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Abstract. Handball is a highly dynamic and complex team sport, char-
acterized by continuous player interactions, rapid transitions between
attack and defense, and frequent decision-making under pressure. These
factors create significant challenges for formal tactical modeling and per-
formance analysis, as highlighted in previous systematic reviews of match
analysis and action sequence complexity in handball. Unlike more dis-
cretized sports like baseball or even football, handball’s fluidity demands
advanced methods to capture and simulate strategic behaviors effectively.
This study investigates a novel approach for analyzing handball tactical
sequences by applying Probabilistic Model Checking (PMC) to model
player actions, decisions, and outcomes. Using Markov Decision Pro-
cesses (MDPs) and the Process Analysis Toolkit (PAT), we construct
probabilistic simulations of handball attacks to evaluate how incremen-

tal improvements in player performance — such as passing accuracy,
shooting effectiveness, or decision timing — impact overall team success
rates.
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1 Introduction

Handball (also known as European Handball and Team Handball) [16] has been
an Olympic sport since 1972 and is estimated to be played by 30 million players
by the International Handball Federation [8] and as such is considered to be
one of the most popular team sports in the world. Handball action sequences
have been studied by Tilp and others [22], [20], [21]. Action sequences are com-
binations of actions performed by players or teams during offensive or defensive
phases of the game. Action sequences are influenced by tactical and situational
variables such as the type of defence, the score difference, the game period, and
the quality of the opponent. A systematic review of Handball Match Analysis
was performed by Ferrari et al in 2019 [4].

This paper considers the use of model-checking technology (widely used in
the analysis of mission critical systems) to take a probabilistic model (a Markov
Decision Process) of handball play to calculate the probability of scoring. Model-
checking technology can also be used for witness and counter-example generation
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to generate example action sequences for inspection. A Markov decision process
(MDP) is a mathematical model for sequential decision-making under uncer-
tainty. It consists of a set of states, a set of actions, and transition probabilities
that depend on the current state and action. MDPs have been used to model
and solve control problems for stochastic systems, such as robotics, planning,
reinforcement learning, and so on. They have also been applied to model sports
action sequences, such as possessions in football, baseball, tennis, and other
sports where the goal is to measure the contribution of each action to the final
outcome.

Our intended use of the model is to investigate the possible benefits of mak-
ing incremental marginal improvements to the decision making and performance
characteristics of the team players (through targetted training activities). We fol-
low the approach of using MDP to model decisions and performance described
in [13] and [9]. Building on initial work with a junior women’s team preparing
for a minor tournament, we have now expanded the model’s validation by in-
tegrating datasets from matches played by two EHF Champions League teams
(one male, one female) and a female Youth World Championship team. This
expanded dataset allows comparison of tactical modeling across different age
groups, genders, and performance levels, offering new insights into how decision-
making patterns evolve with skill and experience.

The broader goal of the project is to develop methods that leverage machine
learning and formal probabilistic modeling to help coaches identify strengths and
weaknesses in both their own teams and their opponents. By simulating various
tactical scenarios and player combinations, coaches can make informed deci-
sions to maximize efficiency, adapt training activities, and increase the team’s
winning probability. Furthermore, the framework moves toward analyzing and
understanding player decision-making processes — a major frontier in sports an-
alytics — by making action sequences and tactical options explicitly visible and
quantifiable. Our findings demonstrate that Probabilistic Model Checking of-
fers a highly transparent, explainable alternative to conventional machine learn-
ing models. It enables simulation-driven strategy development without requiring
massive datasets, making it practical even for teams with limited analytical re-
sources. Future work will aim to incorporate dynamic defensive adjustments, ex-
pand the model’s action space, and integrate automated video analysis pipelines
to enable large-scale deployment.

2 Related Work in Decision Making in Handball

Decision-making in handball operates at the intersection of rapid perception,
tactical cognition, and high-stakes interaction, presenting unique challenges for
formal modeling. Unlike other team sports with broader spatial-temporal mar-
gins, handball compresses cognitive demands into milliseconds, requiring play-
ers to anticipate, decide, and act in dynamically shifting contexts [1,6]. Defen-
sive decisions, in particular, rely heavily on the real-time coupling between out-
field defenders and goalkeepers, who must interpret subtle kinematic cues (e.g.,
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shoulder tilt, arm movement) to predict shot direction and intent before execu-
tion [5,11]. These decision sequences are rarely isolated—they emerge from fluid,
adaptive interplay between contextual variables such as game score, fatigue, and
opponent tendencies [15,19]. While machine learning models can effectively cap-
ture structured game behavior and probabilistic state transitions (e.g., pass net-
works, spatial densities), the modeling of internal decision-making processes is
hindered by a lack of labeled perceptual-cognitive data and ground truth for "in-
tent" [3,12]. Therefore, we defer the modeling of decision-making components
until more granular multimodal datasets—such as eye-tracking, biomechanical
markers, and real-time emotional state indicators—become available. In addition
to the work on decision-making in handball, there is a large body of work on
the application of machine learning to handball. Ichimura et al. [7] have applied
machine learning to the prediction of handball player performance. Mizuno et
al. [18] have applied random forest to the prediction of handball player perfor-
mance. Marczinka et al. [17] consider technical elements in defence focusing on
the differences between positions and genders.

3 PCSP+# language overview

To model the handball play, we use the modelling language Probabilistic Com-
municating Sequential Programs (PCSP#) [14] and the Process Analysis Toolkit
(PAT) [24] as the model checker. Given a model of the desired system expressed
in PCSP+#and its desired properties, PAT will automatically and exhaustively
search all possible cases to verify if the system satisfies the desired property.
When given a model which includes probabilistic choice and a probabilistic
reachability property, PAT will calculate the probability of reaching the de-
sired states [23]. A system is modelled using a set of variables and processes. A
variable is usually an integer or an enumerable type within a certain range to
ensure the number of states is countable and finite. When any of the variables
is assigned a different value, the system is considered to have transited into a
different state. More information on the use of model checkers and the algo-
rithms used may be found in [14] and the references above. Another widely used
alternative model-checking tool for probabilistic system is Prism [10]. We now
introduce the relevant aspects of the modelling language via a handball example.

4 Basic model of a Handball Attack

Handball is played on a 20 x 40m court with 2 x 3m goals at both ends. Around
each goal is a 6m line, in a D-shape marking the goal area (which is inclusive
of the line). There is also a 9m dashed line which simply signifies the distance
of 3m required for free throws, and a 7m mark used for taking penalties. See
Figure 2. There are normally 7 players on court for each side, made up by 6 field
players and 1 goal keeper. There are also several substitutes for each side with
substitution over the side-line occurring any time and allowed multiple times
per player. Only the goalkeeper is allowed to play in the goal area. Field players
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cannot play the ball while standing in the goal area, or gain advantage by moving
through the goal area. Shots on goal must be taken from outside the goal area
or while in the air over the goal area before touching down. Similarly defenders
may not defend from inside the goal area. As for other invasion games, the usual
modes of attack are fast breaks (in the case that the defence is disorganised) or
attacks on an organised zone defence around the goal area. The attacking players
are usually organised in a D-shape around the defence and the usual positions
are labelled accordingly: left wing, left back, centre back, right back, right wing
and lastly the line player or pivot who plays in the middle, among the defence
on the goal area line.

A very simple model of a handball attack
around the goal area (or ‘D’) is now provided
for further introduction to the modelling lan-
guage. We model the progress of the attack
by the location of the players and ball relative
to 14 zones. Zones 1 to 5 represent sequen-
tial positions around the goal area line from
left-wing to right-wing, zones 6, 7, and 8 rep-
resent 3 back positions between the goal line
and the 9-metre line, for left back, centre back
and right back respectively, and zones 9, 10,
and 11 represent three back positions behind
the 9-metre line. Finally, zone 0 is inside the
goal and represents scoring a goal. Zone 12 is
used to represent an attacking position behind
the backs to the half-way line from where it is
very difficult to score by a direct shot on goal.
Zone 13 represents the other half of the court,
which from the point of view of the attacking
team represents the defensive zone. Zone 14
is used to represent states where the attack-
ing team loses the ball (causing a turn-over)
by the ball being played outside of the play-
ing court or missing a shot, or the ball being
intercepted by the defence (including the goal
keeper by a save), or otherwise being turned Eig. 1. Handball court with posi-
over because of an attacking foul or other rea- tions marked
son. We use a single variable called ball to
represent the zone occupied by the ball. The
location of the players (in the order LW LB CB RB RW PV) is captured in
the array variable aloc. For example, aloc = [1,6,7,8,5,3] models the normal
positions occupied by the attacking players when facing a 6-0 defence where the
defensive players are lined up around the goal area and ball = 7 represents it
being held by the centre back, given the attacking team is in possession of the
ball.
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We model the defence positions d1 to d5 representing the five zones around
the goal area and the variable gap to capture whether there is gap in one of
those zones. For example, gap[d1l] == 1 represents a gap in zone 1. Note this
model is adequate for a simple 6-0 defence but will need development for more
complex defence arrangements. (See Section 7.2)

Finally, we keep track of the number of passes in the attack with the variable
pass. This is due to the rules regarding passive play where the referees may force
a turnover if it appears that the attacking team is not consistently attacking the
goal. This call is made by the referees based on their read of the play, but as
a general rule the number of passes in an attack is less than 15 [25]. We define
a constant mazxpass to represent this. The predicate inplay describes the states
where the ball remains in play. Predicates are logical expressions involving the
model variables and may be used in conditional expressions in the model. In this
case inplay is true if the ball is not in the goal (ball != 0) or not lost/turned over
(ball '=14), and that the referee has not called passive play (pass < mazpass).

Given the above very simple model of the state, we model the attacking
play by describing each player as a process. The CB process below models the
probabilistic choice of gameplay decisions made by the centre back faced with
specific situations. The first line models the condition that the centre back may
only play the ball if it is inplay. This is expressed as a conditional process if
(cond) { P } else { Q } that behaves as P if the condition cond holds or
otherwise behaves as @. In this case @ is the special process Skip which just
terminates because the ball is not in play.

CB = if (inplay) { case { aloc[cb] == T && gap[d3] == 0 : pcase {
30 : c¢b_lb — short_ pass(cb, Ib); LB

30 : ¢b_rb — short_ pass(cb, rb); RB

10 : cb_pv — pivot_ pass(cb, pv); PV

10 : c¢b_lw — long_ pass(cb, lw); LW

10 : ¢b_rw — long_ pass(cb, rw); RW

5 : ¢b-ml0 — move_ wball(ch, 10); CB

5 : c¢b_ shot — shot(cb)

} default : undef — Skip

1} else {Skip};

The situation described by this process is that the centre back occupies loca-
tion 7 on the field and there is no gap in defensive position d3 directly in front
of them (gap[d3] == 0). We only describe one situation, but in general many
situations may be described where each situation is captured as a branch of a
case process. In general the case process is written case { by : Py by : Py ...
default : Py } where the combined case process behaves as a subprocess P; if
the associated condition b; holds. The conditions are evaluated one by one until
a true one is found and if no conditions hold, the case process behaves as the
default P;. In this basic situation we have estimated a probability of 30% that
the CB passes the ball to the left back (LB), a 30% probability that they pass
the ball to the right back (RB), and so on, with a 5% chance of shooting. This is
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modelled by a probabilistic choice pcase { p1 : Py p2 : Pa ... p,, : P, } where the
probabilities (p;) are normalised to sum up to 1. Each branch of the probabilistic
process (P;) in the above example identifies events (e.g., ¢b_Ib, cb_rb); an action
to be executed; and then the next player taking control of the ball (and the
overall attack process). For example, the process description states that there
is a 10% chance of passing to the pivot, which is modelled by the event cb_pv
followed by an action pivot_pass from the centre back to the pivot, and then if
the pass is successful, the PV process takes over. The PV process models what
happens when the ball is received by the pivot. The probabilities related to the
pivot actions are different to the centre back. That is, in the situation where the
pivot receives that ball on the line and there is a gap at that defensive position,
then the pivot will almost certainly shoot and a very small percentage of the
time they may do something else such as pass the ball to the centre back.

PV = if (inplay) { case { loc[pv] == && gap[d3]==1:
pease {

99 : puv_ shot — shot(pv)

1 : pv_cb — short_ pass(pv,cb); CB

}
+} else {Skip};

Other player positions are described similarly. Decisions are dependent on
the court situation: player position, ball position, defence position, and whether
the attacker has an unhindered path to the goal line to shoot. They may also
depend on the performance of defence (e.g., the goal keeper may be particularly
good at saving goals from the wing making the winger less likely to take a shot
from zones 1 or 5).

5 Player performance

We capture the performance of the players with arrays recording the probability
that a short pass, long pass, or pass to the pivot succeeds (there are N players).
This success rate is calculated based on statistics gathered in matches and scaled
against elite player performance [25]. Values are elided for formatting purposes.

var short_pass_succ[N] = [98,...,98];
var long_pass_succ[N] = [85,...,84];
var pivot_pass_succ[N] = [60,...,50];

Process short_pass(pl, p) below models the success of passing a ball from
player pl to receiver rp. If the pass is successful (event spass.pl.rp), then the ball
goes to the location of the receiving player and the number of passes increments
by 1. If the pass fails (event to.pl), then the ball goes to location 14 representing
a turn over. The probability of failure is 100 minus the probability of success.
Processes long_pass and pivot_pass are defined similarly and are not shown in
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this paper.

short_pass(pl, rp) = pcase {
short_pass_ succ[pos[pl]] : spass.pl.rp {ball = loc[rp]; pass++} — Skip
100 — short_pass_succlpos[pl]] : to.pl {ball = zout} — Skip};

The effectiveness of a shot is captured in a similar way for each player and
each shooting position in the array variable shot_effect. Values are elided for
formatting purposes. The effect of the shot, if successful (event goal), is repre-
sented by setting the ball location to 0 Otherwise the event miss is represented
by setting the ball location to zone 14.

shot(n) = pcase {
shot_effect[ball — 1][pos[n]] : goal{ball = 0} — Skip
100 — shot_effect[ball — 1][pos[n]] : miss{ball = zout} — Skip };

6 Model Simulation

The handball model is simulated by providing an assertion to be checked and
application of the PAT model checker. Assuming that an attack starts with
the centre back, we define the process Play as CB. We define the proposition
scoregoal as the state where the goal variable is equal to 0. The assertion to be
checked is then defined as follows.

Play = CB;
#define scoregoal ball == 0;
ftassert Play reaches scoregoal with prob;

When executed, PAT returns the probability that the assertion is valid with
minimum and maximum values. E.g. [0,0.4832]. A minimum probability of 0
represents the fact that it is possible that the play fails to score.

Another useful aspect of model checking is the generation of witness se-
quences and counter examples. Consider the following reachability assertion:

f#assert Play reaches scoregoal;

PAT returns that the assertion is valid and provides the following trace (with
some simplifications) as a witness.

<init — [if (inplay)] — [(loc[cb] == T)] — [(gap[d3] == 1)] —
0.5 — cb_shot — 0.4 — goal >

The above example illustrates some of the basic concepts used in the model
of the handball attack. However, there are many limitations to the model and
we progressively deal with these in the following sections.
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7 Extensions

In our previous work [26], we focused on modeling simple attacks such as fast
breaks. The current paper extends this by considering more complex attack pat-
terns and basic defensive structures. The attack patterns analyzed are derived
from matches in the EHF Champions League and Youth World Championship,
while the defensive modeling is based on observations from the EHF Cham-
pions League. Importantly, the model framework we have developed is readily
extensible to incorporate additional attack and defence patterns of increasing
complexity.

7.1 Attack

We extend the model by incorporating several additional attack patterns: the
simple cross, the empty cross /"Jugo" style attack, the second pivot attack pat-
tern, and pivot crossing movements. These represent common tactical variations
seen in high-level handball matches (see [7] for more details on common tactical
variations in handball). The attack patterns are introduced into the model by
encoding the behaviour as in PCSP#. We have modified the process descrip-
tion for Center Back behaviour for the CB when they are in zone 10 as follows.
First it is checked that the CB, pivot and left and right backs are in the correct
positions. That is, the CB is in zone 10, the pivot is in zone 4, the left back is
in zone 9 and the right back is in zone 11. The process then encodes the deci-
sion to initiate the different styles of attacks with probabilities derived from the
frequencies observed in the EHF Champions League.

The event pvzr encodes the decision to initiate the pivot cross. Assumming
it starts 17% of the time (embedded in a pcase) it starts by the pivot moving
to zone 10 followed by the CB passing to the pivot. Note that this represents
movement of the pivot without the ball. In practice, the pivot usually actually
starts moving prior to CB receiving the ball, anticipating the pass from the
LB, and the pivot is in zone 10 when the CB receives the ball. However we
have simplified the process for the purpose of this explanation. The process then
evolves the the PVXR process which is described further below. Similarly, if
the empty cross on the left (or Jugo left) (cbexl) is chosen then the CB moves
to zone 11 and passes to the LB. The process then evolves the the CBEXL
process which is also described further below. The CB10 process also includes
the CBEXR process which is the same as CBEXL but with the CB moving to
zone 9 and passing to the RB, as well as other possible passes, movements and
shots as described earlier for basic model.

CB10 = [aloc[cb] == 210 && ball == z10]
gap[d3] == 0 && aloc[pv] == 24 && aloc[lb] == 29
&& aloc[rb] == 211 : pease {

17: pvzr — move(pv, 210); cb_ pv — short_pass(cb, pv); PVXR
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The PVXR process is then defined as follows. First the state is checked to
see if the ball is in play. This checks that the previous pass was successful and
did not result in a turn over due to a bad pass or other attacker error. (Note
this is very unlikely, however it is a possibility must be accounted for). Next, we
implement the role switch between the cb and the rb. This represents that the
CB role is now being played by player who was previously the RB. By describing
the process in terms of roles we are able to reuse the same process decriptions
for the CB and the RB without having to wirte player-specific processes. This is
done by calling the switch process with the cb and rb roles as arguments. This
is followed by the new ¢b moving to zone 10 (completing the empty cross) and
evolves into the PVL10 process.

PVXR = if(inplay) {sw.cb.rb{call(switch, cb, rb)}
— ¢bm10 — move(ch, 210) ; PVL10};

The switch function is defined as follows. It simply swaps the players in the
two roles.

#define switch(pl, rv) {var t = pos[pl]; pos[pl] = pos[rv]; pos[rv] = t};

The PVL10 process is defined similarly to PV in the basic model, but with
the pivot being in zone 10 and Pivot moving to the left back b with the ball. In
this case it is mostly likley that the pivot will pass to the LB but the description
allows for other options such as when there is an open shooting opportunity
or the PV decides to pass it elsewhere. (Note, there is obviously a number of
possible other variation, but we have only modelled those observed in practice.)

The CBEXL (Jugo to the left) process is defined similarly to the Pivot cross
process. As part of the initiation desribed above in CB10, the centerback moves
with the ball to zone 11. This is continued in CBEXL which after checking that
this has not resulted in a turn over due to an attacker error, the ball is passed
to the LB (this is a long pass given that the CB is in zone 11), switches roles
with the rightback rb, the new CB moves into zone 10, and evolves into the LB
process, noting that the LB has the ball.

CBEXL = if (inplay) {long_ pass(cb, Ib);
sw.cb.rb{call(switch, cb, rb)} — cbm10
— move(ch,210) ; LB};

A slightly different move is the 2nd pivot attack pattern. This starts similalry
to the pivot cross but instead of pivot, the wing (left wing in this case) moves
out to zone 10 and the CB passes the ball to the LW the LW passes to the RB
while the CB executes an empty cross with the LB (switching roles.

LW2PV = if(inplay) {sw.cb.lb{call(switch, cb,1b)}
— ¢bml0 — move(ch, 210) ; LWR10};

What is different here is that the LW changes into a second pivot and moves
to zone 4. That is, there is a change of role for that player from a wing role
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to a second pivot (PV2) role. This is encoded in the following event sequence.
Following the LW passing to the RB, the LW transforms to the 2nd pivot role
and moves to zone 4. The process then evolves into the RB process as the RB
now has the ball.

lw_rb — short_ pass(lw,rb) ; tr.lw.pv2 {call(trans, lw, pv2)} —
pv2md — move(pv2, z4); RB

The trans function transforms the player at role pl to the role rv as well as
their location. The first role (left wing in this case) is no longer being used so
we set the role to pnull and the player’s location to zout (out of play).

#define trans(pl, rv) {pos[rv] = pos[pl]; pos[pl] = pnull;
aloc[rv] = aloc[pl]; aloc[pl] = zout};

7.2 Defence

In this section, we extend the model to include defensive formations and behav-
iors. Specifically, we incorporate two common defensive systems: the 6-0 defense
(where all defenders are positioned along the 6-meter line) and the 5-1 defense
(with five players on the 6-meter line and one advanced defender).

6-0 Defence The 6-0 defence is modeled using a simplified representation fo-
cused on defensive gaps rather than explicit defender positions. We consider six
potential gaps in the defensive formation: five gaps around the goal area (D) and
one gap in front for the 5-1 formation. Each gap is represented as a binary state
(0 or 1) where 1 indicates the presence of a defensive gap.

The five gaps around the goal area are po-
sitioned as follows:

— d1: A gap on the left wing, occurring when
either the wing defender is out of position
or the adjacent defender fails to provide
coverage

— d2: A gap on the left side, arising when the
second defender is displaced and neither
the first nor third defender compensates

— d3: A gap in the center, representing a sig-
nificant area where the middle defenders
have failed to maintain their formation Fig. 2. Handball court with posi-

— d4: A gap on the right side, following sim- tions marked
ilar principles to d2

— d5: A gap on the right wing, analogous to
d1

Additionally, d6 represents a gap at zones 7 and 10, which would allow the
center back to attempt shots from these positions. This abstraction captures a
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key defensive principle: the defence typically only exposes gaps on the side oppo-
site to the ball’s location. However, when defenders step out to challenge shots
from the backs, gaps may emerge if other defenders fail to adjust their coverage
appropriately. The probabilities for gap formation can be calibrated using em-
pirical data collected from different variations of the 6-0 defense (designated as
6-0A, 6-0B, and 6-0C), combined with tactical analysis of defensive behavior.

var gap[6] = [0,0,0,0,0,0];

The function CloseGap models a simplified version of a sliding 6-0 defence
with four possible outcomes with the following probabilities:

— 0.1: The defence closes all gaps.

— 0.5: The defence closes a gap in front of the player and leaves a gap on the
furthest wing.

— 0.2: The defence opens a gap in front of the player and closes a gap on the
furthest wing.

— 0.2: The defence opens a gap in front of the player and leaves a gap on the
furthest wing.

CloseGap(z) = pcase {
[0.1] : gca.z {resgapb} — DEFG60

[0.5] : gewo.x {resgapb; call(wgap,z)} — DEFG60
[0.2] : go.z {resgapb; gapladmapl|aloc|z]]] = 1} — DEF60
[0.2] : gowo.x {resgapb; call(wgap,z) — DEF60 };

Defence Process The defense is implemented as a separate process that in-
teracts with the attacking processes through defined communication channels.
These channels facilitate the exchange of information about player movements,
and passing actions. The defensive process takes inputs from the attacking pro-
cesses, produces appropriate responses through its outputs, and is composed
with the attacking processes to create the complete game model.

Channels are a PCSP# feature that allows processes to communicate with
each other. We use channels of length 0 to indicate that the communication is
synchronous, as illustrated by the following.

channel spass 0;

Channels are defined for passing and movement events.

We synchronize the defence actions with the events modelling the perfor-
mance of an action rather than the event describing the decision to perform the
action. That is, the defence process is triggered by the observation of the action
rather than having read the mind of the attacking player.

Input to the channels is defined using the ! operator. For example, the values
pl and rp are input to the short pass channel spass in the following update of
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the short pass process. The values of pl and rp are composed to form the value
pl.rp which is passed to the defence process via the channel.

short_pass(pl, ™p) = pcase {
short_pass_ succ[pos[pl]] : spass!pl.rp — {ball = aloc[rp]; pass++} — Skip
1000 — short_pass_succ[pos[pl]] : to.pl {ball = zout} — Skip };

The defence procees uses the output of the channel. The value is read form
the channel using the ? operator. In the following example, the value y.z is read
from the short pass channel spass.

This example is for the 6-0 defence. The process DEF60 calls the process
CloseGap with the value z which is the player that received the pass. The
CloseGap process is defined further below.

DEF60 = spass?y.c — CloseGap(z) O
lpass?y.x — CloseGap(x)
ppass?y.x — CloseGap(x)
movb?y.x — CloseGap(y)
mov?y.x — CloseGap(y);

O
O
O

5-1 Defence The 5-1 defence is a simple extention of the same idea. The dif-
ference is that additional defensive zone is added in front of the 6-0 line.

Composition of Attack and Defence The attack and defence processes
are composed using the ||| operator. This is a PCSP# operator that allows
the composition of processes that communicate via channels. The syntax is as
follows.

AD = CB ||| DEF60;

The attack begins with the process CB and evolves as described in the pro-
cess description. The defence process interleaves with the atttack process by
synchronising on the channel events.

8 Application

We have applied the model to the analysis of handball matches from the Euro-
pean Handball Federation (EHF) Champions League and the IHF U-18 World
Championships. The four matches cover sex, age and tier. The European Hand-
ball Federation (EHF) Champions League, established in 1956, is Europe’s pre-
mier club competition in handball, encompassing both men’s and women’s tour-
naments. Hungarian clubs have been prominent in both competitions. Telekom
Veszprém HC has reached the men’s final four times, each time finishing as
runner-up, while MOL-Pick Szeged is the reigning Hungarian Cup holder. In
women’s handball, Gyéri Audi ETO KC dominates with six Champions League
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trophies, and FTC-Rail Cargo Hungaria, current Hungarian champions and cup
winners, have also achieved runner-up status in the competition. These high-
stakes encounters not only fuel intense rivalries but also provide valuable data
for analyzing tactical sequences and player decision-making.

Event logging Two analysts watched match in a media-player displaying and
entered every attacking episode into spreadsheets. Each atomic or combination
event was logged with time, zone and outcome.

Atomic — Ball control: receive, dribble, pick-up, fake-shot, fake-pass;
actions (28) — Passes: parallel, cross/X-over, long diagonal, return, pivot
feed, bounce, wing;
— Shots: wing, back-court, pivot, 6 m breakthrough, fast-break,
lob, jump, standing;
— Defence/keeper: block, steal /intercept, goalkeeper save, foul
earned, 7m earned;
— Outcomes: goal, miss, turnover, ball-out.
Multi-action — Wing-Yugo, Yugo, Pivot cross, PvSlide, Rb/Lb -Pv 2-2,
combina- Lw/Rw -Rover, Cb-Rb/LbX, RunP, LongP, RetP, PvBlock,
tions (18) Lw/Rw 2ndPv, Ten Pv- Lw/RwX

We also recorded the occurences of passing and movement events and shooting
locations and success rates. The results are provided in the appendix.

Probabilistic verification The data was hand-coded into the PCSP# model
and simulated in the Process Analysis Toolkit (PAT). Four reachability queries
were run for every team similar to the following examples. The first example
is the probability of eventually scoring. The second example is the probability
of eventually scoring given that the attack is a pivot cross (left or right). Due
to the size of the model, the reachability queries were run to maximum depth
of 5 passes. This is not considered a significant limitation due the fact that the
number passes that actually impact the outcome of an attack is often less than
5.

#assert AD reaches scoregoal with prob;
#assert AD = F(pval || pvzr) && X F(scoregoal) with prob;

Results Table 1 shows the results of the matches with the fast breaks excluded
and a summary of the predicted number of goals and success rate. We have
excluded the fast breaks from the analysis as they are not currently part of the
model. (Note we covered gast breaks in the earlier paper.)

The maximum probability of the complex combinations are presented in Ta-
ble 2.
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Table 1. Analysis results (A = Actual, P = Predicted)

Tier| Competition [Sex|A (attacks/goals/success%)|P (goals/success%)

T1 |EHF Champions| ¢ Szeged.A (46/23/50) (19/42)
League Veszprém.A (57/22/39) (26/45)

T1 |EHF Champions| & Szeged.B (63/32/52) (21/33)
League Veszprém.B (52/39/59) (17/33)

T2 |EHF Champions| ¢ | Gy6ri ETO (40/21/53) (16,/40)
League FTC (39/15/38.5) (15/38)

T4| IHF U-18 | ¢ | Netherlands (46/17/37.0) (12/26)
Worlds China (42/8/19.0) (11/26)

Table 2. Success Rates by Play Pattern and Team (A = Actual, P = Predicted)

Play SzA | VeB| Ch | Ne |FTC|ETO| SzB | VeB

A/P/A|P/A/P|A|/PA|P|A|P|A|P|A|P
P2 |73|40|33(24|50({19| - |- |- |- |- |- |80 |27|100(33
PX |43|75| 0 (26]20|21]60|20|50|29| - | - |100{38|100|35
EX |- |-129|20] - | - [33]20|20]29|38|34| 50 |22| 37 |27
X 160(22|57(19] 0 |23]40|20|50|30|75(30| 80 |26| 60 |29

8.1 Discussion

Key findings Across four elite and youth matches the probabilistic model
correctly identified the winning team in two cases and produced a mean absolute
error of 6.8 percentage points in goal-probability prediction.

Interpreting discrepancies The youth mismatch (Netherlands vs China) ex-
poses two boundaries of the current framework. First, player-level parameters
were calibrated on senior data; youth error rates in passing and shooting are
higher and more variable, amplifying divergence. Second, the model assumes
a standard 6-0 or 5-1 defensive structure with fixed gap-closing probabilities.
Video review shows that China defended with a high-pressure 6-0 variant (6-
0C), stepping aggressively into first-line gaps and contesting most passes. Those
pressure cues induce state transitions—especially forced turnovers—outside the
calibrated range, inflating forecast error. These observations confirm that model
fidelity may depend less on sample size than on defensive intensity and style
representativeness.

The 2nd (EHF Champions League) match between Szeged and Veszprem
predicts the opposite outcome to the actual result (Szeged 32, Veszprem 39).
This is due to the fact that the model does not cover fast breaks. In this par-
ticular match, Szeged suffered an extrordinarly high number of turnovers (18)
resulting in 16 fast breaks for Veszprem whereas there were only 2 fast break for
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Szeged from 7 Veszprem turnovers. However the model does correctly predict
the outcome of the non-fastbreak play.

The maximum probabilities of the complex combinations are not indicative
of the actual success rate. Further investigation is required to understand the
reasons for this.

Practical value for coaches Despite sparse data, the framework already yields
actionable insights. PAT counter-examples reveal that Szeged’s most profitable
sequence was the Wing-to-Second-Pivot (success = 73 %), yet it accounted for
only 20 % of attacks. Conversely, Veszprem’s Pivot-Cross produced zero goals
in seven attempts; reallocating those possessions to X-cross would have yielded
an estimated +0.9 goals per game. Such diagnostics let coaches target training
time without exhaustive video coding.

Limitations The manual analysis of each game takes significant time and is
error prone, and as such we were only able to analyse a small number of matches.
As such the Data is confined to 6 teams and and only a small number of atomic
labels; rare tactics (e.g., 7 v 6 empty-goal) are absent. Because we did not re-
tain a systematic double-coded sample, we cannot report a formal inter-rater
statistic (e.g., Cohen’s k); quantifying annotation uncertainty is therefore left to
future work. Defensive reactions are currently modelled as static zone gaps; dy-
namic elements such as stepped-out first-line pressure and adaptive goalkeeper
positioning remain abstracted away. The present implementation is also episodic
and ignores fatigue, score effects, and stochastic time-outs. Davis et al [2] discuss
these and other limitations of sports analytics models.

9  Further Work and Conclusion

The details presented above define a framework for the consideration of playing
conditions; description of decision options (as probabilistic choices); and the
description of some performance characteristics such as passing and shooting
(also probabilistic).

While our initial results are promising, there are several key areas for future
development of this work. A primary limitation is the relatively small dataset
currently available for analysis. The model would also benefit from including
goalkeeper success rates to better reflect defensive capabilities. Player fatigue
effects on performance metrics should be considered, as these can significantly
impact game outcomes over time. Additionally, analyzing defensive adjustment
patterns across multiple games would provide insight into tactical adaptations,
especially in the case of superiority or inferiority due to exclusions. The impact of
timeouts and substitutions on attack effectiveness represents another important
avenue of investigation. These extensions would create a more comprehensive
framework for analyzing handball tactics and performance.
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