
Noname manuscript No.
(will be inserted by the editor)

An Isabelle/HOL formalisation of the SPARC instruction set
architecture and the TSO memory model

Zhé Hóu · David Sanan · Alwen Tiu · Yang
Liu · Koh Chuen Hoa · Jin Song Dong

Accepted to publish in the Journal of Automated Reasoning on 6/8/2020.

Keywords Instruction Set Architecture; Form Verification; Isabelle/HOL; Weak
Memory Model; TSO
Abstract The SPARC instruction set architecture (ISA) has been used in various pro-
cessors in workstations, embedded systems, and in mission-critical industries such as
aviation and space engineering. Hence, it is important to provide formal frameworks
that facilitate the verification of hardware and software that run on or interface with
these processors. In this work, we give the first formal model for multi-core SPARC
ISA and Total Store Ordering (TSO) memory model in Isabelle/HOL.

We present two levels of modelling for the ISA: The low-level ISA model, which
is executable, covers many features specific to SPARC processors, such as delayed-
write for control registers, windowed general registers, and more complex memory
access. We have tested our model extensively against a LEON3 simulation board, the
test covers both single-step executions and sequential execution of programs. We also
prove some important properties for our formal model, including a non-interference
property for the LEON3 processor.

The high-level ISA model is an abstraction of the low-level model and it pro-
vides an interface for memory operations in multi-core processors. On top of the

Z. Hóu (Corresponding Author)
Institute for Integrated and Intelligent Systems, Griffith University, Australia
E-mail: z.hou@griffith.edu.au

D. Sanan
School of Computer Science and Engineering, Nanyang Technological University, Singapore

Alwen Tiu
College of Engineering and Computer Science, The Australian National University, Australia

Yang Liu
School of Computer Science and Engineering, Nanyang Technological University, Singapore

Koh Chuen Hoa
Singapore Defence Science Organisation, Singapore

Jin Song Dong
School of Computing, National University of Singapore

2 Zhé Hóu et al.

high-level ISA model, we formalise two TSO memory models: one is an adaptation
of the axiomatic SPARC TSO model [49,51], the other is a new operational TSO
model which is suitable for verifying execution results. We prove that the operational
model is sound and complete with respect to the axiomatic model. Finally, we give
verification examples with two case studies drawn from the SPARCv9 manual.

1 Introduction

Formal models of instruction set architectures (ISAs) not only provide a rigorous
understanding of the semantics for instructions, but also are useful in verifying low-
level programs such as hardware drivers, virtual machines, compilers, etc. Defining
an ISA model in a theorem prover opens up the possibility to reason about properties
and semantics of the ISA and machine code. For an extensively developed application
of an ARMv7 formal model, see Khakpour et al.’s work on verifying non-interference
at the ISA level [29]. There have been various publicly available formal models for
ISAs in the literature, e.g., for ARM6 [17], ARMv7 [20], x86 [46]. However, to the
best of our knowledge, there are no formalisations of SPARC multi-core processors.

The SPARC architecture has many important applications. For instance, SPARC
was commonly used in Sun Oracle station in 2010 when it was acquired by Oracle.
Oracle then launched many SPARC based servers, such as Sun Blade Servers and
Sun Netra Carried-Grade Servers [14]. SPARC is also used in supercomputers. Fu-
jitsu’s K computer [21], ranked NO.1 in TOP500 2011, combined 88,128 SPARC
CPUs. Tianhe-2 [3], ranked NO.1 in TOP500 2014, has a number of components
with SPARC based processors. Most importantly, SPARC is widely used in defense,
aviation systems, and space missions. The European Space Agency (ESA) chose to
use SPARCv8, mainly because SPARC is one of the few fully open ISAs (other than
RISC-V [2] etc.), and has significant support. The ESA then started the LEON project
to develop processors for space projects [15].

Background project. This work is a part of a research project called Securify, which
aims to verify an execution stack ranging from CPU, micro-kernel, libraries to ap-
plications. We use a multi-layer verification approach where we formalise each layer
separately and use a refinement-based approach to show that properties proved at the
top level are preserved at the lower levels. One such property is a non-interference
property between different partitions in a micro-kernel. We have recently completed
a formalisation of the high-level specification of a separation micro-kernel [55], and
the idea is to show that the implementation of such a micro-kernel preserves the non-
interference property, both at the software and the hardware level. As a concrete case
study, we choose to formalise the XtratuM [53] micro-kernel that runs on top of the
multi-core LEON3 processor; these formalisation efforts are still on-going. The ISA
formalisation described in this paper is a key component bridging these two formal-
isations. Our choice of XtratuM and LEON3 is mainly driven by the fact that they
are open source and that our intended applications will be built on these platforms.
Our model can be instantiated to LEON2 and LEON4, we do not use the latter be-
cause its source code is not available. Since our goal is to support the verification

Title Suppressed Due to Excessive Length 3

of XtratuM machine code, we currently focus on formalising the integer unit (IU) of
SPARCv8, which contains all the instructions used in XtratuM. Also derived from the
project requirement is the focus on the total store ordering (TSO) memory model for
multi-core applications, because the XtratuM hypervisor follows the TSO standard.

Low-level ISA model. We present a low-level Isabelle/HOL model for the IU of the
SPARCv8 ISA. Although there are formal models for other ISAs in the literature
(e.g., [17,46]), the difference in architecture and several special features of SPARC
make the adaptation of existing models to our work challenging. For example, the
register model in SPARCv8 is not a flat 32-register model, but instead consists of a
set of overlapping register windows arranged in a circular buffer. There are flags such
as annul that may cause instructions to be skipped [14]. Memory access in SPARCv8
requires an additional parameter, i.e., the address space identifier (ASI), that specifies
whether the processor is in supervisor or user mode, and whether the memory access
is data access. Finally, the write control register instructions may be delayed, thus
we have to devise a mechanism to perform delayed executions. A similar feature
appears in the MIPS architecture, which is modeled in L3 [1]. Our model covers
the following aspects of IU: control registers, system registers, and general registers;
operations on registers (e.g., RDPSR, WRPSR, etc.); a strong consistency memory
model with treatments for address spaces; a simple cache model with write-through
policy; flags such as annul, signals such as execute mode and error mode; and a trap
(exception and interruption) model with all the trap table assignments. We also model
store barrier and flush. Except for hardware signals and interrupts, we have captured
all the details of the IU defined in Appendix C of the SPARCv8 manual [51]. We
also provide a memory management unit (MMU) model to support multi-core micro-
kernel verification. Although our model does not cover the co-processor unit and the
float-point unit, they can be added to our model using the same methodology.

High-level ISA model and TSO model. The low-level ISA model was published at
FM 2016 [28]. This journal paper extends the FM 2016 paper with two components:
a high-level ISA model, which serves as the interface for memory operations, and two
TSO memory models. The high-level ISA model simplifies the low-level ISA model
by focusing on a subset of the operational semantics that are used in multi-core pro-
cessors and memory operations. The semantics of the high-level model considers the
execution of a “block” of instructions at a time, each block corresponds to a mem-
ory operation. The semantics for executing each individual instruction remains the
same as that in the low-level model, thus the soundness at the instruction level is
retained. On top of the abstract ISA model, we give two TSO models: the first one
is a formalisation of the axiomatic SPARC TSO model [49,51]; the second one is
an operational TSO model. The axiomatic SPARC TSO model stands as a reference
for the correctness of the memory model. It can be used to verify the memory oper-
ation order with respect to the program order, but it is difficult to use the axioms to
reason about program executions step by step. For this purpose, we develop the opera-
tional TSO model to reason about program executions. The integration of instruction
semantics and weak memory model is essential to support formal reasoning about
concurrent programs, but this problem is sometimes neglected in the weak memory

4 Zhé Hóu et al.

Fig. 1: An overview of the formalisations in this paper.

literature [48]. We show that the operational TSO model is sound and complete with
respect to the axiomatic model. That is, every execution given by the operational
model conforms with the axioms, and every sequence of memory operations that
conforms with the axioms can be executed by the operational model. Finally, we give
two case studies based on the “Indirection Through Processors” program and spin
lock with CASA, both of which are drawn from the SPARC manual, to exemplify
verifications on the order of memory operations as well as on the result of execution.

An overview of this work is shown in Figure 1.

Contributions. We summarise the main contributions as follows, where we indicate
the parts that were published in FM 2016 by references:

1. We give a low-level ISA model for the integer unit of SPARCv8 ISA [28].
2. The low-level model can be exported to OCaml code for both single step execu-

tion and sequential execution [28].
3. The instruction semantics has been extensively tested against a LEON3 simula-

tion board [28].
4. We show a non-interference property for the LEON3 processor [28].
5. We give a high-level ISA model to interface with the memory model (new).
6. We give two TSO models: an axiomatic model and an operational model (new).
7. We show that the operational TSO model is sound and complete w.r.t the ax-

iomatic TSO model (new).
8. We give two verification case studies of multi-core programs (new).

Instruction coverage summary. The SPARCv8 ISA contains a total of 202 instruc-
tions for the integer unit, the floating-point unit and the co-processor unit. Our model
formalises all the 116 instructions for the integer unit, including the instructions
for branching, memory load and store, arithmetic, logic, shifting, control transfer,
traps, etc. The high-level model additionally formalises the atomic compare and swap
(CASA) instruction from the SPARCv9 architecture; this instruction is implemented
in some SPARCv8 processors of our interest.

The complete source code of our formalisation, proofs, and exported executable
code can be found at the Securify project website [47].

Title Suppressed Due to Excessive Length 5

Related work. Santoro et al. [45] gave an executable specification for the SPARCv9
architecture with Rapide. However, their model is not built in a theorem prover; thus
it is not suitable for formal verification purposes. Lim and Reps [32] developed the
TSL framework for analysing machine code. Their framework is generic and can
be used to model different ISAs such as X86 and PowerPC. Interestingly, the authors
have also developed model checkers based on TLS that can perform program analysis
tasks. Our work shares the common goal of formal verification for low-level code,
but we are also interested in proving architecture-wide properties such as safety and
security. Thus, we chose to use theorem proving instead of model checking.

Roşu and Şerbănuţă developed the K framework [42], which can be used to de-
fine programming language semantics, formal analysis tools, among others. The K
framework is built towards the direction of a unified theory of operational and ax-
iomatic semantics [43], and it is used to model very comprehensive X86-64 ISA se-
mantics [13]. This framework provides an impressive suite of features that facilitate
formal program analysis and verification. Again, besides verifying the correctness of
programs, we are also interested in other properties that we found easier to formalise
in a theorem prover such as Isabelle/HOL.

Fox studied verification of the ARM6 micro-architecture at the RTL level [17].
Fox and Myreen later gave more detailed models for ARM ISAs ranging from ver-
sion 4 to version 7. Their model for ARMv7 uses monadic specifications and covers
details from instruction decoding to operational semantics in the architecture [20].
Their ARMv7 model is the closest work to ours, and it provides a good methodolog-
ical direction for formalising an ISA and validating the model. Fox et al. then started
a project to specify various ISAs using a specification language called L3 [18,1]. Fox
recently developed a framework for formal verification of ISAs [19]. The framework
consists of the L3 language for modelling ISAs, Standard ML for efficient emula-
tion, and HOL4 for formal reasoning. On validation, we mainly test our model using
randomly generated instructions. This is a standard method used in [20] and [10].
There are also formal models for the x86 architecture, such as Sarkar et al.’s work on
the semantics of x86-CC machine code [46]. Another interesting work is the ACL2
ISA models [24]. Similarly to our work, the ACL2 ISA models define instruction
semantic functions over states and provide functions for executing the model for one
instruction or sequentially. Also, ACL2’s abstract stobjs can be used to define the
state of an x86 ISA model [23]. A difference is that the ACL2 models are more gen-
eral, whereas our model is more specific and detailed for SPARCv8. The advantage
of using ACL2 is that ACL2 naturally supports fast evaluation. The Compcert project
gave a formally verified compiler for PowerPC, ARM, and IA32 processors [30,31].
A remotely related work is Liu and Moore’s executable JVM model M6 [33], which
is written in a subset of Common Lisp and allows for analytical reasoning as well as
simulation. Finally, the JVM specification given by Atkey [7] inspired us to define
the model in a proof assistant which supports code export for execution.

There is a rich literature on relaxed memory models, but most of them do not con-
sider machine code semantics. Here we only discuss the most closely related ones.
Typically memory models appear in two forms: axiomatic model and operational
model. The axiomatic TSO memory model for SPARC is given by Sindhu and Frai-
long [49]. This model is used in the SPARCv8 manual [51] and is later referred to

6 Zhé Hóu et al.

as the “golden memory model” [34]. Petri and Boudol [40,8] give a comprehensive
study on various weak memory models, including SPARC TSO, PSO, and RMO.
They show that the store buffer semantics of TSO and PSO corresponds to their se-
mantics of “speculations”. Gray and Flur et al. [25,16] have established axiomatic
and operational models for TSO and their equivalence. Their work is also integrated
with detailed instruction semantics for x86, IBM Power, ARM, MIPS, and RISC-V.
They have developed a language called Sail for expressing sequential ISA descrip-
tions with relaxed memory models that later can be translated into Isabelle/HOL.
However, the current set of modelled ISA does not include any variance for the
SPARC ISA. Although it would have been possible to rewrite the semantics of [28]
in Sail, this language lacks some important features necessary for our work. First,
Sail does not provide some low-level system semantics such as exceptions and inter-
rupts; second, their framework does not include an execution model for multi-core
processors. Higham et al. and Burckhardt et al. [9,27] have surveyed numerous weak
memory models, including SPARC TSO and PSO in both axiomatic and operational
styles. The latter work also presents algorithms for verifying store buffer safety.

Besides Burckhardt’s work, there are other tools and techniques developed for
verifying memory operations. Notably, Hangal et al.’s TSOtool [26] is a program for
checking the behaviour of the memory subsystem in a shared memory multiprocessor
computer aginst the TSO specification. Although verifying TSO compliance is an
NP-complete problem, the authors give a polynomial time incomplete algorithm to
efficiently check memory errors. Companies such as Intel also actively work on tools
for efficient memory consistency verification [44]. Roy et al.’s tool is also polynomial
time and is deployed across multiple groups at Intel. A tool specialised for SPARC
instructions is developed by Park and Dill [39]. Recently, Lusting et al. introduced
PipeCheck [35], a tool developed in the Coq theorem prover for the specification
and verification of memory consistency models at the architectural level. This tool is
focused on checking memory consistency along the different pipeline stages of the
micro-architecture rather than providing a model useful from the programmer’s point
of view. Alglave et al. [5] developed a simulation tool named herd that allows the user
to specify a variety of weak memory models for different architectures. Much like our
work, they also provide axiomatic and operational semantics for memory models and
show their equivalence. On the other hand, their work is more general and can be
instantiated for Power, ARM and X86, whereas our work is focused on unique and
detailed features of SPARC. Another closely related work, although not mechanised
in a theorem prover, is Pulte et al.’s relaxed memory models for ARM [41].

There are also memory models that are formalised in theorem provers, such as
Yang et al.’s axiomatic Itanium model Nemos in SAT solvers and Prolog [54] and
the Java Memory Model in Isabelle/HOL [6]. Alglave et al. formalised a class of ax-
iomatic relaxed memory models in Coq [4]. Crary and Sullivan formalised a calculus
in Coq for relaxed memory models [12]. Their calculus is more relaxed than exist-
ing architectures, and their work is intended to serve as a programming language.
A more related work is Owens, Sarkar, Sewell, et al.’s formalisation of x86 ISA and
memory models [46,38,48]. They formalise both the ISA and related memory models
such as x86-CC and x86-TSO in HOL and show the correspondence between differ-
ent styles of memory models. Whilst the X86-TSO programmer’s model presented

Title Suppressed Due to Excessive Length 7

Fig. 2: The formats for SPARCv8 instructions. Source: [51].

in [48] simplifies the hardware memory axioms for easier reasoning, it still keeps
low-level structures such as the FIFO store buffers that we remove in our operational
semantics. In this sense, reasoning about our memory model is even simpler than in
the memory abstraction introduced in [48]. It is possible to translate Gray and Flur et
al.’s work [25,16] to Isabelle/HOL or Coq code. However, the resulting formal model
would rely on the correctness of the translation tool such as Lem [36], which adds
one more layer of complication for verification.

2 Background

This section introduces the necessary background of the SPARCv8 architecture and
the monadic modeling approach.

2.1 Overview of SPARCv8 ISA

The IU of SPARCv8 contains 40 to 520 general-purpose registers depending on the
implementation. The IU also controls the overall operation of the processor, thus it is
a major part of the processor. All SPARCv8 instructions are 32-bit wide. Instructions
in the IU fall into four categories: (1) load/store; (2) arithmetic/logical/shift; (3) con-
trol transfer; (4) read/write control register. There are only three instruction formats,
shown in Fig. 2. The load and store instructions are the only instructions that access
memory. SPARC only has two addressing modes: a memory address is given by ei-
ther two registers or a register and a signed 13-bit immediate value. Most instructions
operate on two registers, and write the result in the third register. Traps are vectorised
through a table, and cause an allocation of a fresh register window in the register file.
The main special features of SPARCv8 are highlighted below.

Windowed registers. Unlike other architectures, the general purpose registers in the
SPARC architecture are grouped in overlapping windows. This design allows for
straightforward, high-performance compilers and a significant reduction in memory

8 Zhé Hóu et al.

Fig. 3: Three overlapping windowed registers and the global registers. Source: [51].

load/store instructions over other RISCs [51]. A window contains 8 in registers, 8
local registers, and 8 out registers. At a given time, an instruction can access 8 global
registers and the 24 registers in the current window. The in registers of the current
window are the out registers of the next window; the out registers of the current
window are the in registers of the previous window; see Fig. 3. The windows are
arranged in a circular buffer, where the last window’s out registers overlap with the
first window’s in registers. The current window is determined by a segment in the
processor state register (PSR). The Window Invalid Mask (WIM) register keeps a bit
map that contains information about which windows are currently invalid.

Address space identifier. The memory model in SPARCv8 contains a linear 32-bit
address space. When the IU accesses memory, it appends to the address an address
space identifier (ASI), which encodes whether the processor is in supervisor or user
mode and whether the access is to instruction memory or to data memory, among
others. The ASI is also used to access device registers and perform certain opera-
tions on devices. The SPARC architecture defines 4 of the 256 address spaces: user
instruction, user data, supervisor instruction, and supervisor data [51].

Delayed-write. Besides the general registers, there are also control registers such as
the PSR. The write instructions for control registers are delayed-write instructions.
That is, “they may take until completion of the third instruction following the write
instruction to consummate their write operation. The number of delay instructions (0
to 3) is implementation-dependent” [51].

Signals. There are some signals either from instructions or from hardware that play
important roles in the execution of instructions. For example, SPARC, like other
RISC ISAs, features delayed control transfer instructions. When a delayed (condi-
tional) jump instruction is executed, the jump is not effected immediately. Rather, the

Title Suppressed Due to Excessive Length 9

next instruction (also referred to as the delay slot) will be executed before the control
transfer to the jump location is done. However, the delayed control transfer instruc-
tions in SPARC may contain an annul bit that signals that the instruction in the delay
slot is to be skipped. We thus need to keep track of such information in the state and
use it to determine whether certain instructions are to be skipped or not.

2.2 Monads in Operational Semantics

As with the ARMv7 formalisation [20], we use sequential monads to define oper-
ations in the ISA. A monad is an abstract data type that represents computations.
Our Isabelle monad library is a modified version of the one used in NICTA’s seL4
project [11]. Instead of using non-deterministic monads in [11], here we use deter-
ministic monads (cf. Section 3.2 for reasons) defined as below, where M is a short-
hand for det monad.

type synonym (′s,′ a) M = “′s⇒ (′a×′ s)×bool”

which returns a pair (′a×′ s) of the result and the next state, and also a failure flag.
A ‘true’ value in the failure flag denotes failure of execution, whereas a ‘false’ value
denotes a successful execution. We use the following operations on monads:

return: ′a⇒ (′s,′ a) M
fail: ′a⇒ (′s,′ a) M
bind: (′s,′ a) M⇒ (′a⇒ (′s,′ b)) M⇒ (′s,′ b) M
gets: (′s⇒′ a)⇒ (′s,′ a) M
modify: (′s⇒′ s)⇒ (′s,unit) M

The operation return x does not fail, does not change the state, and returns x. The
operation f ail sets the failure flag to true. We often use semicolon in Isabelle code
for bind, which composes computations. The gets operation applies a function to the
current state and returns the result without changing the state. The modi f y operation
changes the current state using the function passed in. The code segment for monad
operations is in a do · · · od block.

3 Low-level ISA Model

This section discusses the outline of our SPARCv8 ISA model. We first introduce our
definition of a state, and discuss how various special features of SPARCv8 described
in the previous section can be accommodated in the components of the state. We then
give an example to show how an instruction is modelled. The official descriptions
of SPARCv8 are sometimes semi-formal. Many details, such as memory access and
cache flush, are not described at all. Thus we can only formalise those operations
based on our understanding. We discuss how our formal model is validated against an
actual implementation of SPARCv8, i.e., the LEON3 processor. This section closes
with formal proofs of correctness and security theorems for the low-level model.

10 Zhé Hóu et al.

3.1 Formalisation

The core of a monadic specification is the notion of a state. Monad operations trans-
form a state into another. The state in our SPARCv8 model is defined as:

record (′a) sparc state = sys reg :: sys context
cpu reg :: cpu context user reg :: “(′a) user context” unde f :: bool
mem :: mem context mmu :: MMU state cache :: cpu cache
dwrite :: delayed write pool state var :: sparc state var traps :: “Trap set”

In general, we deal with implementation-dependent aspects of the ISA by param-
eterising them as variables in the model. For example, the parameter ′a indicates
the number of windows for general registers. The cpu reg are the control registers;
user reg are general registers; sys reg are implementation-dependent system regis-
ters; followed by memory, MMU, and cache. Delayed write pool is a list of de-
layed write control register instructions. The state also includes necessary signals and
state variables in state var, which contains the annul bit, indicators of execute mode,
reset mode, error mode of the processor, among others. The state also records a
set of traps (exceptions and interrupts) that may occur during execution, although in
SPARCv8, there should not be more than one trap at any given time. The last member
of the state is a failure flag.

The type user context models windowed registers and is defined as follows:

type synonym window context = “user reg type⇒ reg type”
type synonym (′a) window size = “′a word”
type synonym (′a) user context = “(′a) window size⇒ window context”

where user reg type is a 5-bit word, reg type is a 32-bit word. Our model guarantees
that the global register r[0] is always 0; the content of in registers of window n is
synchronised with the content of out registers of window n+ 1; and the content of
out registers of window n is synchronised with the content of in registers of window
n− 1. In particular, let NWINDOWS be the maximum number of windows, the in
registers of window NWINDOWS−1 are the same as out registers of window 0; out
registers of window 0 are the same as in registers of window NWINDOWS−1.

The SPARCv8 manual does not specify how exactly memory access functions
operate, it only provides interfaces for memory read and write, both of which require
a memory address and an ASI as input. Accordingly, we define memory access as

type synonym mem context = “asi type⇒ phys address⇒mem val type option”

where phys address is a 36-bit word physical address and mem val type is an 8-bit
word, the length of ASI is fixed in SPARCv8 as an 8-bit word. Our model is an ex-
tension of the traditional memory access method which is usually defined as a partial
function from addresses to values.

The MMU state contains all the MMU registers which are used when the MMU
translates a 36-bit physical address to a 32-bit virtual address by looking up three
levels of Page Table Descriptors. The MMU also decides whether a page is accessible
in a state or not by checking the Page Table Entry flags against the ASI. If the MMU

Title Suppressed Due to Excessive Length 11

is turned off, the virtual address is simply translated by appending four 0s in the most
significant positions (bits 32 ∼ 35 inclusive). Our MMU model conforms with the
SPARCv8 reference MMU model (Appendix H, [51]).

We do not give a detailed discussion of the cache model here because it does not
play an important role at the ISA level. We model it only to give information about
whether the caches are empty or not, which is useful in higher level verification such
as reasoning about memory context switch.

To model the delayed-write instructions, we define the following list type:

type synonym delayed write pool = “(int× reg type×CPU register) list”

where int is the delay, i.e., the number of instructions to wait. This number is reduced
by 1 in every instruction execution. When the number becomes 0, the 32-bit word
reg type is written into the control register CPU register. For a write control register
instruction, we add a delayed-write in the delayed write pool list where the delay is
implementation-dependent. If the delay is 0, the value is written to the control register
immediately without modifying the pool.

We then define a sparc state monad as a pair of a sparc state and the result ′e of
the monad:

type synonym (′a,′ e) sparc state monad = “((′a) sparc state,′ e) det monad”

Our definition of instructions has the interface

“instruction⇒ (′a,unit) sparc state monad”

where ”instruction” is a data type consisting of the name of the instruction and all its
parameters such as registers, immediates etc.

Example specification. We show an example of one of the simplest instruction for-
malisations here. The SETHI instruction is defined in SPARCv8 manual as below [51]:

if (rd 6= 0) then (r[rd]〈31 : 10〉 ← imm22;r[rd]〈9 : 0〉 ← 0)

Our corresponding formalisation is given below.

sethi instr instr ≡
let op list = sndinstr;

imm22 = get operand w22 (op list!0);
rd = get operand w5 (op list!1) in

if rd 6= 0 then do
curr win← get curr win();
write reg (((ucast(imm22)) :: word32)<< 10) curr win rd;
return () od

else return ()

We first get the parameter imm22 for this instruction from op list, which is obtained
from the decoding of the instruction. To write a value into a general register, we need
to get the current window, as is done by the function get curr win. In the SPARCv8
manual, imm22 is written to the bits 31 to 10 (inclusive) of rd, and the bits 9 to 0
are 0s. In our formalisation, we first convert the 22-bit word imm22 to a 32-bit word,
then we shift the lower 22 bits to the left for 10 bits, leaving the lower 10 bits as 0s.

12 Zhé Hóu et al.

Finally, this value is written to the register by the function write reg, which is defined
as:

write reg w win ur ≡ do
modify (λ s.(user reg mod w win ur s));
return () od

Note that the state is only changed by the modify operation. We omit details of other
definitions such as user reg mod, which are available in the full formalisation in [47].

3.2 Model Execution

When executing our model, we first need to instantiate it to a particular SPARCv8
compliant processor. The LEON3 processor core [22] is a synthesisable VHDL model
of a 32-bit processor compliant with the SPARCv8 ISA [51]. Its full source code is
available under the GNU GPL license. We use LEON3 as a running example for our
SPARCv8 model. We discuss both the execution of a single instruction and sequential
composition of multiple instructions.

Exporting formal models to executable code. Before we discuss the operational
semantics of instruction execution, we discuss briefly how we export our formal
model into the executable code so that one can simulate instruction execution more
efficiently. There has been work on exporting a formal model into executable code,
e.g., [7]. However, there are various restrictions in Isabelle’s code export feature;
much care is required to ensure that the code can be exported. For example, Is-
abelle2015 cannot export a function that returns a set of functions. Consider the fol-
lowing example:

definition f :: “int⇒ (int⇒ int) set” where “ f i≡ {λx.x}”
This is a legitimate definition, but the Isabelle command value “ f 1”, which exports
the code to ML and executes it, gives an error. The original NICTA library for monad
defines non-deterministic monads as below.

type synonym (′s,′ a) nondet monad = “′s⇒ (′a×′ s) set×bool”

When we use non-deterministic monad, instruction definitions return “(′a,unit) sparc
state monad”, which is equal to “(′a,′ d) sparc state⇒ (unit ×(′a,′ d) sparc state) set
×bool”, which contains a set. The error occurs because sparc state is a tuple con-
taining functions with infinite domains. Since instruction semantics are deterministic
and we do not model concurrent behaviours at the ISA level, we decide to modify the
NICTA monad library to handle deterministic monads, which avoid the errors.

Single Step Execution An execution cycle in our model includes the following oper-
ations (page 158 of [51]): (1) If there is a trap, execute the trap and skip the following.
(2) Execute delayed-writes. (3) Fetch and decode instruction. (4) If the annul signal
is false, dispatch and execute the instruction. Then, if the instruction is not a control
transfer instruction, increment program counter (PC) and next program counter (nPC)
by 4. (5) If the annul signal is true, make it false, and skip this instruction.

Title Suppressed Due to Excessive Length 13

Recall that the failure flag True in our monad means failure and False means no
failure. We define a next state function as below:

“NEXT s≡ case execute instruction() s of (,True)⇒ None
|(s′,False)⇒ Some (snd s′)”

We need to provide some implementation-dependent details that are not specified in
the SPARCv8 model, such as the maximum number of register windows. For the
LEON3 processor, we set NWINDOWS = 8 and DELAY NUM = 0, and instantiate
the parameter (′a) in the definition of the state to a 5-bit word:

type synonym leon3 state = “(word length 5) sparc state”

Finally, we need to initialise the environment, which includes PC, nPC etc., cer-
tain general registers and memory addresses that will be used in the instruction. These
details will not be elaborated here, but are available from [47].

Sequential Execution. We define sequential execution as follows:

function (sequential) SEQ :: “nat⇒ (′a) sparc state⇒ (′a) sparc state option”
where “SEQ 0 s = Some s”
| SEQ n s = (case SEQ (n−1) s of None⇒ None | Some t⇒ NEXT t)”

Preparing the environment for sequential execution requires initialising control
registers and all the general registers and memory addresses involved in the sequence
of instructions. We note that details such as updating PC and nPC make sequential
execution easier to model and to simulate. A formal ISA model without these details
may deviate from the official documentation when modeling sequential execution.
Sequential execution can prove useful when analysing and validating programs.

To run large scale code such as the XtratuM hypervisor, we need to initialise
the memory in our model to be consistent with real LEON3 hardware. XtratuM
may assume certain values at specific memory addresses for peripheral devices etc.
Performance-wise, we are able to execute an instruction in 0.005s on an Intel Xeon
E5-1620 v2 CPU using a single core. Optimisation and execution of large code are
left as future work.

3.3 Validation

To gain confidence that our formal model is correct, we validate our formal model
against an actual implementation of SPARCv8 ISA, as described next. In the sequel,
we use the OCaml version of our model extracted by the previous section. Isabelle
can also generate other functional language code, but performance differences for
other languages is beyond the scope of this paper.

3.3.1 Random Single Instruction Testing

Validating the formal model against real hardware by running single step instruction
executions is a standard and systematic solution in the literature, cf. [20,46], to val-

14 Zhé Hóu et al.

idate that the formal model captures the behavour of the actual hardware it intends
to model. We use a Xilinx Virtex-7 FPGA VC707 Evaluation Kit to run the offi-
cial LEON3 simulator. We use the LEON3/GRLIB source code to generate bitstream
code for LEON3 single core, duo core, and quad code processors. We use GRMON
2 to test the execution of instructions on those LEON3 processors. 1

We have developed a tool to generate random instructions with random input and
pre-states for our model. The random generation of instructions follows the format
and op code of the SPARC instruction structure specifications. More specifically,
SPARC instructions have 3 formats, cf. Fig. 2. These three formats are generated
with equal probabilities. Within each format, there are sub-op codes (op2 for format
2 and op3 for format 3) that decide the exact instruction. These sub-op codes are also
generated randomly in a uniform distribution. Although the chance to generate each
instruction is different, with a large number of tested instances, we ensure that each
of the 116 formalised instruction is tested with many different register values.

We have also written a tool to prepare the same pre-state for the LEON3 simula-
tor, run the tests on our model and on the LEON3 simulator, and compare the results.
We describe the details below.

The randomly generated instruction is checked to make sure it is a valid encod-
ing. We then analyse the instruction instance and determine which memory addresses
are involved. Our generator ensures that the majority of memory addresses are well-
aligned. To initialise the pre-state, we generate random 32-bit values for the general
registers in the current window and random 8-bit values for the involved memory
addresses. Furthermore, we generate random flags such as the icc bits of PSR. The
value of PC is 0x40000000, the values of other control registers are 0s. Since one
of the intended applications of our formalisation is to reason about security prop-
erties, we also generate various tests to test integer overflow and underflow which
may lead to security vulnerabilities in applications. Such tests are important to make
sure that our model does not abstract away integer operations to their ideal mathe-
matical counterparts and would thus miss potential vulnerabilities caused by integer
overflow/underflow.

We then generate the GRMON 2 commands for the LEON3 simulator. The GR-
MON 2 commands initialise the pre-state of the LEON3 simulator to be the same as
the pre-state of our model. This includes the instruction to be executed.

Our validation tool executes both our model and the LEON3 simulator, and com-
pares the post-state. Given an instruction instance, we only examine the registers
and memory addresses involved in it. The other elements in the state are not impor-
tant for the validation against LEON3. For example, delayed write pool is always
empty. Trap set and error mode etc. will cause exceptions and the result can be ob-
served by the validator. The side effect of control transfer instructions (modifying the
annul flag) can be checked by examining PC and nPC. The side effects of arithmetic
instructions can be checked by examining PSR. Note that some of these cannot be
examined in the official GRMON tool. The tested instructions should not have other
side effects which may cause bugs in our model.

1 We thank Charles Zhang for his help with our experiment setup.

Title Suppressed Due to Excessive Length 15

Program Number of Time
Instructions (in sec)

Addition 12 0.033
Multiplication 12 0.033
Swap two variables 14 0.041
Add the digits in a number 107 0.361
Reverse the digits in a number 116 0.339
Find the maximum number in an array 122 0.394
Greatest common divisor & least common multiple 122 0.238
Fibonacci series 141 0.468
Bubble sort 432 1.361

Table 1: Programs tested in sequential execution.

Our random testing has a large coverage. We test instructions in single core, duo
core, and quad core LEON3 processors; and we test in both supervisor mode and
user mode. Similarly to the validation of the ARMv7 model [20], we cannot fully test
implementation-dependent system features. Our validation has tested more than 139k
instruction instances. We believe our validation has been thorough and efficient, this
increases our confidence of the accuracy of our model.

3.3.2 Program Execution Testing

We choose C programs that range from toy examples to non-trivial functions, cov-
ering a wide range of operations that involve most of the instructions in the IU. The
programs are cross-compiled to obtain SPARC executables, from which we extract
the machine code for execution. As there may be loops in the programs and it is hard
to anticipate how many steps to be executed, we run the machine code on our model
until we have an instruction access exception trap, which indicates that the program
is finished and the next instruction is not initialised.

The tested programs are given in Table 1. The second column of Table 1 shows the
number of instructions executed, the third column gives the run time in our Isabelle
model. The number of instructions executed may vary depending on the input. We
run these programs with arrays of length 5 for illustration. When the execution of
these programs is terminated, we examine the memory addresses for the variables
and arrays. Our Isabelle model gives the same result as the LEON3 simulation board
on all these programs for all the tested input.

3.3.3 Limitations and Implementation-dependent Specifications for LEON3

We summarize some lessons learned from our experiment on the LEON3 board here.
According to the GRMON 2 tool, LEON3 does not implement delay write for

control register instructions. Instructions such as WRPSR, WRWIM, WRY, WRTBR
write the value into the register immediately. LEON3 implements 8 windows for
general registers, while our SPARCv8 model supports up to 32 windows.

We approximate the LEON3 memory access behaviours by testing memory ac-
cess with various ASI values: 8 (user instruction), 9 (supervisor instruction), 10 (user

16 Zhé Hóu et al.

data), and 11 (supervisor data) on the simulation board. We observe the following
facts: (1) Writing value v to ASI 11 of address x, then reading from x in ASI 10 gives
the same value v. (2) Writing v to ASI 11 of address x, then reading from x in ASI
8 gives a different value from v. (3) In both user mode and supervisor mode, reading
memory with ASI 8,9,10 or 11 all work. (4) In user mode, writing to memory with
ASI 11 raises a trap. (5) In user mode, writing to memory with ASI 10 will override
the data at the same address in ASI 11. All the above tests assume that the MMU is
turned off; otherwise, the accessibility depends on the MMU setup.

We noticed an unexpected behaviour: even in supervisor mode, writing to mem-
ory with ASI 8 or 9 does not seem to have any effect. The execution does not raise a
trap, neither does it change the value at the involved addresses. This is possibly be-
cause the hardware defines the instruction memory space to be a segment of addresses
we did not test. For this reason, we have only tested load/store instructions with ASI
10 and 11 in the random testing. We have enriched our SPARCv8 model with the
above behaviours specific to the LEON3 processor for testing purposes. Hence our
model gives the same result as the LEON3 simulation board when accessing memory
in the above cases.

Due to hardware limitations, each SPARCv8 processor only accepts specific val-
ues for PSR, while our model is more general and it does not specify such details.
Thus writing an arbitrary value into PSR may lead to different results in our model
and in the LEON3 processor. This is not considered an error during testing. Another
hardware limitation is that each board only supports a limited amount of memory,
thus accessing random memory addresses may have different outcomes in our model
and in the LEON3 simulator. As a result, we mainly test memory addresses ranging
from 0x40000000 to 0x50000000.

The branching instructions sometimes give different results of PC and nPC when
the instruction sets the “annul” bit to 1. Closer inspection reveals that the “step”
command in GRMON2 may have skipped the annulled instruction and paused before
the next instruction to be executed. In contrast, when we debug our simulator (an
OCaml program automatically generated by Isabelle/HOL from the formal model)
step by step, the OCaml debugger pauses before the annulled instruction. In this case,
manual checks against the SPARCv8 manual confirm that our model is correct.

3.4 Formal Verification of Security Properties

In this subsection we prove an important security property, namely non-interference
for the LEON3 processor. To give a cleaner presentation, we may simplify the Is-
abelle/HOL notations in the following definitions and proofs.

3.4.1 Single Step Theorem

We first show that when a state satisfies a condition called good context, a single
step execution from the state does not result in a failure. The execution of an instruc-
tion may generate traps, but not all traps are considered failure. A normal trap, i.e.,
exception or interruption, causes the CPU to run the trap handling functions, and is

Title Suppressed Due to Excessive Length 17

not considered a failure. A failure happens only in a special situation where a trap is
raised and the CPU goes to error mode and awaits to be reset. The rather involved
condition good context is crafted to avoid failure in execution. Interested readers are
referred to the source code [47] for details. We then show a single step theorem:

Theorem 1 (Single Step)
“good context s =⇒ NEXT s = Some (execute instruction() s)”

The proof covers each instruction and shows that the monad never returns a failure
if good context holds; the latter is thus a good standard for verifying if a pre-state is
“correct” or not.

3.4.2 Privilege Safety Theorem

Next we show that a successful one step execution in user mode does not lift the
privilege to supervisor mode. Valid is a function obtaining the failure flag of a state.

Theorem 2 (Privilege Safety)
assumes “get delayed pool s = [] ∧ get trap set s = {} ∧

Valid (execute instruction() s) ∧ (cpu reg val PSR S s) = 0”
shows “(cpu reg val PSR S (execute instruction() s)) = 0”

We assume that the delayed-write pool is empty since the LEON3 processor
has no delayed write. We also assume that there are no traps to be executed. If
there is a trap, the instruction will not be executed, the processor will go to super-
visor mode and execute the trap instead. The third conjunct in the assumption says
execute instruction does not return a failure, the last conjunct says the S bit in the
PSR register of the pre-state s is 0 (i.e., s is in user mode). We show that the S bit in
the post-state s′ = execute instruction() s is also 0. This proof is a case analysis for
each instruction and it checks that the execution mode is not modified.

3.4.3 Non-interference Theorem

Non-interference is an essential requirement for security. It allows user applications
or virtual machines to co-exist without violating confidentiality, and it can save costly
hardware which is otherwise needed to provide physical separation of data [29].
When MMU is enabled, non-interference also provides an isolation between users
in different processes. That is, the high privilege resource in our setting may refer to
the resource of other user processes that the current user does not have access to. This
is particularly important in our project since we are interested in verifying properties
for a multi-core hypervisor. Traditionally, non-interference for a deterministic pro-
gram states that when a low privilege user is working on the machine, it will execute
in the same manner regardless of the change of high privilege data [50]. At the ISA
level, this is similar to the non-infiltration property à la Khakpour et al. [29]. Here we
first show that non-interference is preserved in single step executions.

18 Zhé Hóu et al.

Lemma 1 (Non-interference Step)
assumes
“(cpu reg val PSR s1) = 0 ∧ good context s1 ∧ good context s2 ∧ low equal s1 s2
∧
get delayed pool s1 = [] ∧ get trap set s1 = {} ∧ (cpu reg val PSR s2) = 0 ∧
get delayed pool s2 = [] ∧ get trap set s2 = {}”
shows
“∃t1 t2.Some t1 = NEXT s1 ∧ Some t2 = NEXT s2 ∧ cpu reg val PSR t1 = 0 ∧
cpu reg val PSR t2 = 0 ∧ low equal t1 t2”

We assume that the two pre-states s1 and s2 are both in user mode, they satisfy
good context, they have no delayed writes and traps. We further assume that s1 and
s2 are equivalent on low privilege resources. We show that the next states t1, t2 must
exist, they are both in user mode, and they are still equivalent on low privilege re-
sources. The predicate low equal is defined as:

Definition 1 (low equal) low equal s1 s2≡
cpu reg s1 = cpu reg s2 ∧ user reg s1 = user reg s2 ∧ sys reg s1 = sys regs2 ∧
(∀va.(virt to phys va (mmu s1) (mem s1) = None ∧

virt to phys va (mmu s2) (mem s2) = None) ∨
(∃pa1 pte1 pa2 pte2.

virt to phys va (mmu s1) (mem s1) = Some (pa1, pte1) ∧
virt to phys va (mmu s2) (mem s2) = Some (pa2, pte2) ∧
((¬(user writable pte1)∧¬(user writable pte2)) ∨
(user writable pte1∧user writable pte2)) ∧
((¬(user readable pte1)∧¬(user readable pte2)) ∨
(user readable pte1∧user readable pte2 ∧

pa1 = pa2∧ (mem equal s1 s2 pa1)))) ∧
dwrite s1 = dwrite s2 ∧ mmu s1 = mmu s2 ∧
state var s1 = state var s2 ∧ traps s1 = traps s2 ∧ unde f s1 = unde f s2

Similar to Khakpour et al.’s definition, our low-equivalence assumes that the two
user mode states agree on the resources that may influence the user mode execu-
tion, but we assume no knowledge about other resources. Here, user writable (resp.
user readable) means that the flag pte1 related to the physical address pa1 is writable
(resp. readable) in state s1. We assume that either the virtual address doesn’t have a
valid mapping in both states, or it has a valid mapping in both states. In the latter case,
we assume that either the mapped physical addresses are both readable (similarly,
writable) or both not readable (similarly, not writable). If the physical addresses are
readable, then they must be identical and their content must be identical. mem equal
states that the block of addresses where pa belongs to have the same content in s1
and s2. A memory block is a group of four continuous addresses in which the first
address ends with two 0s.

From the Single Step Theorem, we obtain that the one step execution from s1 and
s2 will not result in failure, that is, t1 and t2 must exist. From the Safety Privilege
Theorem, we know that t1 and t2 must be in user mode. The remainder of the proof

Title Suppressed Due to Excessive Length 19

for the Non-interference Step Theorem is a case analysis for each instruction and we
examine that after the execution the predicate low equal holds for t1 and t2.

Finally, we show that for any sequence of user mode execution, if the initial states
s1 and s2 are equivalent on low privilege resources, then the final states t1 and t2 are
also equivalent on low privilege resources.

Theorem 3 (Non-interference)
assumes
“cpu reg val PSR s1 = 0 ∧ good context s1 ∧ good context s2 ∧ low equal s1 s2 ∧
get delayed pool s1 = [] ∧ get trap set s1 = {} ∧ cpu reg val PSR s2 = 0 ∧
get delayed pool s2= []∧ get trap set s2= {} ∧ user seq exe n s1∧ user seq exe n s2”
shows
“∃t1 t2.Some t1 = SEQ n s1 ∧ Some t2 = SEQ n s2 ∧ cpu reg val PSR t1 = 0 ∧
cpu reg val PSR t2 = 0 ∧ low equal t1 t2”

Here, user seq exe simply assumes that every intermediate state has no traps
and no delayed write instructions; these are necessary to ensure that the sequence
of execution is in user mode. This proof is a simple induction on n using the Non-
interference Step Theorem. The proof script of the theorems in this section mea-
sures over 7500 lines due to the large number of cases to be considered. The main
difficulty is in checking that the store instructions preserve low equal. This section
demonstrates that we can prove interesting and non-trivial properties for SPARCv8
and LEON3 using our formalisation.

4 High-level ISA model

The previous model is suitable for reasoning about operations at instruction level, but
it is too complex and detailed to reason about memory operations. Hence we simplify
the low-level model by abstracting away low-level operations that are not used in the
reasoning of memory operations. The operational semantics of the high-level model
focuses on “memory operation blocks”, which are groups of instructions, and each
group contains at most one memory operation. Given the same input, the execution
of an instruction in the high-level model gives the same result as the execution of the
low-level model. Thus, the previous validation still holds for the high-level model.

4.1 Mapping from Instructions to Memory Operation Blocks

To bridge the gap between the instruction semantics level and the memory operation
level, we define the concept of program block as a list of instructions where the last
instruction is a memory instruction (load, store, etc.). Intuitively, each program block
corresponds to a memory operation. However, sometimes there may be remaining
non-memory instructions after the last memory operation, thus, we permit an ex-
ception that a program block at the end of a program may not contain any memory
instruction. We illustrate program blocks with the example in Figure 4.

20 Zhé Hóu et al.

Fig. 4: Illustration of memory operation blocks.

Given a list of instructions for the processor to execute, we identify the mem-
ory access instructions (in bold font, such as LD, ST) and divide the list into several
program blocks. In the example in Figure 4, there are instructions after the last mem-
ory instruction, they form a block as well (block 6), although strictly speaking block
6 is not related to a memory operation. In the SPARC TSO axiomatic model [49],
an atomic load-store instruction is viewed as two memory operations [L;S] where
the load part L and the store part S have to be executed atomically. In correspon-
dence, we split an atomic load-store instruction, such as SWAP, into two parts and
put them in two consecutive program blocks (block 3 and 4 in Figure 4). We assume
that each program block can be uniquely identified. This gives rise to a mapping
Mblock = “id ⇒ block” from an identifier (natural number) to a program block. The
latter is a tuple 〈i, p, id〉, where i is a list of instructions, p (natural number) is the pro-
cessor in charge of executing the code, and id is a program block identifier (optional).
In particular, Mblock would map the id of the store block of an atomic load-store in-
struction to a triple 〈i, p, id′〉 where id′ is the identifier of the load block of the same
instruction.

We distinguish the types of program blocks by the memory operation involved
in it. Program blocks without memory operations are called non-mem block, whilst
program blocks including memory operations are called memory operation blocks. A
memory operation block is a load block when it has an LD, it is a store block when
it has an ST. An atomic load block has either SWAP LD or CASA LD, whereas an
atomic store block has either SWAP ST or CASA ST.

In contrast to the low-level model, here we lift the processor execution to be
oriented on program blocks, based on the program order. A program order is the
order in which a processor executes instructions [49]. Since we can identify program
blocks using their identifiers we define the program order PO for a processor p as a
mapping from p to a list of identifiers: PO = “p⇒ id list”.

Given a program order PO and a processor p, the program blocks in this program
order are related by a before relation “;” as follows:

Definition 2 (Program Order Before) id1 ;p
PO id2 iff id1 is before id2 in the list of

program block identifiers given by (PO p). That is, id1 is before id2 in the program
order if id1 is issued by the processor p before id2.

We shall omit the p and/or the PO in the notation of program order before and
write id1 ; id2 when the context is obvious. Only program blocks issued by the same
processor can be related by program order. Thus id1 ; id2 implicitly identifies a pro-
cessor.

We divide program execution into two levels: the processors execute instructions
and issue memory operations in a given program order; the memory executes memory
operations in its own memory order, which will be described in Section 5.

Title Suppressed Due to Excessive Length 21

4.2 State for Multi-core Processors

The state of a multi-core processor is a tuple 〈ctl,reg,mem,Lvar,Gvar,op,unde f ,next〉,
with the following definitions:

ctl are the control registers (per processor), these include Processor State Register
(PSR), which records the current set of registers, whether the processor is in user
mode or supervisor mode, etc.; Program Counter (PC); Next Program Counter (nPC),
among others. ctl is formally defined as a function ctl = “p⇒Creg⇒ val”, where p
is the processor, Creg is the control register, val is the value held by the register (32-bit
word).

reg are the general registers (per processor). Formally, reg = “p⇒ r ⇒ val”,
where p is the processor, r is the address of the register (32-bit word), and val is
the value of the register. SPARC instructions often use three general registers: two
source registers, refered to as rs1 and rs2, and a destination register, refered to as rd.
For instance, the addition instruction takes two values from rs1 and rs2, and store the
sum in rd. We shall refer to the value reg p rx of a register rx in processor p as r[rx]
when the context of the processor and the state is clear. SPARC fixes the value at
register address 0 to be 0. So when rd = 0, we have r[rd] = 0.

A main memory mem is shared by all processors. Similar to the machine code
semantics for x86 [48], we focus on memory access of word (32-bits) only, and we
assume that each memory address points to a word, and data are always well-aligned.
Memory is a (partial) mapping mem= “addr ⇀ val”. The high-level model is focused
on user data memory, thus the ASI is omitted.

Each processor has a local Boolean variable Lvar = “p⇒ bool”. This Boolean
variable is used to record whether the next instruction should be skipped or not after
executing branching instructions. We refer to this variable as the annul flag.

All processors share a global variable Gvar, which is a pair 〈 f lagatom,valrd〉,
where f lagatom, defined as id option, is the id of the atomic load block when the
processor is executing the corresponding atomic load-store instruction, or is unde-
fined otherwise. valrd stores the value of the general register for destination rd which
is used in atomic load-store instructions.

op records a memory operation. Formally, op = “id ⇒ 〈opaddr,opval〉”, where
id is the identifier of the program block for the corresponding memory operation,
opaddr is the address of the operation, and opval is the value of the operation. For
instance, a store operation writes value opval at address opaddr, whereas a load op-
eration loads value opval from address opaddr. For a given id, opaddr and opval are
initially undefined. These values are computed during execution of memory blocks.

Finally, unde f indicates whether the state is undefined or not, and next gives the
index (in the list typically given by (PO p)) of the next memory operation to be issued
by processor. Formally, next = “p⇒ nat”, where p is a processor and nat is the index.

To provide consistency w.r.t. the memory model, we split the semantics of atomic
load-store instructions into the load part and the store part. The processor executes
them separately, but the memory model guarantees that their executions are “atomic”.

We give an example of the formalisation of the CASA instruction below. The
SPARC manual [52] specifies the semantics of CASA as follows, where we adapt the
setting from 64-bit registers in SPARCv9 to 32-bit registers in the SPARCv8 model:

22 Zhé Hóu et al.

The CASA instruction compares the register r[rs2] with a memory word pointed to
by the address in r[rs1]. If the values are equal, the value in register r[rd] is swapped
with the contents of the memory word pointed to by the address in r[rs1]. If the values
are not equal, the memory location remains unchanged, but the memory word pointed
to by r[rs1] replace the value in r[rd]. We formalise the core of the load part as below,
presented in pseudo-code:

Definition 3 (CASA Load) CASAload addr val ≡
if rd 6= 0 then valrd ← r[rd]; r[rd]← val; opaddr← addr; opval ← val;
else valrd ← r[rd]; opaddr← addr; opval ← val;

Given a processor p and the id of a CASA load block, we can obtain the value r[rd]
in processor p, and the 〈opaddr,opval〉 pair of the operation. When rd 6= 0, we store
r[rd] in the temporary global variable valrd , and write val into rd. We then store addr
and val in opaddr and opval respectively. When rd = 0, we do not have to write the rd
register because its value must be 0. In this definition, addr is obtained from r[rs1],
and val (the value at address addr) is obtained from Axiom Value of the TSO model
which is described in Section 5.1. The store part is given below:

Definition 4 (CASA Store) CASAstore addr ≡
if r[rs2] = opval then opaddr← addr; opval ← valrd ;

We check if r[rs2] has the same value as opval , which corresponds to val in the load
part. If this is the case, we then update opaddr and opval with addr and valrd respec-
tively, where addr is the same as the address in the load part. Note that instruction
semantics is only for processor execution, which does not update the memory. Mem-
ory write occurs in the store operation defined in the operational semantics of the
TSO model, which is introduced in Section 5.2.

5 SPARC TSO Memory Model

Details of the SPARC TSO model can be found in [49,51]. This section formalises
the axiomatic model in Isabelle/HOL. More importantly, we give a new operational
model, which is designed to reason about execution steps and results. We show that
the operational model corresponds to the axiomatic model.

5.1 Axiomatic TSO Model

The complete semantics of TSO are captured by six axioms [49,51], which spec-
ify the ordering of memory operations. The semantics of loads and stores to I/O
addresses are implementation-dependent and are not covered by the TSO model.
The SPARCv8 manual only specifies that loads and stores to I/O addresses must be
strongly ordered among themselves. We adapt these axioms to our abstract SPARC
ISA model and formalise them in Isabelle/HOL. Similar to the x86-TSO model [38],
we focus on data memory, thus our memory model does not consider instruction fetch
and flush.

Title Suppressed Due to Excessive Length 23

Besides the program order before relation (cf. Definition 2), the axiomatic model
also relies on a before relation over operations but in memory order, which is the order
that the memory executes load and store operations. Given a partial/final memory
execution in a processor i represented by a sequence x of ids, the before relation over
two operations id1 and id2 in memory order is defined below as a partial function
from the pair to bool, where we write id ∈ x when id is in the sequence x:

Definition 5 (Memory Order Before) id1 <x id2 ≡
if (id1 ∈ x) ∧ (id2 ∈ x) then

if id1 is before id2 in x then true else f alse
else if id1 ∈ x then true else if id2 ∈ x then f alse else unde f ined

That is, id1 is executed by the memory before id2.

We may loosely refer to a memory order by the corresponding partial/final memory
execution sequence x. We may write id1 < id2 when the context is clear. Note that
any memory operation id in the sequence of executed operations x has been already
executed by the processor i and thus opaddr id in the current state is defined.

Due to complexity and readability reasons, we present the below definitions in
prose. The axiom Order states that in a final execution sequence x, every pair id, id′

of store operations are related by <x.

Definition 6 (Axiom Order) OrderOrderOrder id id′ x Mblock ≡
If both (Mblock id) and (Mblock id′) are either a store or an atomic store block, and
both id and id′ are in x, and id 6= id′, then either (id <x id′) or (id′ <x id).

The axiom Atomicity ensures that for an atomic load-store instruction, the load
part idl is executed by the memory before the store part ids, and there can be no other
store operations executed between idl and ids.

Definition 7 (Axiom Atomicity) AtomicityAtomicityAtomicity idl ids PO x Mblock ≡
If idl and ids are from the same instruction instance, and (idl ; ids), and (Mblock idl)
is an atomic load block, and (Mblock ids) is an atomic store block, then idl <x ids,
and for all store or atomic store block (Mblock id), if id ∈ x and id 6= ids, then either
id <x idl or ids <x id.

The axiom Termination states that all store operations eventually terminate. We
capture this by ensuring that after the execution is completed, every store operation
id that appears in the program list of some processor is in the sequence x of executed
operations. We formalise this axiom as follows:

Definition 8 (Axiom Termination) TerminationTerminationTermination id PO x Mblock ≡
If there exists a processor p such that id ∈ (PO p), and (Mblock id) is a store or atomic
store block, then id ∈ x.

The axiom Value states that the value of a load operation id issued by processor
p at address addr is the value written by the most recent store to that address. The
most recent store at addr could be: (1) the most recent store issued by processor p,
or (2) the most recent store (issued by any processor) executed by the memory.

24 Zhé Hóu et al.

Definition 9 (Axiom Value) ValueValueValue p id addr PO x Mblock state≡
Let S1 be the set of store or atomic store (memory operation) blocks that are before
id in the program order PO and writes to addr, S2 be the set of store or atomic store
blocks that are before id in the memory order <x and writes to addr. Let id′ be the
last element in the memory order in S1∪S2. The value to be loaded in a load block,
denoted by Lvalid , is the value stored by id′.

The axiom LoadOp requires that any operation id′ issued after a load id in the
program order must be executed by the memory after id. This is formalised as below:

Definition 10 (Axiom LoadOp) LoadOpLoadOpLoadOp id id′ PO x Mblock ≡
If (Mblock id) is a load or atomic load block, and id ; id′, then id <x id′.

The axiom StoreStore states that if a store operation id is before another store
operation id′ in the program order, then id is before id′ in the memory order.

Definition 11 (Axiom StoreStore) StoreStoreStoreStoreStoreStore id id′ PO x Mblock ≡
If (Mblock id) and (Mblock id′) are store or atomic store blocks, and id ; id′, then
id <x id′.

5.2 Operational TSO Model

Compared with other operational memory models such as the x86-TSO model [48],
the high-level ISA model enables us to develop a more abstract operational mem-
ory model without using concrete modules such as the store buffer, which effectively
buffers the address and value of most recent store operations. This alleviates the bur-
den of modelling complicated operations and interactions between the processor and
the store buffer, and results in a simple and elegant operational memory model. Fig-
ure 5 shows the operational semantics of the TSO model, which are described be-
low. The function exeid executes all the instructions in the operation block identified
by id, exepre

id executes the block until (but not including) the last instruction in the
block, exelast

id executes only the last instruction in the block. The formal semantics for
these functions are very tedious and we omit them here. We refer the reader to the
Isabelle/HOL theories [47] for the details.

We shall use the following notations: We write typeid to denote the type of the
memory operation block (Mblock id). We use the following abbreviations for memory
operation block types: ld (load), ald (atomic load), st (store), ast (atomic store), non
(non-mem). We write x@x′ for the concatenation of two sequences x and x′.

The operational TSO model consists of four operation rules, which are explained
below. Each rule adds the conditions that must be satisfied to apply the rule as
premises. A rule also has a sequence of operations, which takes a pair 〈x,s〉 of a
memory operation sequence x and state s as input, and returns a new sequence x′ and
a new state s′ as output. We write the overall operation of a rule as x,s x′,s′. We
often use “execute until the last instruction in a block”, because the last instruction is
defined as the memory operation instruction (cf. Figure 4).

Title Suppressed Due to Excessive Length 25

typeid = ld ∀id′. ((id′ ; id) ∧ typeid′ ∈ {ld,ald} −→ id′ ∈ x)
load

x,s x@[id],(exelast
id Lvalid (exepre

id s))

typeid = st f lagatom = unde f ined

∀id′.((id′ ; id) ∧ typeid′ ∈ {ld,ald,st,ast} −→ id′ ∈ x)
store

x,s x@[id],(Wmem id (exeid s))

typeid = ald f lagatom = unde f ined

∀id′.((id′ ; id) ∧ typeid′ ∈ {ld,ald,st,ast} −→ id′ ∈ x)
atom load

x,s x@[id],(f lagset
atom id (exelast

id Lvalid (exepre
id s)))

typeid = ast f lagatom = id′ atompair id = id′

∀id′′.((id′′ ; id) ∧ typeid′′ ∈ {ld,ald,st,ast} −→ id′′ ∈ x)
atom store

x,s x@[id],(Wmem id (f lagset
atom unde f (exeid s)))

Fig. 5: Rules for the operational TSO model.

The load rule is defined as below:

Premises :
– typeid = ld.
– ∀id′. ((id′ ; id) ∧ typeid′ ∈ {ld,ald} −→ id′ ∈ x).

Operation :
– x′ = x@[id].
– From state s, execute the block id until the last instruction, obtain s1.
– From s1, get load value via Lvalid (cf. Definition 9).
– From s1, execute the last instruction in the block id, obtain s′.

The store rule is defined as below:

Premises :
– typeid = st.
– f lagatom = unde f ined.
– ∀id′.((id′ ; id) ∧ typeid′ ∈ {ld,ald,st,ast} −→ id′ ∈ x).

Operation :
– x′ = x@[id].
– From state s, execute the block id, obtain s1.
– From s1, write the value into memory, obtain s′.

The atom load rule is defined as below:

Premises :
– typeid = ald.
– f lagatom = unde f ined.
– ∀id′.((id′ ; id) ∧ typeid′ ∈ {ld,ald,st,ast} −→ id′ ∈ x).

Operation :

26 Zhé Hóu et al.

– x′ = x@[id].
– From state s, execute the block id until the last instruction, obtain s1.
– From s1, get load value via Lvalid (cf. Definition 9).
– From s1, execute the last instruction in the block id, obtain s2.
– From s2, set atomic flag f lagatom to id, obtain s′.

The atom store rule is defined as below:

Premises :
– typeid = ast.
– f lagatom = id′.
– id′ is the atomic load block in the same instruction as id (similar to SWAP LD

and SWAP ST in Figure 4).
– ∀id′′.((id′′ ; id) ∧ typeid′′ ∈ {ld,ald,st,ast} −→ id′′ ∈ x).

Operation :
– x′ = x@[id].
– From state s, execute the block id, obtain s1.
– From s1, set atomic flag f lagatom to unde f ined, obtain s2.
– From s2, write the value in memory, obtain s′.

In addition to the rules for memory operations, to obtain the final result of proces-
sor execution, we may need the non mem rule, because there may be instructions after
the last memory operation instruction (cf. Figure 4). This rule is defined as below:

Premises :
– typeid = non.
– ∀id′.((id′ ; id) ∧ typeid′ ∈ {ld,ald,st,ast} −→ id′ ∈ x).

Operation :
– x′ = x@[id].
– From state s, execute the block id, obtain s′.

The non rule is not related to the memory model because it does not involve
memory operations. It plays no roles in the proofs in the remainder of this section.

5.3 Soundness and completeness of the operational model

Theorem 4 (Soundness) Every memory operation sequence generated by the oper-
ational model satisfies the axioms in the axiomatic model.

Theorem 5 (Completeness) Every memory operation sequence that satisfies the ax-
ioms in the axiomatic model can be generated by the operational model.

(Proof outline:) The previous subsection has briefly discussed that the design of
operational rules respects the axioms such as LoadOp, StoreStore, and Atomicity.
Axiom Value trivially holds in the operational model because the rule load directly
uses axiom Value to obtain load result. Axiom Termination is satisfied by the con-
struction of the execution witness sequences, because the x part of the final witness
is guaranteed to contain all the store operations, which means that the execution of

Title Suppressed Due to Excessive Length 27

Processor op id Instruction
1 0 OR %g0,1,%r4

OR %g0,1,%r5
ST %r5, [%g0+%r4]

1 OR %g0,1,%r5
OR %g0,2,%r4
ST %r5, [%g0+%r4]

2 2 OR %g0,2,%r4
LD [%g0+%r4],%r1

3 OR %g0,3,%r4
ST %r1, [%g0+%r4]

3 4 OR %g0,3,%r4
LD [%g0+%r4],%r1

5 OR %g0,1,%r4
LD [%g0+%r4],%r2

Table 2: “Indirection Through Processors”.

these operations have been completed by the memory. Axiom Order holds because all
the executed store operations are recorded in a list, which means every pair of them
are ordered. The completeness proof is an induction on the length of the memory op-
eration sequence. It essentially shows that, given a partial execution, appending any
valid memory operation to the execution sequence will result in a new sequence that
can be executed by the operational model. The formal proof of the correspondence
of the axiomatic model and the operational model is rather complicated, interested
readers can check the Isabelle/HOL formalization and proofs2 for more details.

5.4 Case Studies

We can now formally reason about concurrent machine code. The axiomatic model
can be used to reason about the order of memory operations, while the operational
model is better at reasoning about properties of the execution flow. We run two case
studies drawn from examples in the SPARCv9 manual [52]. We may use the term pro-
cess and processor interchangeably. See Owen’s work [37] for a semantic foundation
for reasoning about programs in TSO-like relaxed memory models.

5.4.1 Indirection Through Processors

The “Indirection Through Processors” program is taken from Figure 46 of the SPARCv9
manual [52]. This example intends to reflect the TSO property that causal update re-
lations are preserved. The original program involves three processors, each processor
issues two memory operations. A memory operation is given in an “instruction-like”
style, e.g., st #1, [A] means that the value 1 is stored into address A of the mem-
ory. Unfortunately in real SPARC store instructions, the value to be stored and the
value of the memory address must be taken from registers, so we need to add a few

2 Isabelle/HOL code for proofs is at https://github.com/CompSoftVer/SPARCv8-Models

28 Zhé Hóu et al.

instructions to initialise the registers for this example to work. Our formalised “Indi-
rection Through Processors” example is shown in Table 2. The global register %g0
in SPARC always contains 0. The first instruction in block 0 adds 0 and 1, and puts
the result in register %r4. The ST in block 0 thus stores 1 at memory address 1. The
ST in block 1 stores 1 at address 2. The LD in block 2 loads the value at address 2 to
register %r1. Block 3 then stores the value in %r1 at address 3. Finally, processor 3
loads the values at addresses 3 and 1 to registers %r1 and %r2.

Reasoning about memory operation order. It is intuitive to use the axiomatic TSO
model to reason about the order of memory operations. For the program in Ta-
ble 2, the SPARCv9 manual gives some example sequences of memory operations
allowed under TSO, and an example sequence that is not allowed under TSO: x =
[1,2,3,4,5,0]. This is because (0 ; 1) must hold in the program order given by Ta-
ble 2, and the above sequence implies that ¬(0 < 1 = true) in the memory order,
which falsifies the axiom StoreStore.

Alternatively, the completeness of the operational TSO model enables us to use
the operational model to reason about the possible next step operations. The above
reasoning can be confirmed by our operational model in the lemma below:

Lemma 2 init −→¬([],s [1],s′)

Lemma 2 states that given a partial execution sequence which contains only an
initialisation step init where memory addresses are set to unde f ined and registers
are set of 0, memory operation block 1 in Table 2 cannot be the first operation to be
executed.

Reasoning about execution result. Besides eliminating illegal executions, one can
also use our operational model to reason about the results of legal executions. For
instance, the SPARCv9 manual lists the sequence x′ = [0,1,2,3,4,5] as a legal ex-
ecution under TSO. For simplicity, here we only show that after a partial execution
[0,1,2], the register %r1 of processor 2 has value 1, which is stored to address 2 by
processor 1 previously. This shows that a processor can observe the memory updates
made by other processors. This is formalised in the following lemma:

Lemma 3 [0,1],s2 [0,1,2],s3 −→ (reg s3) 2 1 = 1

The right hand side of the implication means that in state s3, the general register
1 of processor 2 contains value 1. The proof for execution results usually involves
a “simulation” of the execution using the abstract ISA model and the operational
TSO model. For this example, we start from the initial witness, and prove a series
of lemmas about the execution witnesses ([0],s1),([0,1],s2),([0,1,2],s3) for the in-
termediate execution steps. It is straightforward to complete this series of proofs and
obtain the result of a final execution.

Title Suppressed Due to Excessive Length 29

Lock(lock, proc id)
retry:

mov [proc id],%l0
cas [lock],%g0,%l0
tst %l0
be out
nop

loop:
ld [lock],%l0
tst %l0
bne loop
nop
ba,a retry

out:
code in critical region

Unlock(lock)
st %g0, [lock]

(a) Spin lock using CASA.

Processor op id Instruction
1 0 OR %g0,1,%r16

OR %g0,1,%r1
CASA LD [%r1],%g0,%r16

1 CASA ST [%r1],%g0,%r16
5 ORcc %g0,%r16,%g0

BE 28
NOP

2 2 OR %g0,1,%r16
OR %g0,1,%r1
CASA LD [%r1],%g0,%r16

3 CASA ST [%r1],%g0,%r16
6 ORcc %g0,%r16,%g0

BE 28
NOP

3 4 OR %g0,1,%r4
ST %g0, [%g0+%r4]

(b) A fragment of formalised spin lock code.

Fig. 6: The spin lock example.

5.4.2 Spin Lock with Compare and Swap

Section J.6 of the SPARCv9 manual [52] gives an example of spin lock implemented
using the CASA instruction, the code is shown in Figure 6a. Note that the code in
Figure 6a is in synthetic instruction format. SPARCv8/v9 manual provides a straight-
forward mapping from this format to SPARC instruction format, which is what our
ISA model supports. For instance, in the retry fragment, the first instruction mov cor-
responds to an OR, which adds the ID proc id of the current process and 0, and stores
the result to register %l0, which corresponds to register %r16. After executing this
line, %l0 (%r16) contains the ID of the current process. The second line is the CASA
instruction. It checks whether the memory value at address lock is equal to the value
at %g0 (which must be 0), and swaps the value at address lock and the value at register
%l0 when the above check is positive. Otherwise, the value at address lock is stored
at register %l0. Therefore, when no processes hold the lock, the value at address lock
is 0, and after executing the second line, %l0 (%r16) will have 0 and address lock
will contain the ID of the current process. On the other hand, when the lock is held by
another process, after executing CASA, the memory address lock is unchanged, and
%l0 contains the ID of the process that holds the lock. The code tst %l0 corresponds
to an ORcc, which checks if %l0 is equal to 0. If it is, then the program branches to
out, and starts to execute in the critical region. Otherwise, the program goes to loop
and keeps reading the address lock until it contains a 0.

We give the fragment of instructions before entering the critical region in Fig-
ure 6b, and consider a concrete situation where two processes (processors) 1 and 2
are competing to get the lock, and process 3 initialises the lock to 0. Assume that
process 3 executes operation 4 first for initialisation, also assume without of loss gen-
erality that operation 0 of process 1 is executed by the memory earlier than process

30 Zhé Hóu et al.

2’s operations, we show that process 1 will enter the critical region. The case where
operation 2 of process 2 is executed earlier by the memory is symmetric. In this ex-
ample, we set the address of critical region as 28� 2 = 112 relative to the address
of the branch instruction BE (Branch if Equal), where� is sign extended shift to the
left.

The proof uses a mixture of the techniques in the previous subsection to obtain
valid memory operation sequences and reason about the results. We omit the inter-
mediate steps and show the final lemma below:

Lemma 4 [4,0,1,2,3,5],s6 [4,0,1,2,3,5,6],s7−→ (ctl s7) 1 nPC =(ctl s7) 1 PC+
112 ∧ (ctl s7) 2 nPC = (ctl s7) 2 PC+4

The right hand side of the implication shows that the nPC (next program counter)
of processor 1 is the entry point of the critical region, while the nPC of processor 2
points to NOP, after which will lead processor 2 to the loop in Figure 6a.

6 Conclusion

This paper describes a formalisation of the SPARC ISA and TSO memory model. The
low-level ISA model has over 5000 lines of Isabelle code, not including the proofs.
The high-level ISA model measures 1960 lines of code, the two memory models and
the soundness and completeness proofs constitute 4753 lines of code, the case studies
take up 1750 lines of code.

The formal model can be specialised to any SPARCv8 processor, and it contains
many features specific to the SPARCv8 architecture. We have validated the low-level
model against an official LEON3 simulator on more than 100k random instruction
instances as well as real life programs. To illustrate the applicability of our model,
we have shown a non-interference property for the LEON3 processor. This property
guarantees that user mode execution is independent of high privilege resources which
the user has no access to.

On top of the low-level ISA model, we formalise the high-level ISA model and
the SPARC TSO axiomatic memory model in Isabelle/HOL. This model is useful
for reasoning about the order of memory operations. We also give a new operational
TSO memory model as a system that consists of four rules. We show that the opera-
tional TSO model is sound and complete with respect to the axiomatic model. Finally,
we demonstrate the use of our memory models with two examples in the SPARCv9
manual.

Our current on-going work is about developing a Hoare-style logic for SPARC
machine code. The current framework, which includes the abstract ISA model and
the memory models, provides the foundation for the verification of concurrent ma-
chine code. However, if a program involves a complex control-flow with branches
and loops, it is tedious to use the current models to reason about the program. A
Hoare-style logic is much desired to make the reasoning task easier. We envision that
this new work will make it easier to prove properties such as reachability, safety, and
non-interference.

Title Suppressed Due to Excessive Length 31

Acknowledgement. This work has been partially supported by the National Satel-
lite of Excellence in Trustworthy Software Systems (Award No. NRF2018NCR-
NSOE003), and award NRF Investigatorship NRFI06-2020-0022,funded by NRF
Singapore under National Cyber-security R&D (NCR) programme.

References

1. L3 specification language for ISAs. http://www.cl.cam.ac.uk/˜acjf3/l3/. [Online;
accessed 09/12/2015].

2. RISC-V architecture. https://riscv.org/. [Online; accessed 10/08/2016].
3. Tianhe-2. http://top500.org/system/177999. [Online; accessed 27/01/2016].
4. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models, pages 258–272.

Springer Berlin Heidelberg, 2010.
5. J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing, and data

mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2), July 2014.
6. D. Aspinall and J. Ševčı́k. Formalising Java’s Data Race Free Guarantee, pages 22–37. Springer

Berlin Heidelberg, 2007.
7. R. Atkey. CoqJVM: An executable specification of the Java virtual machine using dependent types.

In TYPES, LNCS, pages 18–32. Springer, 2005.
8. G. Boudol and G. Petri. Relaxed memory models: an operational approach. In Proceedings of the

36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, pages 392–403, 2009.

9. S. Burckhardt and M. Musuvathi. Effective Program Verification for Relaxed Memory Models, pages
107–120. Springer Berlin Heidelberg, 2008.

10. B. Campbell and I. Stark. Randomised testing of a microprocessor model using SMT-solver state
generation. In FMICS 2014, pages 185–199. Springer, 2014.

11. D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads and scalable refinement. In
Theorem Proving in Higher Order Logics, volume 5170 of LNCS, pages 167–182. Springer, 2008.

12. K. Crary and M. J. Sullivan. A calculus for relaxed memory. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages 623–636.
ACM, 2015.

13. S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu. A complete formal semantics of
x86-64 user-level instruction set architecture. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, page 11331148, New York, NY,
USA, 2019. Association for Computing Machinery.

14. S. El Kady, M. Khater, and M. Alhafnawi. MIPS, ARM and SPARC-an architecture comparison. In
Proceedings of the World Congress on Engineering, volume 1, 2014.

15. ESA. ESA LEON processor. http://www.esa.int/Our_Activities/Space_
Engineering_Technology/LEON_the_space_chip_that_Europe_built, 2017.
[Online; accessed 19/06/2016].

16. S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and P. Sewell. Modelling
the armv8 architecture, operationally: Concurrency and ISA. SIGPLAN Not., 51(1):608–621, Jan.
2016.

17. A. Fox. Formal specification and verification of ARM6. In Theorem Proving in Higher Order Logics,
volume 2758 of LNCS, pages 25–40. Springer, 2003.

18. A. Fox. Directions in ISA specification. In Interactive Theorem Proving, volume 7406 of LNCS,
pages 338–344. Springer Berlin Heidelberg, 2012.

19. A. Fox. Improved tool support for machine-code decompilation in HOL4. In Interactive Theorem
Proving 2015, pages 187–202, 2015.

20. A. Fox and M. O. Myreen. A trustworthy monadic formalization of the ARMv7 instruction set archi-
tecture. In Interactive Theorem Proving, pages 243–258, 2010.

21. Fujitsu. K computer. http://www.top500.org/system/177232, 2017. [Online; accessed
19/06/2016].

22. Gaisler. LEON3 processor. http://www.gaisler.com/index.php/products/
processors/leon3, 2017. [Online; accessed 19/06/2017].

http://www.cl.cam.ac.uk/~acjf3/l3/
https://riscv.org/
http://top500.org/system/177999
http://www.esa.int/Our_Activities/Space_Engineering_Technology/LEON_the_space_chip_that_Europe_built
http://www.esa.int/Our_Activities/Space_Engineering_Technology/LEON_the_space_chip_that_Europe_built
http://www.top500.org/system/177232
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3

32 Zhé Hóu et al.

23. S. Goel. Formal verification of application and system programs based on a validated x86 isa model,
2016. PhD Thesis, The University of Texas at Austin.

24. S. Goel, W. A. Hunt, and M. Kaufmann. Abstract stobjs and their application to ISA modeling. In
ACL2 2013, pages 54–69, 2013.

25. K. E. Gray, G. Kerneis, D. Mulligan, C. Pulte, S. Sarkar, and P. Sewell. An integrated concurrency
and core-ISA architectural envelope definition, and test oracle, for IBM POWER multiprocessors. In
Proceedings of the 48th International Symposium on Microarchitecture, MICRO-48, pages 635–646.
ACM, 2015.

26. S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu. Tsotool: A program for verifying memory systems
using the memory consistency model. SIGARCH Comput. Archit. News, 32(2):114–, 2004.

27. L. Higham, J. Kawash, and N. Verwaal. Defining and comparing memory consistency models. In In
Proc. of the 10th Int’l Conf. on Parallel and Distributed Computing Systems, pages 349–356, 1997.

28. Z. Hou, D. Sanán, A. Tiu, Y. Liu, and K. C. Hoa. An executable formalisation of the sparcv8 instruc-
tion set architecture: A case study for the LEON3 processor. In FM 2016: Formal Methods - 21st
International Symposium, 2016, Proceedings, pages 388–405, 2016.

29. N. Khakpour, O. Schwarz, and M. Dam. Machine assisted proof of ARMv7 instruction level isolation
properties. In Certified Programs and Proofs, volume 8307, pages 276–291. LNCS, 2013.

30. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler with a proof
assistant. In In Proceedings. 33rd ACM Symposium on Principles of Programming Languages, 2006.

31. X. Leroy. The CompCert C verified compiler. http://compcert.inria.fr/man/manual.
pdf, 2015. [Online; accessed 29/01/2016].

32. J. Lim and T. Reps. Tsl: A system for generating abstract interpreters and its application to machine-
code analysis. ACM Trans. Program. Lang. Syst., 35(1), Apr. 2013.

33. H. Liu and J. S. Moore. Executable JVM model for analytical reasoning: A study. In Proceedings of
the 2003 Workshop on Interpreters, Virtual Machines and Emulators, pages 15–23. ACM, 2003.

34. P. Loewenstein and S. Chaudhry. Multiprocessor memory model verification. In Proc. Automated
Formal Methods. FLoC workshop, 2006.

35. D. Lustig, M. Pellauer, and M. Martonosi. Pipecheck: Specifying and verifying microarchitectural en-
forcement of memory consistency models. In 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 635–646, Los Alamitos, CA, USA, dec 2014. IEEE Computer
Society.

36. D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem: reusable engineering of real-
world semantics. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, pages 175–188, 2014.

37. S. Owens. Reasoning about the implementation of concurrency abstractions on x86-tso. In Proceed-
ings of the 24th European Conference on Object-oriented Programming, ECOOP’10, pages 478–503,
2010.

38. S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO, pages 391–407. Springer
Berlin Heidelberg, 2009.

39. S. Park and D. L. Dill. An executable specification, analyzer and verifier for rmo (relaxed memory
order). In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architec-
tures, SPAA ’95, pages 34–41. ACM, 1995.

40. G. Petri. Operational semantics of relaxed memory models, 2010. Thesis.
41. C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell. Simplifying arm concur-

rency: Multicopy-atomic axiomatic and operational models for armv8. Proc. ACM Program. Lang.,
2(POPL), Dec. 2017.

42. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal of Logic and
Algebraic Programming, 79(6):397–434, 2010.

43. G. Roşu and A. Ştefănescu. Towards a unified theory of operational and axiomatic semantics. In
A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Automata, Languages, and Program-
ming, pages 351–363, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

44. A. Roy, S. Zeisset, C. J. Fleckenstein, and J. C. Huang. Fast and Generalized Polynomial Time
Memory Consistency Verification, pages 503–516. Springer Berlin Heidelberg, 2006.

45. A. Santoro, W. Park, and D. Luckham. SPARC-V9 architecture specification with Rapide. Technical
report, Stanford, CA, USA, 1995.

46. S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen, and J. Alglave.
The semantics of x86-CC multiprocessor machine code. In Proceedings of the 36th Annual ACM
Symposium on Principles of Programming Languages, pages 379–391. ACM, 2009.

http://compcert.inria.fr/man/manual.pdf
http://compcert.inria.fr/man/manual.pdf

Title Suppressed Due to Excessive Length 33

47. Securify. Securify: Micro-kernel verification. http://securify.scse.ntu.edu.sg/
MicroVer/. [Online; accessed 20/03/2020].

48. P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. X86-tso: A rigorous and usable
programmer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97, July 2010.

49. P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal Specification of Memory Models, pages 25–41.
Springer US, Boston, MA, 1992.

50. G. Smith. Principles of secure information flow analysis. In Malware Detection, pages 291–307,
2007.

51. SPARC. The SPARC architecture manual version 8. http://gaisler.com/doc/sparcv8.
pdf, 1992. [Online; accessed 27/10/2015].

52. SPARC. The SPARC architecture manual version 9. https://cr.yp.to/2005-590/
sparcv9.pdf, 1994. [Online; accessed 12/06/2017].

53. XtratuM. Xtratum hypervisor. http://www.xtratum.org/, 2017. [Online; accessed
19/06/2017].

54. Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: a framework for axiomatic and ex-
ecutable specifications of memory consistency models. In 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings., April 2004.

55. Y. Zhao, D. Sanán, F. Zhang, and Y. Liu. Reasoning about information flow security of separation
kernels with channel-based communication. In TACAS 2016, volume 9636, pages 791–810. Springer,
2016.

http://securify.scse.ntu.edu.sg/MicroVer/
http://securify.scse.ntu.edu.sg/MicroVer/
http://gaisler.com/doc/sparcv8.pdf
http://gaisler.com/doc/sparcv8.pdf
https://cr.yp.to/2005-590/sparcv9.pdf
https://cr.yp.to/2005-590/sparcv9.pdf
http://www.xtratum.org/

	Introduction
	Background
	Low-level ISA Model
	High-level ISA model
	SPARC TSO Memory Model
	Conclusion

