2009. Applica-
tion classification using packet size distribution and port association.
Journal of Network and Computer Applications 32, 1023–1030.

[17] Liu, C., He, L., Xiong, G., Cao, Z., Li, Z., 2019. Fs-net: A flow
sequence network for encrypted traffic classification, in: IEEE INFO-
COM 2019-IEEE Conference On Computer Communications, IEEE.
pp. 1171–1179.

[18] Liu, X., Zhang, S., Li, H., Wang, W., 2021. Fast application activity
recognition with encrypted traffic, in: Wireless Algorithms, Systems,
and Applications: 16th International Conference, WASA 2021, Nan-
jing, China, June 25–27, 2021, Proceedings, Part II 16, Springer. pp.
314–325.

[19] Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R.,
Saberian, M., 2020. Deep packet: A novel approach for encrypted

traffic classification using deep learning. Soft Computing 24, 1999–
2012.

[20] Loukas, A., 2020. How hard is to distinguish graphs with graph neural
networks? Advances in neural information processing systems 33,
3465–3476.

[21] Lu, B., Luktarhan, N., Ding, C., Zhang, W., 2021. Iclstm: encrypted
traffic service identification based on inception-lstm neural network.
Symmetry 13, 1080.

[22] Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., Zhang, X.,
2020. Parameterized explainer for graph neural network. Advances
in neural information processing systems 33, 19620–19631.

[23] Ma, X., Zhu, W., Wei, J., Jin, Y., Gu, D., Wang, R., 2023. Eetc: An
extended encrypted traffic classification algorithm based on variant
resnet network. Computers & Security 128, 103175.

[24] Miller, B., Huang, L., Joseph, A.D., Tygar, J.D., 2014. I know why
you went to the clinic: Risks and realization of https traffic analysis,
in: Privacy Enhancing Technologies: 14th International Symposium,
PETS 2014, Amsterdam, The Netherlands, July 16-18, 2014. Proceed-
ings 14, Springer. pp. 143–163.

[25] Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E.,
Rattan, G., Grohe, M., 2019. Weisfeiler and leman go neural: Higher-
order graph neural networks, in: Proceedings of the AAAI conference
on artificial intelligence, pp. 4602–4609.

[26] Okonkwo, Z., Foo, E., Hou, Z., Li, Q., Jadidi, Z., 2023. Encrypted
network traffic classification with higher order graph neural network,
in: Australasian Conference on Information Security and Privacy,
Springer. pp. 630–650.

[27] Okonkwo, Z., Foo, E., Li, Q., Hou, Z., 2022. A cnn based encrypted
network traffic classifier, in: Proceedings of the 2022 Australasian
Computer Science Week. Springer, pp. 74–83.

[28] Panchenko, A., Lanze, F., Pennekamp, J., Engel, T., Zinnen, A.,
Henze, M., Wehrle, K., 2016. Website fingerprinting at internet scale.,
in: NDSS.

[29] Pang, B., Fu, Y., Ren, S., Jia, Y., 2023. High-performance network
traffic classification based on graph neural network, in: 2023 IEEE
6th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), IEEE. pp. 800–804.

[30] Pang, B., Fu, Y., Ren, S., Wang, Y., Liao, Q., Jia, Y., 2021. Cgnn:
traffic classification with graph neural network. arXiv preprint
arXiv:2110.09726 .

[31] Peng, L., Yang, B., Chen, Y., Wu, T., 2014. How many packets are
most effective for early stage traffic identification: An experimental
study. China Communications 11, 183–193.

[32] Platzer, F., Schäfer, M., Steinebach, M., 2020. Critical traffic analysis
on the tor network, in: Proceedings of the 15th International Confer-
ence on Availability, Reliability and Security, pp. 1–10.

[33] Rahman, M.S., Sirinam, P., Mathews, N., Gangadhara, K.G., Wright,
M., 2019. Tik-tok: The utility of packet timing in website fingerprint-
ing attacks. arXiv preprint arXiv:1902.06421 .

[34] Sengupta, S., Ganguly, N., De, P., Chakraborty, S., 2019. Exploiting
diversity in android tls implementations for mobile app traffic classi-
fication, in: The World Wide Web Conference, pp. 1657–1668.

[35] Shapira, T., Shavitt, Y., 2019. Flowpic: Encrypted internet traffic
classification is as easy as image recognition, in: IEEE INFOCOM
2019-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), IEEE. pp. 680–687.

[36] Shen, M., Zhang, J., Zhu, L., Xu, K., Du, X., 2021. Accurate
decentralized application identification via encrypted traffic analysis
using graph neural networks. IEEE Transactions on Information
Forensics and Security 16, 2367–2380.

[37] Sirinam, P., Imani, M., Juarez, M., Wright, M., 2018. Deep fin-
gerprinting: Undermining website fingerprinting defenses with deep
learning, in: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1928–1943.

[38] Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I., 2016. Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic, in: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), IEEE. pp. 439–454.

Okonkwo et al.: Preprint submitted to Elsevier Page 19 of 20

https://dx.doi.org/10.21227/aer2-kq52
https://dx.doi.org/10.21227/aer2-kq52
http://dx.doi.org/10.21227/aer2-kq52

A Graph Representation Framework for Encrypted Network Traffic Classification

[39] Van Ede, T., Bortolameotti, R., Continella, A., Ren, J., Dubois,
D.J., Lindorfer, M., Choffnes, D., van Steen, M., Peter, A., 2020.
Flowprint: Semi-supervised mobile-app fingerprinting on encrypted
network traffic, in: Network and distributed system security sympo-
sium (NDSS).

[40] Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M.,
2017a. Hast-ids: Learning hierarchical spatial-temporal features using
deep neural networks to improve intrusion detection. IEEE access 6,
1792–1806.

[41] Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z., 2017b. End-to-end
encrypted traffic classification with one-dimensional convolution neu-
ral networks, in: 2017 IEEE international conference on intelligence
and security informatics (ISI), IEEE. pp. 43–48.

[42] Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y., 2017c. Malware
traffic classification using convolutional neural network for repre-
sentation learning, in: 2017 International conference on information
networking (ICOIN), IEEE. pp. 712–717.

[43] Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y., 2017d. Malware
traffic classification using convolutional neural network for repre-
sentation learning. 2017 International Conference on Information
Networking (ICOIN) , 712–717URL: https://api.semanticschola

r.org/CorpusID:3725747.
[44] Wang, Z., Thing, V.L., 2023. Feature mining for encrypted malicious

traffic detection with deep learning and other machine learning algo-
rithms. Computers & Security 128, 103143.

[45] Xu, K., Hu, W., Leskovec, J., Jegelka, S., 2018. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826 .

[46] Xu, S.J., Geng, G.G., Jin, X.B., Liu, D.J., Weng, J., 2022. Seeing
traffic paths: encrypted traffic classification with path signature fea-
tures. IEEE Transactions on Information Forensics and Security 17,
2166–2181.

[47] Yao, H., Liu, C., Zhang, P., Wu, S., Jiang, C., Yu, S., 2019. Identi-
fication of encrypted traffic through attention mechanism based long
short term memory. IEEE Transactions on Big Data 8, 241–252.

[48] Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J., 2019.
Gnnexplainer: Generating explanations for graph neural networks.
Advances in neural information processing systems 32.

[49] Zaki, F., Afifi, F., Abd Razak, S., Gani, A., Anuar, N.B., 2022. Grain:
Granular multi-label encrypted traffic classification using classifier
chain. Computer Networks 213, 109084.

[50] Zhang, H., Gou, G., Xiong, G., Liu, C., Tan, Y., Ye, K., 2021. Multi-
granularity mobile encrypted traffic classification based on fusion fea-
tures, in: Science of Cyber Security: Third International Conference,
SciSec 2021, Virtual Event, August 13–15, 2021, Revised Selected
Papers 4, Springer. pp. 154–170.

[51] Zhang, H., Yu, L., Xiao, X., Li, Q., Mercaldo, F., Luo, X., Liu, Q.,
2023. Tfe-gnn: A temporal fusion encoder using graph neural net-
works for fine-grained encrypted traffic classification, in: Proceedings
of the ACM Web Conference 2023, pp. 2066–2075.

[52] Zheng, J., Zeng, Z., Feng, T., 2022. Gcn-eta: high-efficiency en-
crypted malicious traffic detection. Security and Communication
Networks 2022, 1–11.

Okonkwo et al.: Preprint submitted to Elsevier Page 20 of 20

https://api.semanticscholar.org/CorpusID:3725747
https://api.semanticscholar.org/CorpusID:3725747

