
A Timed Automata based Automatic Framework for
Verifying STL Properties of Simulink Models

Miao Tian†, Jianqi Shi∗†, Zhe Hou‡, Yanhong Huang†, Shengchao Qin§¶
†National Trusted Embedded Software Engineering Technology Research Center,

East China Normal University, Shanghai, China
‡School of Information and Communication Technology, Griffith University, Brisbane, Australia

§School of Computing, Engineering, & Digital Technologies, University of Teesside, Tees Valley, UK
¶College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, China

miao.tian@ntesec.ecnu.edu.cn, {jqshi, yhhuang}@sei.ecnu.edu.cn
z.hou@griffith.edu.au, S.Qin@tees.ac.uk

Abstract—Simulink has been widely used in model-based
design and development. While we witness a growing demand
on testing and verification for safety-critical systems, it remains
a challenge to verify Simulink models, due largely to a lack
of standardized formal semantics for Simulink. In this paper,
we propose a comprehensive framework that allows us to
automatically verify Simulink models. Our proposed framework
is equipped with Signal Temporal Logic (STL) for system
requirements specification and employs a formal method to
translate the Simulink model into UPPAAL timed automata,
which can then be verified automatically by UPPAAL (against
their STL specification). A novelty of our work is the integration
of Simulink models with STL, allowing us to express and then
verify complex time properties that may be found difficult by
existing work. In our translation of Simulink models, we adopt
symbolic execution to reduce the size of the translated automata
that can produce accurate results. We also demonstrate the
feasibility and effectiveness of the proposed framework via a
case study of an autonomous driving system.

Index Terms—Simulink model, Requirement, Signal Temporal
Logic, Verification, UPPAAL Timed automata

I. INTRODUCTION

MATLAB Simulink has been widely used to design and
implement system models in various fields, especially in some
safety-critical fields, such as avionics and autonomous driving.
Beyond modeling and simulation, Simulink can also automat-
ically generate C and HDL code from the model [1] and
monitor model defects through Simulink Design Verifier [2].

Motivation: Usually, the model designed in Simulink is
elaborated and expanded from the relatively straightforward
requirements [3]. However, in practical work, the requirements
are proposed by one group of engineers, and another group
of engineers independently develops the design model. The
correctness of the model largely depends on the design engi-
neer’s interpretation of the requirements. If the interpretation
is wrong, the designed model may eventually cause system
failures. Although Simulink Design Verifier can use Simulink
verification blocks to describe requirement-related assertions
and detect the violation of them, Simulink verification blocks
have limited description capabilities for most complex and

*Corresponding author.

timing-related requirements and moreover cannot be used for
verification. Model checking, a rigorous and correct formal
technique to verify whether the properties of the model are
satisfied, should be applied to Simulink model verification.

Challenge: One of the challenges is to choose an appro-
priate specification language and a model verification tool
to realize verification automatically. Although the commonly
used languages such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) have been supported by many
model verification tools, they can not express the relationship
between real-valued signal and time [4]. While languages
such as Metric Interval Temporal Logic (MITL) and Signal
Temporal Logic (STL) describe the real-time property well,
but they lack the support of model verification tools [5].
Another major challenge is that Simulink has very rich blocks,
which would cause the execution semantics of the model very
complex and the application of formal techniques to complete
verification directly very challenging. Furthermore, translating
the model and requirements and finally unifying them into a
suitable formal model is very important, but this process is
very difficult, and few existing works complete it.

Approach: We present a fully automatic framework to verify
whether the Simulink model meets the requirements. Our
framework is shown in Fig. 1. STL is a popular formalism for
specifying properties of dense-time real-valued signals, and it
has been used in many real-life applications. Thus it is ap-
propriate to choose STL to describe the system requirements.
Timed automata [8] is chosen as the final form for unifying
the Simulink model and requirement properties because it
can be used to model and analyze the timing behavior of
systems. Moreover, methods for verifying timed automata have
been deeply studied by UPPAAL [7]. Specifically, we use
MightyL [6], an open-source tool, to automatically translate a
STL formula into UPPAAL timed automata. Then we design
a translation scheme to automatically translate the Simulink
model into UPPAAL time automata. Symbolic execution [9]
is used in the translation method to make the result more
accurate. In summary, contributions of this paper include:
• We design an automatic translation method with strict

formal definition to translate the Simulink model into

Fig. 1. The verification Framework for Simulink Models

UPPAAL, and apply symbolic execution to the generation
of UPPAAL time automata.

• We propose a comprehensive and scalable framework to
automatically verify whether a Simulink model meets
the requirements (described as STL properties) through
UPPAAL. To the best of our knowledge, we are the first
to fully automatically verify the Simulink model without
simulating the model at the time of verification.

• Experiments on the Lane Keeping Assist (LKA) system
of the autonomous driving system demonstrate the feasi-
bility of our method.

Organization: In Section II, we briefly introduce the basic
knowledge related to the verification framework. Section III
presents the method of translating the Simulink model into
UPPAAL timed automata. We elaborate on the experimental
details and verification results in Section IV. We discuss
related work in Section V and conclude in Section VI.

II. BACKGROUND

In this section, we introduce the basis of our framework.
Section II-A briefly introduces Simulink for system modeling.
The STL we chose to describe the requirements will be
described in Section II-B. Section II-C is the tool UPPAAL,
which is a critical tool that we use to verify the systems.

A. Simulink

Simulink [1] is a graphical environment for model-based
design integrated into MATLAB IDE by MathWorks. The
essential elements of Simulink are blocks, which are connected
by lines. Simulink provides a variety of implemented blocks,
such as arithmetical blocks, logic blocks, and relational blocks.
Simulink blocks fall into two categories: nonvirtual blocks that
represent functions and play an active role in the simulation
of a system, and virtual blocks which only build a model
graphically without affecting the behavior of the model. A sub-
system consists of interconnected blocks, which can be a set
of atomic blocks or possibly other subsystem blocks. During
the simulation, the execution of blocks is deterministic and
sequential, which is determined by the Simulink simulation
environment. The basic strategy is to calculate the execution
order according to the direct signal flow dependencies between
the blocks.

B. Signal Temporal Logic

Signal Temporal Logic (STL) [5] is a popular temporal
logic for specifying properties of real-valued signals and
characterizing timed behaviors. It is widely used in analog
circuits, systems biology, and hybrid physical systems. The
grammar of STL is given by

ϕ := true | si ≥ 0 | ¬ϕ | ϕ ∧ ψ | ϕUIψ

where si are variables that represent real-valued signals, I is
a non-singular interval over R+ with endpoints in N∪{+∞}
or [0, 0]. ϕ and ψ are STL formulas. The validity of a formula
ϕ with respect to a signal S = s0s1s2... at time t is defined
inductively as follows:

S, t |= true

S, t |= si ≥ 0 iff sSi (t) ≥ 0

S, t |= ¬ϕ iff S, t 2 ϕ
S, t |= ϕ ∧ ψ iff S, t |= ϕ and S, t |= ψ

S, t |= ϕUIψ iff ∃ t′ ∈ t + I s.t. S, t′ |= ψ and

∀ t′′ ∈ [t, t′], S, t |= ϕ

We derive other usual operators as follows:

false := ¬true ϕ ∨ ψ := ¬ (¬ϕ ∧ ¬ψ) ϕ→ ψ := ¬ϕ ∨ ψ
♦Iϕ := trueUIϕ �Iϕ := ¬♦I¬ϕ

where � means ‘globally’, and ♦ means ‘eventually’.

C. UPPAAL

We introduce the features of UPPAAL through the example
shown in Fig. 2. This example shows a timed automaton
modeling a simple lamp. The model consists of two parallel
automata Lamp and User, in which Lamp models the on and
off process of the lamp, and User represents the action that
the user pressing the button. The clock y of the Lamp is
used to count the time when the user presses the button.
y > 3 indicates that the user presses the button continuously,
and y ≤ 3 indicates the user is fast. The channel realizes
synchronization among different automata, i.e., press (‘?’ and
‘!’ represent the receiver and sender respectively) declared in
the example. The user can press the button randomly at any
time or even not press the button at all. The Lamp has three
locations: off, low, and bright. If the user presses the button,
then the lamp is turned on. However, if the user keeps pressing

the button for more than 3 time units, the lamp will be adjusted
from bright light to low light. Similarly, the lamp can become
bright from low by continuously pressing the button. If the
user fast presses the button when the lamp is bright (or is
low), the lamp is turned off.

Fig. 2. Constructed Timed Automata for Lamp

Formally, the UPPAAL timed automata is a finite state
machine extended with non-negative real-valued clocks. It can
be defined as a tuple A = (L, l0, X,A, I,∆), where L is a
finite set of locations, l0 ∈ L is the initial location, X is a
set of clocks, A is a set of actions, I is a set of invariants
on the location, and ∆ ⊆ L × G × A × 2C × L denotes a
set of transition edges, G is the set of guard conditions. The
transition represented by an edge can be triggered when the
clock value satisfies the guard labeled on the edge. The clocks
may reset when a transition is taken.

III. THE PROPOSED APPROACH

Model checking is one of the most important and successful
techniques to verify the correctness of a system automatically.
A system model and a formal property that the system
must respect should be provided to a model-checker for
verification. For their implementation, many model-checkers
rely on the automata-based approach: the behaviours of the
system (model) and the set of bad behaviours (the nega-
tion of temporal logic describing properties) are represented
by the languages L(B) and L(A¬ϕ) of automata B and
A¬ϕ respectively. Then, the model-checker checks whether
L(B) ∩ L(A¬ϕ) = ∅ to obtain the result. Therefore, to verify
automatically, we provide a method to translate the Simulink
model into the UPPAAL time automata. Simultaneously, the
requirements (negation) described by STL are translated into
the UPPAAL time automata, and finally, complete the verifi-
cation through UPPAAL. The working process is performed
in following steps:

1. Parsing the Simulink model: The critical information of
the model is extracted by parsing the textual representa-
tion (MDL file) of the Simulink model. Firstly, the system
is divided into different parts according to the subsystems,
and each part only extracts the relevant information of
the nonvirtual blocks that have an actual influence on
the model. Other graphical information related to the
construction of the model, such as location, color, and
font, are discarded.

2. Formal modeling: In this step, we first give the formal
definition of the Simulink model, and then we define
the Symbol Table that is a data structure of storing the

symbol values corresponding to the relevant information
of Simulink blocks (described in subsection III-A).

3. Translation: We translate the Simulink model into UP-
PAAL timed automata using translation scheme (de-
scribed in subsection III-B).

4. Symbolic simplification: In order to ensure the accuracy
and conciseness of the translated automaton, based on
symbolic execution, we propose a simplification algo-
rithm for calculating new locations and capturing the
constraints of reaching locations. Our implementation
can minimize the number of locations (described in
subsection III-C).

5. Verification: Finally, with the MightyL tool, the require-
ment properties described by STL are translated into
UPPAAL, and the “property automata” and the “model
automata” are executed synchronously in UPPAAL to
complete the verification (described in subsection III-D).

A. Formal Definitions

To clarify the terms used in the framework and facilitate
the construction of the translation scheme, we give the formal
definition of the Simulink model and the Symbol Table in
this section.

Definition 1. A Simulink model is formally defined as a
tuple SL = (D,B,C, TS, TC, Fun), where
• D is a finite set of typed variables including input

variables DI , intermediate variables DX , and output
variables DO, D = DI ∪ DX ∪ DO.

• B is a finite set of Simulink blocks. Each block has in-
put, output, and local variables. The input and output
variables are associated with input and output ports. A
Simulink block can itself be a Simulink diagram.

• C ⊆ B×B is an ordered relation that represents connec-
tions between the blocks. A connection c = (b, b′) ∈ C
is a line from an output port of b to an input port of
b′ in the Simulink model, and represents the signal flow
between the corresponding variables of b and b′.

• TS is the sample time of the Simulink model, which
indicates when the model updates its internal states and
produces outputs.

• TC : C → TY is a mapping from a connection to
a time that represents the time taken by a block to
generate output and pass it to another block, TY ∈
{TYct, TYcm, TYctM , TYcmM}. According to the type of
signal flow between blocks, we divide the time into control
time and communication time. Control time is the time
taken to transmit the control signal between b and b′, such
as the controller transmitting a signal to the actuator. If
a communication signal is transmitted between b and b′,
the time taken in this process is communication time. For
example, the controller obtains the value from the sensor.
TYct and TYctM are the set of control time, and TYcm
and TYcmM are communication time. TY∗ represents the
minimum time required for the blocks to complete control
or communication, and TY∗M is the maximum time.

• Fun is a set {Fun0, · · ·, Funn}, where Funi captures
the functionality of a Simulink block, and i marks the
execution order of functions, consistent with the execution
order of corresponding blocks in Simulink simulation.

The Simulink model is not simulated during the translation.
In order to track and record the changes of various variables
after the execution of the block, we use symbols to mark the
information in the Simulink model. Symbolic information of
the Simulink model is recorded in the Symbol Table.

Definition 2. A Symbol Table is formally defined as a tuple
ST = (SI, SO, SX, SB, SFun), where
• SI , SO and SX is a finite set of symbols of input,

output and intermediate variables in the Simulink model,
respectively.

• SB is a finite set of symbols of variables involved in each
block in Simulink model.

• SFun : Funi → SI × SO represents the symbolic
values of the input and output variables of the model
after the Funi is executed. SFun records the update of
the variables.

B. Translation Scheme

Consider a Simulink model SL = (D,B,C, T, Fun). SL
can be systematically translated into the UPPAAL timed au-
tomata A = (L, l0, X,A, I,∆) as below. We use the Analog-
to-Digital Converter (ADC) model shown in Fig. 3 as the
running example to explain the translation. This model is a
subsystem of a Digital Thermometer model. The input voltage
is converted from temperature, and the output pcm is the
converted digital signal.

Fig. 3. Analog-to-Digital Converter (ADC) Model

Location L: The set L of locations can be identified with
the symbolic values of the input and output variables in the
Simulink model. Let v1, · · · , vn be the input/output variables
in D, and Fun0, · · · , Funn be the function implementation
of the corresponding block in Fun. We identify the symbolic
values of the variables according to the mapping relationship
in SFun at the end of each block, denoted by SFun(Funi) =
V i
1 , · · · , V i

n for block Bi ∈ B. Then L is the set of all such
tuples (V i

1 , · · · , V i
n).

For instance, in the ADC model, we define the set of input
variables DI = {voltage} and output variables DO = {pcm}.
These two variables are marked with the symbol V O and
the symbol P , respectively, SI = {V O}, SO = {P}. Thus,
l1 = (V O,P) ∈ L. The scale in the ADC model is a Gain
block that amplifies the voltage value. After the scale block is
executed, V O = 256/5 ∗V O, the symbolic value of the input
variable is updated. Therefore, l2 = (256/5 ∗ V O,P) ∈ L.

Initial Location l0: We define the initial location as
l0 = SFun(Fun0) = (V 0

1 , · · · , V 0
n) ∈ L, where Fun0 is the

initialization assignment function, and V 0
m (1 ≤ m ≤ n) is

the initial symbol value of the variable. For example, in the
timed automata translated from the ADC model, we define
l0 = (V O0, P0) ∈ L.

Clocks X: We identify the set X of real-valued variables
from the sample time TS and the time constraints TC. The
sample time determines the time of “a complete run” for
the translated timed automata. So a global clock is needed
to record the global time. For the time constraints TC on
the connections, they are reflected as local clocks in the
translated time automata. That is, the time taken on control
and communication tasks also needs to be recorded by setting
the corresponding clocks on the automata. For the sample time
TS, we define a global clock g. For each connection ci ∈ C,
we set a corresponding local clock xi according to the time
ti = T (ci) given by the mapping T : C → TY . The clock is
defined as X = {g, x1, · · · , xm}, where m is the number of
connections in C.

In our example, The value of voltage is obtained from
the sensor. The time taken waiting for the sensor’s signal is
the communication time, which requires a clock x to record,
and the remaining blocks are computational blocks without
control or communication tasks. Therefore, X = {g, x} in
the timed automata translated from the ADC model.

Action A: For each Simulink block, we define and im-
plement a function to realize the process of getting output
from input variables and intermediate variables. Specifically,
we design a library of routines LR to generate the function
equivalent to basic blocks in Simulink, LR(Bi) = Funi
for block Bi ∈ B. Then the set of these functions is Fun.
The function will update the variables, so in the translated
time automata, we defined Fun ∈ A. Besides, in order
to preserve the execution order of blocks, we define an
integer variable exeNum in the UPPAAL model to record the
execution order of functions. Then we set an update operation
exeNumOp for the variable exeNum, and exeNumOp ∈ A.
So A = Fun ∪ exeNumOp.

For the ADC model, we respectively define the
corresponding functions of scale, quantize, limit as
F = {Fun1, Fun2, Fun3}. There are three blocks in
the model, so the value range of exeNum is [0, 3]. The set
of actions of the timed automata translated from ADC model
is A = {Fun1, Fun2, Fun3, exeNum = i}, where i ∈ [0, 3].

Invariants I: Locations are labeled with invariants in the
UPPAAL timed automata. An invariant is an expression on
clocks that limits the time that the automata stay in a location.
TYcmM and TYctM in the TC are the maximum time to
complete communication and control tasks, respectively, so
they should be the upper bound of the invariant. It means that
transition must occur if the local clock exceeds the maximum
time. For each connection ci ∈ C, we convert the time

ti = T (ci) given by the mapping T : C → TY into a invariant
xi ≤ ti if ti ∈ TYcmM or ti ∈ TYctM . Therefore, the invariant
on a location l is defined as

I(l) =

{
xi ≤ TYcmMi, if ci is a communication type;
xi ≤ TYctMi, if ci is a control type.

The scale block waits for the signal from the sensor for no
more than 5 time units in the ADC model. We can define the
invariant on the location I(l1) = x ≤ 5.

Transition ∆: Transition is the set of edges. Edges are an-
notated with selections, guards, synchronizations and updates
in UPPAAL. Selections non-deterministically bind a given
identifier to a value in a given range. The other three labels
of an edge are within the scope of this binding. A guard is
a boolean expression, and an edge is enabled in a location
if and only if the guard evaluates to be true. Channels are
used to synchronise processes. An update label is a list of
expressions. When executed, the update expression of the edge
is evaluated. We do not set the selections, and we do not use
the channel synchronization mechanism (explained further in
Section III-D). So we only consider guards and updates on
edge in our translation scheme.

A guard G = {B(X) ∧ BoolExp} is a conjunction of
simple conditions on clocks, differences between clocks, and
boolean expressions not involving clocks. The set B(X) of
clock constraints g1 over X is defined by g1 := true | g1 ∧
g1 |x ./ c |x−y ./ c, where ./ ∈ {≤, <, ≥, >}, x, y ∈ X .
We set the c according to the time ti = T (ci) given by the
mapping T : C → TY as

c =

{
TY∗, if ti is a minimum time;
TY∗M , if ti is a maximum time.

BoolExp is a set of branch conditions and conditions of
judgment function execution order g2. g2 is defined as g2 :=
true | g2 ∧ g2 | branchCon | exeOrdCon. The branchCon is
the constraint conditions captured from the function Funi
through the method of symbolic execution (discussed in Sec-
tion III-C). The exeOrdCon = (exeNum == i) is a boolean
expression that determines whether the exeNum is the correct
value, where i is the number of execution order.

Now we discuss the updates on the edge. The update
expressions of the edge are evaluated when the guards are
true, and the transition occurs. Therefore, the actions to be
performed during the transition should be added to the update
list. Besides, the update list also includes local clocks reset. For
each local clock xi, the reset operation is defined as xi := 0.
Then the set of reset clock clockRe is all such reset operations,
where xi ∈ X\g. So updates = A ∪ clockRe.

In summary, the transition ∆ ⊆ L × G × A × 2C × L is
a set of edges between locations annotated with a guard and
an update (including actions A and a set of clocks to be reset
2C). We divide the transition into two types:

The first transition represents the initialization of the model,
fired at the initial location. The initialization process is uncon-
strained, G = {true}. The second transition is the operation-
type. When the time and condition constraints G are evaluated
to be true, the function Funi corresponding to the current
order number i is executed. Note that location l′ can be the
same as l in the second transition if the symbolic values of
input and output variables do not change after the execution
of the Funi.

According to the above transition scheme, the ADC model
is translated into the time automata in UPPAAL, as shown in
Fig. 4. The green label on the edge is guard condition, and the
blue label is update action. Specifically, fun1, fun2, and fun3
correspond to the execution of scale, quantize, limit blocks in
the ADC model.

Fig. 4. The Timed Automata of ADC Model

C. Symbolic Execution for Computing New Locations and
Constraints

This section introduces the symbolic execution algorithm.
We design this algorithm to simplify the symbolic values of
variables and determine the generation of a new location ac-
cording to the simplification results. Our algorithm reduces the
number of states as much as possible to avoid state explosion.
There are many condition blocks in the Simulink model, and
choosing different conditions will generate different outputs.
So we also use this algorithm to capture the constraints of
reaching a location (branchCon in G).

We have preprocessed the function set Fun to mark the
variables, the position of the statement, the statement type, and
the execution flow in the function. The computation method
is shown as Algorithm 1. The ξ is a path constraint, which
collects the conditions of reaching a specific location along
the execution path. ST is the Symbol Table for recording the
symbol value of each variable, and α is the program counter,
pointing to the position of the currently executed statement.
Symbolic execution is performed using the symbolic memory.
For the memory M1, we write M1[ξ → ST] for mapping

the constraint to symbol values of variables for recording the
state of variables on the constraint. M2[α → ST] maps the
program position to symbolize variables for recording the state
of variables after executing a statement. Execution starts from
a Symbol Table ST0 containing initial symbolic values for
input and output variables and a path constraint ξ recorded
as true, at the entry position PC0. The operation of each
statement updates the memory and the control position.

According to the operation, we divide program statements
into three types: termination statement, assignment statement,
and conditional branch statement. For an assignment, the
symbolic values of the variables are updated by the func-
tion updateSymbol(α, ST), which evaluates the assignment
expression. The labelV ariable is a tuple to separately record
the updated symbolic values of the input and output vari-
ables that mark the current location. Then we update M1

and M2 according to the updated ST . For a conditional
branch statement, we record all the conditions. ξi represents a
new path constraint obtained by updating the original path
constraint ξ with the ith condition conditioni. Then the
memory M1 is updated. The newlocation is the set of
symbolic values of input and output variables corresponding
to all existed locations. When the termination statement is
executed, we search in set newlocation to check if there
is an element that is the same as the tuple labelV ariable.
If findLocaion(labelV ariable, newlocation) returns true,
there is no need to generate a new location after this function
is executed. The algorithm only returns all path constraints at
the time. If no equivalent location is found, then this function
execution have generated a new location. We add the new
location to newlocation and record the constraints at the time.

D. Verifying with STL

Before translating the Simulink model into the time au-
tomata in UPPAAL, we use the STL formula to describe
the requirement and translate the STL formula into the time
automata in UPPAAL. We use MightyL, an academic tool, to
translate the STL formula to UPPAAL time automata. How-
ever, MightyL can only translate a Metric Interval Temporal
Logic (MITL) formula into time automata in UPPAAL, so we
first translate the STL formula to the MITL formula.

The syntax and semantics of MITL can be extended to real-
valued signals through STL. Therefore we can define STL over
MITL and thus translate STL to MITL. Firstly, we give the
syntax of MITL as follows:

ϕ := true | a | ¬ϕ | ϕ ∧ ψ | ϕUIψ

where a ∈ AP , which is the set of atomic propositions. I is a
nonsingular interval over R+. This includes bounded intervals
[a, b] and unbounded intervals [a, +∞) for any 0 ≤ a < b.
Compared with the syntax definition of STL, MITL is based
on atomic propositions, while STL is based on real-valued
variables. Therefore, to translate STL to MITL, it is necessary
to map real-valued variables to atomic propositions.

We define a real-valued signal S : T → Rm, and a
set of predicates P = {p1, ..., pn}, where pi : Rm →

Algorithm 1: Computation of locations and constraints
ξ := true; ST := ST0; α := PC0

M1(true) := ST ; M2(α) := ST
function symbolCom(programCounter α, symbolTable
ST , constraints ξ)

1: if typeOp(α) 6= endProgram then
2: switch typeOp(α) do
3: case assignment
4: ST = updateSymbol(α, ST);
5: labelVariable = updateInOut(ST);
6: M1 := M1[ξ → ST]; M2 := M2[α→ ST];
7: α := α→ next;
8: symbolCom(α, ST, ξ);
9: end

10: case ifElseBranch
11: for all condition in condtionBranch do
12: ξ1 := addConstraints(conditioni, ξ)
13: M1 := M1[ξi → ST];
14: α := α→ conditionGoto;
15: symbolCom(α, ST, ξi);
16: end
17: end
18: end
19: else
20: if findLocation(labelVariable, newLocation) then
21: return M1;
22: else
23: newLocation :=addLocation(labelVariable,

newLocation);
24: return M1;
25: end if
26: end if

B, B = {true, false}. We define the STL formula ΦSTL over
predicates P using MITL formula ΦMITL over the atomic
propositions AP . The semantics of STL can be defined using
MITL as follows:
• Define a set of AP such that for each p ∈ P , there exists

some ap ∈ AP ;
• For each signal S we define a µ such that ap ∈ µ(t) iff
p(s(t)) = true;

• ∀t(s, t) |= ΦSTL iff (µ, t) |= ΦMITL.
According to the above definition, we project the STL

predicate expressions into atomic propositions with inde-
pendent truth valuations. Then we create the corresponding
MITL formula from STL. The subsequent translation work
is done automatically by MightyL. However, the work of
MightyL has certain limitations. The time automata translated
into UPPAAL use global variable synchronization instead
of the channel mechanism. Therefore, before translating the
Simulink model to the UPPAAL automata, we extract the
global variable information in the “requirement automata”
obtained by MightyL. Then we set the global variables of

“Simulink model automata” according to this information to
realize synchronization among all automata. Finally, some
properties are added to UPPAAL to describe that all automata
can reach an acceptable termination state, and the verification
result is obtained by verifying these properties.

IV. EXPERIMENT

In order to evaluate the translation scheme and the verifi-
cation framework, we apply them to some artificial and real
industrial Simulink models. We choose two cases which are
the Digital Thermometer (DT) model, and the Lane Keeping
Assist (LKA) system [18]. In this section, we provide a brief
overview of our results.

The first artificial example is the Digital Thermometer
model composed of a simple temperature sensor and an
ADC. The ADC model shown in Fig. 3 is a subsystem of
the DT model. We verify 1) the thermometer receives the
voltage data V olData from the sensor and converts it into
the corresponding temperature value TempV al within 10 time
units, and 2) the exception flag ExeF la is 1 finally when
the V olData exceeds the threshold ThreV al. In Table I we
provide verification results. Since the model does not deal with
exception values, the second requirement is not satisfied.

TABLE I
PROPERTY LIST AND RESULTS OF VERIFICATION FOR DT MODEL

RQ Temporal Logics Result

1
�[0,10]((V olData ≥ 0 ∧ V olData ≤ 5)
→ (TempV al ≥ −40 ∧ TempV al ≤ 40)

true

2 ♦((V olData ≥ ThreV al)→ ExeF la >0) false

Then, we apply our framework to the LKA system in the
autonomous driving system. Since this model is representative,
we take this model as an example to explain our translation
and verification process in detail.

a) The LKA system: A lane-keeping assist (LKA) sys-
tem is a control system that aids a driver in maintaining
safe travel within a marked lane on a highway. The LKA
system detects when the vehicle deviates from a lane and
automatically adjusts the steering to restore proper travel inside
the lane without additional input from the driver.

b) Requirements: We mainly refer to ISO 11270:2014
Intelligent transport systems — Lane-keeping assistance sys-
tems (LKAS) — Performance requirements and test proce-
dures [10] to design the requirements. We divide the re-
quirements into two categories: warning requirements describe
the system requirements when the LKA system automatically
sends out a warning signal of vehicle deviation, and road
performance requirements describe the requirements that the
LAK system should meet when it adjusts the driving state
of the vehicle on the road. The standard covers 5 warning
requirements and 10 road performance requirements. Here,
we present two requirements of them in natural language:
• Warning requirement (WR1): The warning signal must

be sent out within 3 time units after detecting that the
vehicle is at the warning line. And if the driver has turned

on LKA, the system intervention must be activated within
2 time units after the warning signal is sent out.

• Road performance requirement (RR1): If the distance
between the measured lane and the wheel exceeds the
safe lateral distance (1m), LKA will control the controller
within 100 time units to adjust the wheel direction.

c) Translation: First, we use STL formulas to describe
requirements, as shown in Table II. In WR1, LSensor repre-
sents the data detected by the sensor, DeparDet represents
the warning signal of detected offset, Enable corresponds
to whether LKA is enabled, and Status represents the ex-
ecution status of the LKA system. For RR1, LeftLaOff
and RigLaOff are the distances between the left and right
wheels and the left and right lanes, respectively. SafeLa is the
safe lateral distance, and StAng is the wheel steering angle
adjusted by LKA. Then we use the MightyL tool to translate
the requirements described by STL into the time automata in
UPPAAL as described in Section III-D.

Next, we translate the Simulink model of the LKA system
into UPPAAL. The hierarchical Simulink model for the LKA
system consists of 516 blocks, in which only 216 nonvirtual
blocks such as Gain, Logical Operator, and Relational Op-
erator are considered in the conversion. The remaining 300
virtual blocks that define the model’s structure are removed
during the translating, such as InPort, OutPort, BusCreator,
BusSelector, and Terminator. We divide the LKA model into
five subsystems and finally obtain a time automata network in
UPPAAL using the translation method of Section III-B and
Section III-C.

TABLE II
PROPERTY LIST AND RESULTS OF VERIFICATION FOR LKA MODEL

RQ Temporal Logics Result

WR1
♦((LSensor > 0→ ♦[0,3]DeparDet > 0)
∧((Enable > 0 ∧DeparDet > 0)→
♦[0,2]Status > 0))

true

LR1
�((LeftLaOff < SafeLa ∨RigLaOff <
SafeLa)→ ♦[0,100](StAng − 0.5 ≤ 0))

true

d) Verification: After the Simulink model and STL re-
quirements are translated into timed automata, we perform
the verification using UPPAAL. Generally, UPPAAL declares
the properties to be verified in the ‘.q’ file, which essentially
states a timed word that leads both the model and the property
timed automata to accepting locations. So after the translation,
our framework also generates a ‘.q’ file, which describes the
accepting locations of “model automata” and “requirement
automata”. When UPPAAL verifies this .q file and returns
satisfied, it means that the model meets the requirement. In
Table II we provide verification results for requirements WR1
and RR1. Based on the physical limitations of the car, the
steering angle is constrained to the range [−0.5, 0.5] rad/s.
So for the requirement RR1, in addition to verifying whether
the LKA system meets the necessary standards, we also verify
the safety limits of the LKA system by adjusting SafeLa.
Table III presents an excerpt of the verification results (see
Appendix A for more information regarding the results).

TABLE III
VERIFICATION RESULTS OF SAFE LIMITS FOR LKA MODEL

SafeLa Distance (m) Result SafeLa Distance (m) Result
0.75 true 0.67 true
0.50 true 0.37 true
0.25 false 0.35 false

TABLE IV
COMPARISON OF EXPERIMENTAL RESULTS

The Model Number of Blocks Number of Automata Time
DT 7 3 1.05s

LKA 216 14 28.30s

We compare the experimental results of the two models and
show the results in Table IV. Although the number of blocks
in the LKA model is much greater than the number of blocks
in the DT model, the number of automata after the LKA model
translation does not increase by multiples. The result shows
the practical feasibility of our verification framework.

At present, the translation time is mainly spent on gen-
erating the functions corresponding to the blocks. Because
execution semantics of Simulink are described in informal
natural languages based on examples, we have not formally
proven the equivalence of the translation. We currently acquire
correctness by carefully compare simulation results of the
translated model, including the value and state sequence step
by step.

V. RELATED WORK

There are some works on the formal analysis and verifica-
tion of Simulink models in related industries and academia.
Commercial tools like SCADE design verifier [12], Embedded
Validator [11] support formal verification of Simulink models
against safety properties and deal with mainly blocks from
the discrete library. Nejati et al. [15] present an industrial
Simulink model benchmark, and prove the effect of applying
model checking to identify requirements violations in the
benchmark models. Bartocci et al. [14] propose a procedure
to debug Simulink models for locating the fault, and they
use STL specifications. Another research [13] apply the STL
quantitative semantics, and generate a monitor to check the
properties of the Simulink model at run-time. There are also
some works to translate the Simulink model into the existing
tools for verification. In [16], the Simulink model is translated
into NuSMV for verification. And [17] provides a tool that
translating the Simulink model into UPPAAL SMC.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a comprehensive framework to
verify whether the Simulink model meets the requirements
automatically. In order to cover some necessary real-time
properties, we use Signal Temporal Logic to describe the
requirements. The STL requirements are translated into timed
automata by MightyL, and the Simulink model is also trans-
lated into timed automata using the formal method. Compared
to the existing work, our framework is more complete and
scalable and can fully automatically verify the Simulink
model without running the Simulink model. Further, our

translation and verification process are all based on rig-
orous formal methods. The ongoing works mainly focus on
the following aspects: (1) Establish a simulation relationship
between the execution semantics of the Simulink model and
the execution semantics of the UPPAAL time automata to
prove the correctness of the translation. (2) Extend the current
translation scheme to support verification of blocks containing
machine learning components in addition to basic blocks. (3)
Design a new method to translate STL formulas into UPPAAL
time automata directly.

ACKNOWLEDGMENT

This work is partially supported by NKRDP (No.
2019YFB2102602) and NSFC (No. 61772347).

REFERENCES

[1] J. B. Dabney and T. L Harman, “Mastering Simulink,” Pearson/Prentice
Hall, 2004.

[2] G. Hamon, et al., “Simulink design verifier-applying automated formal
methods to simulink and stateflow,” in Third Workshop on Automated
Formal Methods, 2008, pp. 1–2.

[3] J. Yang, J. Bauman, and A. Beydoun, “Requirement analysis and
development using MATLAB models,” SAE Int. J. Passeng. Cars –
Electron. Electr. Syst, vol. 2, pp. 430–437, January 2009.

[4] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in FORMATS/FTRTFT, 2004, pp. 152–166.

[5] T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege, “Timed-
automata-based verification of MITL over signals,” in 24th International
Symposium on Temporal Representation and Reasoning, 2017, pp. 7:1–
7:19.

[6] T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege, “MightyL: a
compositional translation from MITL to timed automata,” in Interna-
tional Conference on Computer Aided Verification, 2017, pp. 421–440.

[7] J. Bengtsson, K. Larsen, F. Lsrsson, P. Pettersson and W. Yi, “UP-
PAAL—a tool suite for automatic verification of real-time systems,”
in International hybrid systems workshop, 1995, pp. 232–243.

[8] R. Alur, “Timed automata,” in Computer Aided Verification, 1999, pp.
8-22.

[9] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” Acm Sigplan Notices, vol. 47, no. 6,
pp. 193–204, June 2012.

[10] ISO 11270:2014(en), “Intelligent transport systems — Lane keeping
assistance systems (LKAS) — Performance requirements and test pro-
cedures,” International Organization for Standardization, 2014.

[11] Embedded Validator web page: http://www.dspaceinc.com/ww/en/inc/ho
me/products/sw/pcgs/automatic model validation.cfm.

[12] J.L. Camus and B. Dion, “Efficient development of airborne software
with scade-suite,” Esterel Technologies, vol. 62, 2003.

[13] A. Balsini, M. DiNatale, M. Celia, and V. Tsachouridis, “Generation of
Simulink monitors for control applications from formal requirements,”
in 2017 12th IEEE International Symposium on Industrial Embedded
Systems (SIES), IEEE, 2017, pp. 1–9.

[14] E. Bartocci, T. Ferrère, N. Manjunath, and D. Ničković, “Localizing
faults in Simulink/Stateflow models with STL,” in Proceedings of the
21st International Conference on Hybrid Systems: Computation and
Control, CPSWEEK, 2018, pp. 197–206.

[15] S. Nejati, et al., “Evaluating model testing and model checking for
finding requirements violations in Simulink models,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, ACM, 2019, pp. 1015–1025.

[16] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating simulink
models into input language of a model checker,” In International
Conference on Formal Engineering Methods, Springer, 2006, pp. 606–
620.

[17] P. Filipovikj, et al, “Simulink to UPPAAL statistical model checker:
analyzing automotive industrial systems,” in International Symposium
on Formal Methods, Springer, 2016, pp. 748–756.

[18] Lane Keeping Assist System web page: https://ww2.mathworks.cn/help/
mpc/ug/lane-keeping-assist-with-lane-detection.html

APPENDIX

A. Verification Results of Safe Limits for LKA model details

Fig. 5. Simulation driving of the vehicle within safety limits (SafeLa = 1m)

Fig. 6. Simulation driving of the vehicle exceeding safety limits (SafeLa =
0.25m)

In requirement RR1, the safe lateral distance SafeLa is set
to 1m, and the LKA model pass the verification according to
our method. After setting the road environment in Simulink,
we also simulate the LKA model, and the simulation result is
shown in Fig. 5. The red curve shows that the LKA system
can keep the vehicle traveling along the centerline of its lane.
The simulation result is consistent with our verification result
for RR1 in Table II.

In order to ensure the safety of the system, it is also crucial
to explore the safety limits of the LKA. So we verify RR1
again after adjusting the safe lateral distance SafeLa in the
same environment. It can be seen from the results in Table
III that when SafeLa ≤ 0.35m, the requirement RR1 is not
satisfied. That means the LKA cannot keep the vehicle in the
lane. Taking SafeLa = 0.25m as an example, we simulate

the LKA model under the same road environment, and the
simulation result is shown in Fig. 6. Obviously, the vehicle
deviates from the lane on the same road segment. Based on the
physical limitations of the car, the steering angle is constrained
to the range [−0.5, 0.5] rad/s. When SafeLa ≤ 0.35m, the
vehicle cannot adjust the direction in time due to the physical
limitation on the bend and finally deviates from the lane if
the vehicle is very close to the lane. The simulation result
indicates that our verification method can detect the error of
the Simulink model.

These two simulation results show the effectiveness of our
verification method.

