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Abstract

The future of multi-blockchain architecture depends on the emergence of new protocols that enable consensus between
trustless cross-blockchain participants. However, interoperability between blockchains remains a research challenge. The
existing interoperability approaches provide integration through solutions using a middleware system, making it difficult
to gain confidence in the security and correctness of the process. A cross-blockchain protocol must provide a self-verifiable
state proof that encodes trust in the transfer process to guarantee consensus. Inspired by the burn-address concept, we
propose a Burn-to-Claim cross-blockchain protocol to exchange assets between two networks. The proposed protocol
transfers assets from one blockchain system to another so that the asset is burned from the source blockchain and
recreated on the destination blockchain. Our protocol makes use of digital signatures, hash-time-locks and integration
mechanisms to perform cross-blockchain transactions in a distributed manner. We theoretically prove that the proposed
cross-blockchain protocol transfers assets securely and correctly. In addition, the experimental results demonstrate the
feasibility of the Burn-to-Claim protocol when used in an application environment.
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1. Introduction

Blockchain technology offers an immutable, decentral-
ized, and transparent mechanism for transaction process-
ing. It has the potential to improve business processes
and transaction integrity for enterprises. Interestingly, be-
yond its role as a mechanism for exchanging values within
a particular network, one might reasonably assume that
a blockchain system should be able to transfer assets be-
tween networks as well. However, the current architecture
of this technology effectively limits transactions to a sin-
gle network. As a result, a blockchain application cannot
uniformly use multiple networks and obtain a composition
of their guarantees (Belchior et al., 2020). An underly-
ing reason for this issue is that each blockchain network
has its own state assumptions (Borkowski et al., 2018a),
and without restrictions, one network cannot verify the
information on a different network. Therefore, currently,
seamless transactions between two blockchain networks are
difficult (Lafourcade and Lombard-Platet, 2020).

The concept of interoperability allows two blockchains
to function together. A blockchain is interoperable with
another blockchain if it can provide a state-guarantee for
cross-blockchain transactions to the other network, and
vice versa (Belchior et al., 2020). We formalise a seam-
less transaction of interoperability by extending the previ-
ous works of (Lafourcade and Lombard-Platet, 2020; Pillai
et al., 2020b).

Interoperability brings the possibility of cross-blockchain
communication and the ability to share, reveal, and access
information within the trust model of a blockchain. Our

vision of next generation blockchains is that they should
have an internal or built-in mechanism for composabil-
ity, the lack of which makes it difficult for applications to
commit transactions across multiple networks. Currently,
the blockchain landscape has different types of networks,
such as permissionless (Bitcoin and Ethereum) and per-
missioned (Hyperledger fabric, Besu and Sawtooth) net-
works. Such a distinction exists because some applica-
tions require different properties. For instance, Bitcoin
offers security through a higher number of participating
nodes which results in low performance. In contrast, Hy-
perledger fabric offers better performance with a fixed set
of participating nodes, implying lower security.

Decentralised cross-blockchain transfer protocols should
allow participants to fully utilise the existing variety of
blockchains, instead of being locked to a single blockchain
type. These cross-blockchain transaction will serves as
a cornerstone for the next-generation of blockchain-based
systems. Cross-blockchain integration would enable inter-
operability among distinct and potentially heterogeneous
blockchains (Hardjono et al., 2018).

With the current protocols of blockchain systems, it
is difficult to have direct interoperability between systems
(Borkowski et al., 2018b). There is no method in the sys-
tem to provide a cross-blockchain value transfer; there-
fore, external third-party services are the preferred so-
lutions (Belchior et al., 2020). However, such methods
come with a trade-off reduction in decentralisation, which
eventually leads to security issues on the system (Wang
et al., 2019b). Moreover, current blockchain systems can-
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not recognise or verify any such process carried out by
a third-party provider. To address these issues, we pro-
pose to use a carefully designed internal process that is
integrated with the core blockchain protocol to carry out
asset transfer transactions and facilitate interoperability
between systems. That way, the system and its users are
in control and aware of the assets being transferred.

This paper introduces the Burn-to-Claim protocol —
a built-in method to address cross-blockchain interoper-
ability. This protocol is built upon our preliminary work
on cross-blockchain transactions and interoperability (Pil-
lai et al., 2020a,b). It consists of two components: an
exitTransaction function to generate a self-verifiable proof
that the transaction is committed in the source network
and an entryTransaction function to verify the validity of
the proof in order to recreate the asset in the destination
network. A key advantage of this built-in method is that
it is not system/application-specific. Unlike existing ap-
proaches which rely on external middleware mechanisms,
our protocol does not require a new crypto-asset or trusted
third party. Instead, it implements a ‘universal mecha-
nism’ for all applications and tries to enforce the same in-
tegrity requirements across different connected blockchain
networks. The proposed protocol can serve as a frame-
work for cross-chain asset transfer, where applications can
construct a network based on its trust assumptions and
guarantees, yet all these heterogeneous networks share the
same cross-blockchain transfer protocol.

A summary of our contributions is as follows:

• Protocol: We propose a new protocol, i.e., an agreed
set of processes, for cross-blockchain asset transfer
where transactions are performed in a decentralised
and trustworthy manner.

• Construction: We propose a novel and simple con-
struction that is flexible and can be adopted for dig-
ital asset transfer among blockchain networks with-
out violating the blockchain technology’s key char-
acteristics.

• Analysis: We perform a theoretical analysis to demon-
strate that the properties of the proposed protocol
are correct, secure and fair.

• Experiment: We provide a reference implementa-
tion of the proposed protocol in test networks to
prove the concept.

1.1. Overview of the proposed protocol

Let us consider a common example of a bank transac-
tion. Typically it transfers money from one bank account
to another and is initiated by an account holder. Before
the transfer takes place, the users should establish certain
knowledge such as account details. The sender proves her
credentials, and, after validation, the sender can initiate
the transfer At the same time, the transfer-amount gets

blocked by the sender’s bank from further use (preventing
double-spending). Here the system is generating a proof
that the money exists and has been locked; thereby, the
intermediaries/ counterparties can rely on it and act. In
a banking scenario, we deal with money as a commonly
accepted asset, but the form of the asset can be different
in other applications.

In the blockchain setting, a cross-blockchain protocol
interacts with two blockchain networks, namely the source
and the destination networks which have different ledger
data. Therefore, we need to create a universal standalone
proof of transfer receipt that can be stored in the ledger,
not as a state typically verified by state-validation sys-
tem such as Merkle tree. Our cross-blockchain protocol
has three stages: prepare, commit and execute. At
the prepare stage, the users agree and establish the trans-
fer parameters. We assume this process occurs out-of-
band through a secure channel. At the commit stage, the
source network generates a time-locked and publicly ver-
ifiable receipt as a proof-of-transfer using exitTransaction
function. We define this proof-of-transfer as a committed
cross-blockchain transaction.

Using the time-lock mechanism, the transaction locks
the asset in the source network for a pre-defined/ cer-
tain period of time. Finally, at the execute stage, upon
presenting the proof-of-transfer, the destination network
nodes verify the validity and correctness of the proof-of-
transfer and execute the exchange through an entryTrans-
action function. We assume that the recipient’s network
nodes can validate the proof-of-transfer through gateway
nodes. The recipient can claim the transaction if it is
within the conditional time-bound, and then the proof-
of-transfer has been validated. In case of an unsuccessful
transaction, which means that the recipient did not claim
the asset within the time-lock period, the sender is able to
reclaim the asset.

In summary, we present a protocol for any blockchain
based systems to ensure the integrity of cross-chain trans-
fers. To illustrate the concept, we use an Ethereum-based
blockchain setting with smart contracts in this paper. How-
ever, theoretically our protocol can be incorporated in
other DLT-based systems through the modification of the
gateway nodes’ functionalities and mining process. Tech-
nically, interoperability in any DLT based systems aims
to ensure the integrity of cross-chain data. Therefore, our
proposed protocol can serve as a general interoperability
solution for asset transfer under certain assumptions listed
below. Burn-to-Claim is flexible in terms of the choice
of public and private networks; however, the performance
and security guarantees depend on the properties of the
underlying blockchain technologies and consensus proto-
cols.

1.2. General assumptions

This section lists all general assumptions considered in the
design of the proposed cross-blockchain protocol. How-
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ever, the network specific assumptions and requirements
are discussed in Section 4.3.1.

• The underlying blockchain networks are permission-
less and secure with a concept of transaction finality
within finite time, after which the transactions can-
not be rolled back (Belotti et al., 2019).

• The blockchain networks involved have agreed to
participate in the cross-blockchain transaction pro-
cesses and are able to process digital asset transac-
tion within their networks if the other party presents
a valid proof. The exact asset and transfer policy de-
pends on the application and must be agreed on by
both parties.

• Regarding mining nodes, we envision the concept of
merge mining where network nodes are motivated to
take part in the respective proof-mechanism (mining
process) on both chains (refer to network assump-
tions (Section 4.3.1) for details).

• We do not consider consensus aspects of the partic-
ipating networks, we assume network nodes comply
with the consensus requirement of its own network.

• There exist nodes that are functionally capable of
acting as gateway nodes. There is at least one gate-
way node in each network capable of replicating cross-
blockchain data between networks.

• A transaction output carries a single output which
corresponds to a single asset, and the networks in-
volved recognise and form a common understanding
of the assets they are exchanging (Pillai et al., 2019).

Under these assumptions, once a transaction is broad-
cast, the network nodes verify the transaction and include
it in a block. A blockchain system tends to synchronise
using a protocol in which the network nodes constantly
try to produce new blocks and broadcast their achieve-
ments to the entire network. For example, this behaviour
is motivated by mining rewards in cryptocurrency appli-
cations. We also assume that there is an appropriate in-
centive mechanism to support participation by nodes.

2. Related Work

In this section, we briefly discuss the related work on
developing and formalising protocols for cross-blockchain
asset transfers.

Blockchain interoperability is identified as one of the
primary business requirements to address. The existing
approaches focus on asset transfer between blockchains
using trustless exchange protocols, including side-chains
(Gaži et al., 2019; Kiayias and Zindros, 2019), atomic
cross-blockchain swaps (Herlihy, 2018), and cryptocurrency
backed assets (Zamyatin et al., 2019b). However, those

solutions have specific constraints. For example, the side-
chain protocols can only support transactions between par-
ent and child chains, the atomic swaps protocol requires
interactive monitoring during execution, and finally the
cryptocurrency-backed asset transfer protocol assumes a
set of reliable smart contracts to control the underlying
process.

There are a number of efforts being made to address
interoperability using/through different integration archi-
tecture (Borkowski et al., 2019; Jiang et al., 2019; Sigwart
et al., 2020). Although they differ in architectures, most
of them follow the approach of using the source chain to
generate a proof-of-transfer and the destination chain to
recreate the asset based on it. The cross-blockchain proof-
of-transfer are either a smart contract (Sigwart et al., 2020)
or a notary scheme (Jiang et al., 2019). Generally, these
approaches must make significant assumptions. For ex-
ample, a smart contract needs to holds the transfer proof
and the verifying system must trust the communicate with
the smart contract. In a notary scheme, a pre-defined
set of validators has temporary control over assets on the
transferring chain. Some other projects (Kan et al., 2018;
Wood, 2016) focused on building a completely new ecosys-
tem for interoperable blockchains rather than enabling in-
teroperability between existing blockchain systems.

In Sigwart et al. (2020), assets are transferred through
a burning process on one chain and uses the destruction
of the data on the sender system as proof-of-transfer to
trigger the recreation of the data on the receiver system.
Their scheme proposes a relay mechanism to replicate and
cross-verify the data across networks. Once BURN is con-
firmed, any participating node can initiate the CLAIM on
the recipient network to transfer the asset. The motivation
of participants who mine the blockchain is the transaction
fee. On an updated version of their protocol, they include
a CONFIRM process where, once the claim is confirmed
by the destination chain, a confirmation transaction is ini-
tiated in the source chain. For that, the burn transaction
locks some incentive which will be awarded to the nodes
who successfully submit a claim transaction.

In Borkowski et al. (2019), tokens are transferable be-
tween networks through a coordination process of account
balancing within a shared wallet. In their scheme, a wallet
associates with multiple networks and records the balance
of token across the networks. When transferring a token,
the sender’s wallet initiates the transfer, and the recipient
wallet must acknowledge and signing it. Once both the
sender and the recipient sign the transaction, the recipient
makes a CLAIM. Then the network participants witness
the request and make a CONTEST transaction within a
given time period. At the end of the time period, through
a selection process, the network assigns witness awards to
the miner who proposed the transaction.

In Kan et al. (2018), a router network helps to cre-
ate connections between different networks. The router
network consists of nodes within the connected networks.
A minimum requirement to join this ecosystem of con-
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Table 1: Summary of notations used in this paper
Notations Description
C Blockchain
B, b, Tb† List of blocks, single block and list of transactions in a previous block respectively
Q, Q′ Current blockchain state and new state respectively
N1, N2 Blockchain network 1 and network 2 respectively
Π State transition function
v Asset
Kp, Kr Public key and private key respectively.
Kadr, β Blockchain address and Burn address.
σ Digital signature
Tx, Txt, Txe,Txr Tx† Transaction, exit, entry, reclaim and previous transaction respectively
γ, H(γ), γ, γ̂ Secret code, hash of secret code, encrypted secret code with private and public keys respectively
t, tlock Time and time lock respectively

nected networks is to make one node into a router node.
The router node then routes information to the connected
chains. For example, when the chain A wants to make a
transaction with the chain B, chain A’s router establishes
a connection with chain B’s router and sends the transac-
tion. The process of cross-chain transactions happens in
three stages of prepare, pre-commit and commit. In the
prepare stage, the transaction is packaged and forwarded
to the destination chain through the router node. The des-
tination chain issues a pre-commit, which then makes the
final commit on both chains.

In our protocol, the sender who wishes to transfer the
asset must present a proof that the asset is locked. To
achieve this, we adopt the proof-of-burn protocol (Karan-
tias et al., 2019; Stewart, 2012), which presents a mecha-
nism where the sender transfers the asset to a non-spendable
burn-address which is inaccessible to anybody and the
sender can then present that transaction as a proof for the
locked asset. Importantly proof-of-burn protocol is a more
energy-saving alternative to the proof-of-work protocol. In
proof-of-burn based systems, for security guarantees, digi-
tal assets are intentionally “burned” and the process does
not require powerful mining resources.

Based on these existing works, a number of slightly dif-
ferent approaches have been proposed for cross-blockchain
interactions. Generally, due to the distributed nature of
blockchain, it is impossible to validate data across different
networks without a middleware mechanism. However, pro-
viding state composition guarantees for a cross-blockchain
transaction is challenging. To avoid these complications,
our protocol utilises a ’burn’ concept that can provide a
cryptographical guaranty for transactions (Karantias et al.,
2019). In Lafourcade and Lombard-Platet (2020) the ‘burn’
concept is described as ‘bin’ address, whereas the ‘burn’
concept presented in Sigwart et al. (2020) is complemen-
tary to techniques we used in our approach. Our protocol
utilises the burn concept in combination with a hash-time-
lock to build a cross-blockchain system.

3. Preliminaries

There are various definitions for blockchain operations
in the literature based on the type of applications, but they
usually do not cover all the assumptions required to de-
fine our protocol. Therefore, in this section, we define the
terminology and general features of blockchains required
to explain the aspects of cross-blockchain interoperability.
We list the notations used in this paper in Table 1.

A blockchain implementation can be seen as a series
of concurrent mutations of its global state through a state
transition function that takes blocks as input.

Definition 1 (Block). A block, written as b, is a tuple of
three elements where the first element is the Merkel root of
a list of transactions, and we denote the list of transactions
in the block by Tb; the second element is the hash reference
to a previous block; and the third element is the metadata
including some auxiliary verification data.

A blockchain is a chain of blocks where each block con-
tains several transactions, a validation proof and the hash
of the previous block.

Definition 2 (Blockchain). A blockchain, written as C,
is a tuple (G, B) where G is a genesis state and B =
[b1, b2, ..., bn] is a list of blocks.

The blocks are cryptographically linked such thatH(b1)
is included in b2 and H(b2) is included in b3 , · · · , H(bn−1)
is included in bn.

Definition 3 (State). A state, written as Q, is the set of
transactions and the data associated with on-chain objects
in a blockchain at a certain time t.

A state transition function denoted by Π takes the cur-
rent state Q and a block b to produce new state Q′, we
define this operation as Π(Q, b) = Q′. In the context of
a blockchain, a state is valid if it is accepted by the ma-
jority of nodes (Nakamoto, 2008). A block b is valid in a
state Q if Tb ⊆ Q and Q is valid in a blockchain. Here we
loosely use set operations on lists when the context is un-
derstood. We assume that the state Q is monotonic once
it is settled on a blockchain C with height k. It is required
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that the state Q only depends on the stable portion of
the blockchain C, i.e., the blocks that are buried under k
(recommended block height for security (Sompolinsky and
Zohar, 2016)) subsequent blocks. This means that once a
transaction Tx is settled under a state Q of a blockchain
C, it will not change due to a blockchain reorganization.

Definition 4 (Blockchain address). A blockchain address
is a hashed value generated by Algorithm 1 from a key
pair (Kp, Kr).

In a blockchain network, a user is defined by a unique
address (Kadr). Let KS

adr and KR
adr be the sender and

the recipient’s address respectively where the superscripts
S and R represent the sender and the recipient respec-
tively. The address is constructed from the user’s pub-
lic key (Kp) as shown in Algorithm 1. The private key
(Kr) is used to generate the digital signature (Wang et al.,
2019a). The digital signature is generated through a func-
tion, sign(M, Kr), that takes a message (M ) and the pri-
vate key of the sender (Kr) as inputs to create the signa-
ture (σ) as an output. On the other hand, the verification
function verify(M , Kp, σ) checks whether the signature
σ is valid for the message M by using the sender’s public
key Kp.

Algorithm 1 A blockchain address generation method.

1: function genAddress(Kp)
2: fingerPrint ← 0x00 || RIPEMD160(SHA256(Kp))
3: checkSum ← SHA256(SHA256(fingerPrint))
4: Kadr ← base58(fingerPrint || checkSum[:4])
5: return Kadr

6: end function

In Algorithm 1, we assume that an elliptic curve algo-
rithm is used to generate the public key. The algorithm
takes the public key as an input to generate the corre-
sponding address from the key. First, the public key, Kp

is hashed by the SHA256 algorithm, which is hashed again
using the RIPEMD160 hash function. After that, the out-
put is concatenated (denoted by ||) with a network specific
ID to create a fingerprint. The fingerprint is then hashed
twice to generate a checkSum. Finally the fingerprint and
first 4 bytes (denoted by [:4]) of the checkSum are concate-
nated and formatted through a base58 encoder to generate
the blockchain address (Kadr) for a user.

For a given transaction Tx from a public key Kp re-
ferring to an address Kadr and a signature σ, the verifi-
cation function verify(Tx, Kp, σ) verifies σ. Once σ is
verified, the address Kadr needs to be verified via Algo-
rithm 1 (Karantias et al., 2019).

For the sake of simplicity, we combine the digital sig-
nature verification process and address generation process
using a single function as follows.

Definition 5. (spendVerifier) The function spendVerifier
is defined as below.

• spendVerifier returns true if verify(Tx, Kadr, σ) re-
turns true and genAddress(Kp) returns Kadr for a
given transaction Tx from a public key Kp referring
to address Kadr.

• Otherwise spendVerifier returns false.

Definition 6 (Burn-address). A burn-address given as β
is an address to which one can send assets, but from where
they can never be recovered because the private key of the
corresponding address is not known/ accessible.

Typically, burn addresses are verifiable but unspend-
able because those addresses do not have a corresponding
private key. The proof-of-burn protocol (Karantias et al.,
2019) presents proofs that if the underlying cryptography
is secure, then the probability of finding a private key for
a given burn address is negligible.

We design the burn address to have a reference of
the recipient’s identity, therefore, we take the recipient’s
blockchain address and run it through the blockchain ad-
dress generation function getAddress which is similar to
genAddress function presented in Algorithm 1. The only
difference is that the getAddress function takes the recip-
ient’s blockchain address KR

adr as input and returns β as
output.

Definition 7 (Assets). We define an asset v as a digital
representation of objects available on a blockchain in the
form of tokens which are tradable units used in addition
to native currencies of a given blockchain.

Definition 8 (Transaction). A transaction1 Tx is a tuple
〈KS

p ,KS
adr,KR

adr, v, Tx†〉 where v is an asset and Tx† is the
previous transaction where v is transferred from. Each Tx
encodes a transaction value and any relevant parameters
associated with it.

A transaction value includes the transfer value and any
related transaction fee, which is the fee a sender offers to
a miner node who successfully includes that transaction
in a block. The parameters such as time, date and other
metadata information are omitted for simplicity.

A typical transaction protocol (Nakamoto, 2008) in
blockchain is presented in Algorithm 2, where a valid trans-
fer of v from KS

adr to KR
adr is defined as KS

adr → KR
adr : v.

Algorithm 2 A general blockchain transaction protocol.

1: function trans(Tx〈KS
p ,KS

adr, KR
adr,v,Tx†〉,σ)

2: if spendVerifier(KS
p , KS

adr, σ) and

3: assetVerifier(Tx†, KS
adr) is true then

4: KS
adr → KR

adr : v
5: else
6: invalid transaction
7: end if
8: return transaction receipt
9: end function

1As in the literature (Buterin et al., 2015), we loosely use “trans-
action” to refer to both a data structure and an operation.
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A transfer will only occur if both spendVerifier and
assetVerifier functions return true.

Definition 9. (assetVerifier) The function assetVerifier
is defined as follows.

• It first checks the validity of the asset v by ensuring
that the addressKS

adr indeed carries (enough amount
of) the asset (Nakamoto, 2008). We refer to this first
step as the balance function balance(KS

adr), which
outputs the following:

1. true if enough unit of the asset is in KS
adr,

2. false if not enough unit of the asset is in KS
adr.

• Then it checks whether the transaction Tx referred
by the previous transaction Tx† is included in a valid
previous block Tx† ∈ Tb† (validate with a Merkle
Tree proof2) which is in a valid state (check the
longest chain).

• The function assetVerifier returns true if both of the
above steps return true; otherwise it returns false.

Finally, every transaction returns a transaction receipt
which includes transaction information from its execution.

Definition 10 (Transaction finality). Transaction finality
refers to the guarantee that a transaction is permanently
accepted by the network. In effect, it is computationally
infeasible to revert or alter that transaction afterwards.

Transaction finality can be either deterministic or prob-
abilistic (Saito and Yamada, 2016). Deterministic final-
ity is when a transaction is immediately considered fi-
nalised once it is included in a block and appended to
the blockchain. For this, an elected leader with sufficient
authority proposes the block.

Probabilistic finality is a protocol-driven process where
the probability of a transaction’s finality increases as more
blocks are added to the blockchain after the transaction.
Therefore, for most protocols providing probabilistic final-
ity, a recommended number of blocks must be added fol-
lowing the transaction until it can be considered securely
complete. For example, in Bitcoin, it is recommended to
wait until six additional blocks are mined before consider-
ing a transaction to be final.

Definition 11 (Node). A node is a computing device
within the distributed network. Some are full nodes that
keep a local copy of the full blockchain data, and others are
light nodes that depend on a full node when performing
transactions.

Typically the nodes do not trust the state change in-
formation that they receives, so they performs their own
validation. A state is valid if it is accepted by the major-
ity3 of participants in the network.

2A cryptographic hash tree where every leaf node is the hash of
a data block.

3The definition of majority is protocol-dependent.

Definition 12 (Blockchain Interoperability). Assuming
that independent networks of blockchain are able to pro-
vide self-verifiable state proofs, then two blockchain sys-
tems N1 and N2 are interoperable if a transaction Tx
which belongs to N1 can be accepted by a set of veri-
fiers/validators in N2, and vice versa.

It has been proved that general interoperability be-
tween blockchain systems is not possible. In this paper,
we adopt a relaxed definition of blockchain interoperabil-
ity (Lafourcade and Lombard-Platet, 2020). In this re-
laxed definition, under the assumption that participants
from one network are able to verify and validate data from
the other network, interoperability can be achieved.

4. Proposed cross-blockchain protocol

The Burn-to-Claim protocol consists of two main func-
tions for communication between networks: exitTransac-
tion function for locking the asset and generating a proof-
of-transfer in the source network, and entryTransaction
function for verifying and validating the proof-of-transfer
in order to recreate the asset in the destination network.

Our protocol requires the sender to generate a secret
code γ using a random key generator function, keyGen().
The sender then encrypts the secret code using the recip-
ient’s public key via encrypt(KR

p ,γ) = γ̂ and shares the
encrypted code γ̂ with the recipient. It will then be de-
crypted via decrypt(KR

r , γ̂) by recipient to get the γ. We
assume the public key information is shared among users
during the preparation stage. After the completion of the
exitTransaction the recipient uses the knowledge of this γ
as part of the validation process within the entryTransac-
tion. For a successful transfer the recipient must reveal
the γ within a time limit through the entryTransaction.
For this part, the recipient encrypts the secret code using
his/her private key as follows: encrypt(KR

r ,γ) = γ and
includes γ in the entryTransaction. The mining nodes de-
crypts γ using decrypt(KR

p , γ) to get the γ and validate
with the received hash of γ included in the exitTransac-
tion.

4.1. The exitTransaction function

The exitTransaction function must be initiated on the
source network by the sender. This execution checks the
validity of the transaction and generates a proof-of-transfer.
The transaction-validity process checks the authenticity of
the sender’s signature and the owner’s ability to spend.
The proof-of-transfer generator produces a proof that the
asset exists and it is locked while the asset is in tran-
sit. This transaction aims to create a proof-of-transfer for
that asset in the source blockchain network. The proof-
of-transfer created by the system as part of the protocol
is essential for the system to maintain security over the
transaction information. Moreover, the network should
eventually come to a consensus about the asset transfer
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and thereby the consistency of the information is guaran-
teed.

In our protocol, the exitTransaction uses a conditional
time-lock with a hashed secret code. The former deter-
mines a time frame for the transaction, and the latter is
used to claim the asset in the destination network. A time-
lock is defined as a function that locks the output of a
transaction for a period of time such that the asset cannot
be spent until the time has elapsed4.

Tx〈KS
P ,K

S
adr, β, v, Tx

†〉, H(γ), σ

exportVerifier
Ä
KS

adr, v, σ
ä
=true?

KS
adr → β : v

time-lock(v, t)

Txt ← (Tx,H(γ), σ)

receipt

No

Yes

input

output

Figure 1: The exitTransaction

We design our transaction protocol based on blockchain
transaction protocol presented in Algorithm 2 (Section 3).
The exitTransaction defined in Figure 1 takes a tuple of
(Tx, H(γ), σ) as input arguments where Tx〈 KS

p , KS
adr, β,

v, Tx†〉 includes the sender’s public key (KS
p ), address

(KS
adr), burn-address (β), asset (v) and the previous trans-

action (Tx†) in which the asset v was last spent. H(γ) rep-
resents the hash value of secret code γ and σ is the digital
signature. We denote the data structure of exit transac-
tion as Txt, which is a tuple (Tx, H(γ), σ) consisting of
a transaction, a hash of secret code and a signature.

The exitTransaction initiates the exportVerifier . The
exportVerifier function consists of two sub-functions spend-
Verifier and assetVerifier , and returns true when both
sub-functions return true, otherwise it returns false.

The exitTransaction is executed by the mining nodes.
If exportVerifier returns true then the transaction executes
the transfer of the asset to the given burn-address KS

adr →
β : v with conditions such that the asset is time-locked
within the source network for a predetermined time-lock
period t and the hashed secret code H(γ) is added to the
data structure of the transaction. In either case of valid
or invalid transaction it produces a transaction receipt.

4.2. The entryTransaction function

An entryTransaction function must be initiated in the
destination network by the recipient. Upon initiating the

4https://bcoin.io/guides/cltv.html

entryTransaction with the proof-of-transfer from the source
network, the network nodes verify the proof-of-transfer
and recreate the asset’s validity.

Tx〈KR
P ,K

R
adr, Txt〉, γ̂, σ

importVerifier(Tx, Txt, σ)=true &

β ⇒ KR
adr : v

Txe ← (Tx, γ, σ)

receipt

No

Yes

Input

output

Txt.time-lock under limit &

H(decrypt(γ̂,KR
P ))=Txt.H(γ)

Figure 2: The entryTransaction

The entryTransaction defined in Figure 2 takes a tu-
ple (Tx , γ, σ) as input where the transaction Tx〈KR

p ,

KR
adr, Txt〉 includes the recipient public key KR

p , the recip-

ient address KR
adr, and the previous transaction Txt. The

burn-address β and the asset v are included in the Txt.
The data structure of the entry transaction is written as
Txe, which is also a tuple (Tx, γ, σ) of a transaction,
secret code, and a digital signature of R.

The importVerifier consists of two functions: spend-
Verifier and proofVerifier ; it returns true when both sub-
functions return true, and returns false otherwise. The
function spendVerifier returns true if both the given burn-
address β and KR

adr are generated from KR
p , otherwise, it

returns false. A proofVerifier is an extended version of as-
setVerifier . The proofVerifier returns true if the balance(β)
= burn, in the Txt and that Txt ∈ Tb, and Tb ⊆ Q, oth-
erwise returning false. Here the nodes on the destination
network need to verify the proof from the source network.
We assume that through the gateway mechanism, the par-
ticipating network will be able to replicate relevant cross-
blockchain proof data. In addition, through the previous
transaction, any node can access the specific transaction in
the source network for verification. Once the importVeri-
fier function returns true, the mining nodes need to check
the time-lock and the secret code. If the previous trans-
action’s time lock Txt.time-lock is under the time limit
and H(decrypt(γ, KR

p )) = Txt.H(γ) then the network is-
sues an equivalent value of the asset in the burn address β
to the recipient. Note that technically the asset cannot be
transferred from β to the recipient — the asset is recreated
on the recipient’s network. To distinguish it from a normal
transfer denoted by →, this operation is denoted by β ⇒
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KR
adr : v. We assume that both the source and the destina-

tion networks (synchronised with a global clock) run on a
global time zone Zamyatin et al. (2019a). Supposing that
the time is within the time-lock period and the encrypted
secret code matches with the hash value embedded in the
transaction, the network awards the asset to the recipient
address KR

adr.

4.3. Workflow of the proposed protocol

This section presents a walk-through of how the Burn-
to-Claim protocol works. We begin with a use case of
two blockchain systems which are self-sufficient and se-
cure (Lafourcade and Lombard-Platet, 2020). The two
networks run different applications, but they want to in-
teroperate. These networks may have distinct consensus
mechanisms. It is assumed that the majority of consensus
participants on both networks are honest. Additionally,
even though these systems are not functionally connected,
they have enough credibility and both are governed by
a higher-level operation scheme/ protocol. For example,
they can be two different businesses with a collaborative
business interest, different branches of a company or differ-
ent departments in an organisation. The main objective of
this research is to address the cross-blockchain transaction
proof-problem. Therefore, we focus on the construction of
consensus and how the transactions are verified.

4.3.1. Network assumptions

To address the interoperability we made some assump-
tions about the network participants and their ability to
mine the transaction. We assume that the cryptographic
primitives (Wang et al., 2019a) of the networks are se-
cure. We make the same assumptions for the underlying
network as in Eyal et al. (2016); Kiayias et al. (2017);
Kokoris-Kogias et al. (2018); Zamyatin et al. (2019b). For
example, there is a global clock, and the honest nodes are
well connected and are able to communicate with each
other.

In our protocol, elected nodes function as gateway nodes
on both the networks. These gateway nodes listen to
events triggered by the cross-blockchain transaction and
relay relevant data to their respective networks. A relaxed
assumption is considered where a gateway node may not
be a trusted node in the network therefore its activities are
regulated using a penalty for malicious activities. Hence,
during data sharing, both the source and target gateway
nodes must follow their corresponding networks policy and
rules. In a private network, gateways are accepted as a
trusted node whereas in other networks gateways must
prove its trustworthiness. Therefore, we assume to sup-
port reliable data sharing, and that networks can use some
mechanism to produce the malicious misbehaviour report
and corresponding penalty process (Hardjono, 2021).

Regarding mining nodes, we envision the concept of
merge mining, where nodes are participating in the min-
ing process of multiple networks for financial benefit (Jud-
mayer et al., 2017; Zamyatin, 2016). The nodes can rely on

decentralised integration mechanisms that can identify and
address cross-blockchain integration. This decentralised
integration mechanism acts as a verification method for the
cross-blockchain protocol. The architecture of our model
can be seen as a number of networks (depending on the
topology) connected through an integration mechanism to
create a network-of-networks.

There will be multiple nodes performing merge min-
ing on the same network; therefore, they will be compet-
ing against each other for the mining reward. We assume
that not all nodes will verify the transaction, but a suf-
ficient number of them must do so to satisfy the security
of the system. The other mining nodes will accept the
proposal made by a merge mining node based on the cred-
ibility(Ferdous et al., 2011) of that node in the network.
We consider detailed discussions of the integration mech-
anism as outside the scope of this paper.

4.3.2. Running Example

We consider an example where a sender S in the blockchain
network N1 wants to transfer an asset to a recipient R in
the blockchain networkN2. S first submits an exitTransac-
tion to network N1. The network N1 executes the trans-
action and effectively burns S’s asset on N1. R notices
that the asset has been burned successfully and submits
the proof of burn to the network N2. Network N2 ver-
ifies the proof and, if successful, recreates the asset and
assigns it to R’s account. Figure 3 shows a brief overview
of the protocol construction. This consists of three stages:
Prepare, Commit, and Execute.

Prepare stage. In the prepare stage, first, Sender S and
Recipient R shall agree on a shared secret code γ via an
asymmetric key exchange mechanism. S generates the se-
cret code γ and encrypts it with the recipient’s public key,
KR

p and then shares the encrypted secret code γ̂ with the
recipient; Secondly, they must agree on the time-lock pe-
riod t; Thirdly, S needs to generate the burn address.

We now discuss the use and importance of these pa-
rameters. In order to use an asset from an address Kadr,
a user needs to prove the ownership of the public key that
was used to generate the address. That means any value
sent to an address with no private key can be considered
as burned. However, how do we know that an address does
not have a private key? To address this issue and to make
a more specific proof in our protocol, S uses R’s address to
generate the burn address which is given as getAddress()
and this function takes a KR

adr and returns β. This will
guarantee that the address β does not have a private key
in the source network and the β is specific to the recipient
R because it is generated from R’s address. Therefore, we
can use this transfer to specific burn address as as a valid
proof.

Now we have the proof, we need to add a provision
for retrieving the asset in case of an unsuccessful trans-
fer, which could includes the following cases: the asset is
burned on the source network and not recreated in the
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Figure 3: A high level overview of the Burn-to-Claim protocol workflow. The vertical lines represent actors and horizontal arrows represent
message activity along the time line. At the prepare stage (Section 4.3.2), sender generates and shares a secret key with recipient. At the
commit stage (Section 4.3.2), sender initiates the exitTransaction function defined in figure 1 that transfers an asset v to recipient. The
transaction gets confirmed after reaching consensus of the network and emits the transaction event. The gateway nodes then add the relevant
cross-blockchain transaction data on to the destination network. At the execute stage (Section 4.3.2), recipient initiates exitTransaction
defined in figure 2 to claim v. The destination network nodes cross-verify and propagate the transaction to be included in the next block. If
recipient fails to claim v, sender reclaims v via reclaimTransaction defined in figure 5 after the time-lock period.

recipient network, or the asset is sent to an incorrect ad-
dress. We name this procedure as reclaimTransaction and
explain the process in Figure 5. To ensure the correctness
of the reclaim process, we impose a time-lock on transac-
tion output in the source network. The time-lock mecha-
nism will prevent the sender from reclaiming the asset be-
fore the recipient claims the asset. The time-lock period is
agreed based on factors such as network latency and block
creation timing, which we refer to as transit-time.

Commit stage. In the commit stage, S creates and broad-
casts an exitTransaction to the network N1. Figure 4
shows the time-key-lock condition logic. The condition
here is that anyone claiming the transaction output (in-
cluding the asset and the miner’s fee) must reveal the se-
cret code. Therefore, the transaction can only be mined by
those miners who have access to the destination network’s
data because they need to get the secret code γ to claim
the fee. That means if no miner knows the destination
network, then this transaction will not go through in the
first place.

The time-key-lock condition mechanism allows only one
party to claim the asset at a time. For example, while the
asset in the Txt is time-locked in the source network, if
recipient R network reveals the secret code γ, the miner
who mines this transaction in the source network will be
able to reveal the code γ on the source network to claim

his/her fees; thereby γ is known to both the networks. Af-
ter that, S will not be able to claim the asset. Likewise, if
the R fails to claim the asset within the time frame, then
S reveals γ after tlock in the source network to reclaim the
asset. In our design γ is not known to the network in the
beginning; therefore, once γ is revealed, then nobody will
be able to claim the asset even after tlock.

Execute stage. The execute stage has two possibilities: ei-
ther R claims the asset within the transit time-lock period
or S reclaims the asset after the time-lock period.

a) R claims the asset: R constructs an entry transac-
tion and broadcasts it to N2. If R can prove the ownership
of KR

p and KR
adr, the network will be able to process the

transaction. However, our protocol requires a solid evi-
dence that S has burned the asset v on the source network.
Here R provides a burn-address β and Txt, which works
as proof of commit on the source network.

As specified in subsection 4.3.1, our protocol requires
a mining process where some nodes are able to mine in
multiple blockchains. With that requirement, out of the
total number of nodes, a valid gateway5 nodes propose this
transaction, and eventually, one proposal will be accepted

5A valid gateway node refers to a gateway accepted by the net-
work, this could be using a trust-based approach to elect the gateway
node.

9



yest under tlockno

R reveal secret γ to N2

H(γ)=Txt.H(γ)

S reveal secret γ to N1

yes no no

R claim v

H(γ)=Txt.H(γ) yes

invalid transactionvalid transaction valid transaction

Input

output

N1.miner gets γ from N2 &

claims his γ-locked fee

secret γ is known to N1 & N2

N1.miner claims his fee
secret γ is known to N1
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Figure 4: The exitTransaction time-key-lock condition

by the network. We assume that these gateway nodes are
able to validate the proof-of-transfer with Txt. The nodes
verify that the transaction occurred on the source network
by ensuring that the transaction is contained in a block.
This can be done by checking the chain validity (Garay
et al., 2015) of the block and the transaction.

If importVerifier returns true, the network awards the
asset v to the recipient address KR

adr. At this point the
secret code γ is known to the R network, and after that,
the source network miner can take it to the source network
to claim his/her fee, after which γ is known to both the
networks.

b) S reclaims the asset: If the recipient has not claimed
the asset within the time-lock period, the sender is notified
through an event listener or the mining node who mined
the Txt, and the sender then invokes the reclaimTrans-
action function, which is a variant of the entryTransac-
tion function and is defined in Figure 5, to claim the asset
back. The transaction first checks the signature via ver-
ify(Tx, KS

adr, σ), then checks the time-lock period and
secret code hash. As we stated earlier, our protocol re-
quires some miners to mine in both the chains. Therefore,
we assume that miners are able to check with the network
N2 before approving this transaction.

The reclaimVerifier consists of two parts: spendVeri-
fier and proofVerifier . The function spendVerifier checks
if verify(Tx, KS

p , σ) returns true and getAddress(KR
p ) re-

turns KR
adr. Then the proofVerifier returns true if the

transfer proof of Txt referring to the balance(β) = burn
and Txt ∈ Tb and Tb ⊆ Q, otherwise it returns false. The
reclaimTransaction is a variation of entryTransaction, and
can be included in the entryTransaction but, for clarity,
we present it as a separate transaction. If the spendVeri-
fier and proofVerifier return true, then the network issues
an equivalent value of the asset in the β to the sender β

Tx〈KS
P ,K

S
adr, Txt〉, γ̂, σ

reclaimVerifier()=true &

β ⇒ KB
adr : v

receipt

No

Yes

Input

output

Txt.time-lock passes the limit &

H(decrypt(γ̂,KS
P ))=Txt.H(γ)

Figure 5: The reclaimVerifier function

⇒ KS
adr : v.

5. Properties of the Burn-to-Claim protocol

This section analyses the properties such as security,
correctness, atomicity, and interoperability of the proposed
Burn-to-Claim protocol. Introducing trust in the cross-
blockchain data is one of the most important means to en-
able interoperability among blockchain networks. The in-
tegration process for exchanging information may be based
on other existing techniques (Belchior et al., 2020). How-
ever, to build trust about the shared information, we must
resolve four specific properties of the individual transac-
tions involved in the exchange process. The first is Se-
curity: a cryptographic assurance of transfer commitment
of transactions; the second is Correctness: each successful
transaction commits only one valid outcome; and the third
Atomicity: either the transfer executes the transfer of an
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asset or returns the asset (Belotti et al., 2019; Karantias
et al., 2019; Sigwart et al., 2020; Zamyatin et al., 2019a).
Finally and above all comes Interoperability: where one
network validates cross-blockchain transaction from an-
other network.

It should be noted that the burn-address in our pro-
posed protocol is not generated from a regular key-pair.
Rather a unique address is generated each time by combin-
ing the recipient address and other parameters. Therefore,
it is not spendable in the current network. This means,
with the signature scheme of the underlying cryptocur-
rency, the asset burned in the proposed scheme would re-
main unspendable. We state this result below.

Lemma 1 (Unspendability). A burn-address β is unspend-
able with respect to a blockchain address protocol in Algo-
rithm 1.

The main functionality of entryTransaction is to recre-
ate an asset, but only after the asset is burnt on the source
chain. In our protocol, the asset must be permanently
burned at the commit stage. As a result, we have the
lemma below.

Lemma 2 (Burn before claim). An asset v which is trans-
ferred from N1 to N2 must be burned on N1 before the
recipient can claim it on N2.

Next, we show that the sender who initiates the exit-
Transaction must own the asset he/she is transferring. In
exitTransaction the exportVerifier checks the transaction
validity and the owner’s ability to spend. This process
must be carried out by each mining node and must reach
the consensus on the network. Therefore, as long as the
network is secure, the participants can only exchange their
own asset.

Lemma 3 (Ownership). The function Txt can only be
successfully executed if the sender S owns the v. Let S be
a domain of the user, and v a domain of asset. An asset
has exactly one owner at a time: Owner(S, v) is true if
and only if S owns v.

A malicious sender may wish to send a conflicting trans-
action and spend the same asset again resulting in double-
spending. In order to prevent such behaviour, we intro-
duce the time-lock period where the recipient can make a
claim, and the sender needs to wait before making a re-
claim. After the time-lock period, the recipient can not
make a claim.

Lemma 4 (Double spend). The validity of the given token
only exists in one chain at a time.

An asset v is recreated on the recipient network R only
if a corresponding v has been burned on the sender net-
work S. Also once the asset has been recreated, S can not
reclaim it back on his/her chain. In other words, the state
of an asset’s validity in a multi-blockchain network, only
exists on one network at a time.

Lemma 5 (Decentralized finality). The distributed partic-
ipants of the network must agree on the process of finalising
a state change.

We will now apply the above lemmas to show the security
property of our protocol.

Theorem 1 (Security). The recipient network can rely on
the Burn-to-Claim proof-of-transfer guarantee provided by
the source network.

Proof. Based on Lemma 2, exitTransaction burns the asset
to a burn-address β which is unspendable as per Lemma 1.
The exitTransaction also checks the sender’s ability to
spend the asset (Lemma 3). Under the assumption of a
secure blockchain C, for a given Tx, committed in a valid
state Q of a C can serve as a reliable proof. Therefore, if
a Txt successfully executes a transfer KS

adr → β : v and
includes it in a block b, which executed by a state transi-
tion function Π (Q, b) = Q′ then the output of the new
state Q′ is deemed as a valid proof.

Now we analyse the correctness of the our protocol.

The exitTransaction transfers the asset v to a burn-
address β that is derived from the recipient R’s address
KR

adr. To claim v, the recipient must prove to the network
that β is derived from an address he/she owns. The func-
tion spendVerifier checks the signature σ to verify theKR

adr

and checks the whether β is derived from the given KR
adr

using the function getAddress. Therefore, only the user
who owns a private key associated with KR

adr can make a
valid claim for the asset on the destination network.

Theorem 2 (Correctness). The Burn-to-Claim protocol
only transfers an asset to the correct recipient.

Proof. Based on the exitTransaction defined in Figure 2
the recipient’s signature must be correct, then the relation
with the β must be correct. Finally the recipient must be
able to decrypt the encrypted secret code γ using his/her
private key via decrypt(γ, KR

r ). All these measures ensure
that the Txt will only transfer the asset to the correct
recipient.

Now we analyse the atomicity property of our protocol.

Whenever transfer parties do not trust each other, it
is in their interest to ensure that no participant can take
advantage of the agreed transfer. The protocol must be
constructed in such a way that the transfer is performed
in its entirety or no not at all. This property is sometimes
referred to as “all-or-nothing”. In the case of failures dur-
ing the protocol execution, every transfer participant must
be able to regain possession of the originally owned assets.

Theorem 3 (Atomicity). The transfer operation should
only execute one outcome, either the transfer succeeds and
the asset is transferred to the recipient; or it is fails and
the asset returns to the sender.
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Proof. If the recipient R claimed the asset v, it must be
that R has revealed the secret code γ. Therefore, γ is
known to the destination network N2. Now the miner
who processes the entryTransaction in source network N1

needs γ to get the fee. The miner gets γ from N2 to N1

to claim his/her fees. Thereafter, γ is known to both N2

and N1 and no one else will be able to claim the asset.
If R fails to claim the asset within the time-lock, S

would invoke reclaimTransaction defined in Figure 5 to
re-claim the asset. Due to the time-lock mechanism, S
can only reclaim after the time-lock period. During the
time lock period, γ is not known to the network.

In other cases of a transfer failure (e.g., the recipient
goes offline or the sender uses a wrong recipient address
to generate the burn address), the sender can also reclaim
the asset. With the help of time-lock and the secret code,
only the two outcomes stated in this theorem are possible
with our protocol.

Now we analyse the interoperability property of the pro-
posed protocol.

For a blockchain system, interoperability refers to cross-
communication between different blockchain networks. In
our context, interoperability is the ability to transfer as-
sets from one blockchain to another. Technically, native
coins such as BTC or ETH created by blockchains are not
transferable. However, the tokens on a blockchain that
represent digital assets can be transferred between net-
works of blockchains (Pillai et al., 2019).

Theorem 4 (Interoperability). The Burn-to-Claim pro-
tocol is interoperable w.r.t. Definition 12.

Proof. Let N1 be the sender’s blockchain network and N2

the recipient’s blockchain network; we show that N1 is in-
teroperable with N2 and vice versa, provided that N1’s
transaction can be verified by N2’s miner and N2’s trans-
action can be verified by N1’s miner.

Let a sender S burn an asset in the network N1. Then,
through an integration mechanism of gateway nodes, the
nodes in networkN2 get access to the specific cross-blockchain
data emitted from the burn algorithm (cf. Figure 1). Sim-
ilarly, if recipient R claims the asset on N2, the claim algo-
rithm (cf. Figure 2) data get updated on the network N1.
Thus, under the scheme of a multi-blockchain architecture
where some mining participants of N1 and N2 have an in-
terest in participating in the required mining process, and
both the network and have a gateway mechanism that can
update specific cross-blockchain data between networks,
then the two blockchain networks are interoperable.

Comparison with related work. In this section we give a
theoretical comparison of the properties we have defined
and summarised in Table 2. The proof-of-burn protocol
is proposed by Karantias et al. (2019) and Sigwart et al.
(2020). In Karantias et al. (2019) the burn-address is gen-
erated from a reference of the recipient’s address and a tag.

Therefore, the burn-verifier returns true if and only if the
address and the tag match. However, one of the limita-
tions we found in Karantias et al. (2019) is the absence of
a mechanism to return the asset back to the source chain
in case of an unsuccessful transfer, which is why the atom-
icity of their approach is a “no”. By contrast, in Sigwart
et al. (2020) the sender on the source chain invokes a burn-
transaction to destroy his/her coin, which will be recorded
in the smart contract on the source chain. After that, one
can query the smart contract to check the validity of the
burn-proof and whether the burn-proof is used or not. To
claim the asset, any user can invoke the asset management
smart contract on the destination network and provide the
proof-of-burn transaction reference on the smart contract.
This makes it possible for multiple participants to make
a claim. Thus, the correctness is determined as “partial”.
Compared to those methods, our work uses a direct refer-
ence to the recipient address in the exit transaction and
the recipient to invoke the claim, which guarantees the cor-
rectness property we defined. The time-lock, along with
a secret code and the re-claim mechanism, satisfies the
atomicity property.

Table 2: Theoretical comparison summary

Reference Properties
Security Correctness Atomicity

Karantias et al. (2019) yes yes no
Sigwart et al. (2020) yes partial yes
Burn-to-Claim yes yes yes

6. Implementation and experimental results

In this section, we discuss the implementation archi-
tecture, experimental testing, and our evaluation of the
performance of our protocol.

6.1. Contract implementation

For testing, we use a reference implementation of the
Burn-to-Claim protocol in Solidity6. The protocol logic is
defined in a smart contract and implemented in an Ethereum-
based test network of Rinkeby7 and Ropsten8. For evalu-
ation, we investigate the performance and cost impact of
cross-blockchain transactions in an ecosystem of blockchain
networks where participants perform repeated token trans-
fers. In addition, we also measure the application’s com-
munication overhead (Malavolta et al., 2019) when making
a transfer.

The implementation consists of an application which
acts as an interface that ties all the components together.
A brief overview of the project architecture is presented in
Figure 6. The application is written in JavaScript which

6https://solidity.readthedocs.io
7https://rinkeby.io
8https://ropsten.etherscan.io
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Figure 6: The architecture of experimental implementation

utilises ethers.js9 and node.js10 libraries to interact with
the blockchain node. We utilise the Infura11 interface ser-
vice to connect to a blockchain node. The application
input includes a burn-to-claim contract, a base-token con-
tract and a settings file. The burn-to-claim contract is
the main contract with all the protocol-specific functions
of exitTransaction, entryTransaction and reclaimTransac-
tion. The base-token contract is an ERC20 reference con-
tract inherited from the openzeppelin12 library. The base-
token contract provides token supply and token specific
functionalities. Based on the sequence of the transfer, the
application creates contracts and wallet instances for dif-
ferent users. For example, to deploy it creates an admin
instance of the wallet, to transfer,sender and recipient in-
stance of wallet are created. The settings file stores neces-
sary information to create the individual instances of the
wallet. The test implementation acts as a client for deploy-
ing the contract and testing the transfer of tokens. The
contract code and test script are available under this Git
repo13.

The main functions of the test application are listed in
Table 3. We denote the sender instance of the contract as S
and recipient instance of the contract as R. The test script
first deploys an instance of burn-to-claim and base-token
contracts in the respective networks through an admin ac-
count. We assume each network will have its admin to
deploy the contract. The admin then transfers the tokens
generated by the base-token contract to the burn-to-claim
contract address. The burn-to-claim contract will then
issue tokens to the participants. In our case, the burn-
to-claim contract will issue tokens to Alice, and the test
we are demonstrating is Alice transferring her tokens to

9https://docs.ethers.io/v5/
10https://nodejs.org/en/
11https://infura.io
12https://openzeppelin.com
13https://github.com/b-pillai/burn-to-claim

Bob on another network. The current evaluation is for
demonstrating the overall end-to-end functionality of the
Burn-to-Claim protocol. This test includes Alice burning
her token using Txt, and Bob claiming his token using
Txe.

6.2. Experimental set-up

The experimental cross-blockchain asset transfers test
is conducted between two different Ethereum-based test
networks of Rinkeby and Ropsten. Both Ropsten and
Rinkeby are shared public Ethereum blockchain test net-
works that are configured to simulate real-world solutions
as closely as is practical. Even though these networks use
different network parameters, the EVM execution of the
smart contract on these networks is identical. Further-
more, compared to the main network where the mining
difficulty is dynamically adjusted based on the network
hash power, the mining difficulty of test networks are sta-
ble with a lower mining time. Therefore, evaluation us-
ing test networks provides sufficient estimation of trans-
action execution time and gas usage on Ethereum based
networks.

The test is conducted in intervals of 10 x 5 times, (to-
tal 50 times) transfers of 1 ERC20 token from Alice on
the Rinkeby network to Bob on the Ropsten network, and
50 times from Bob on the Ropsten network to Alice on
the Rinkeby network through a light client machine (Dell
Inspiron 15 7000 series laptop). The configurations are
64 GB RAM running on an Intel i7 processor. The stan-
dard deviation of results between tests of 10’s, 20’s, 40’s
and 50’s are very marginal; therefore, 50 times of testing
suffice.

6.3. Performance metrics

An experimental performance test is conducted trans-
ferring value from one network to another. From an appli-
cation perspective, it measures how the system performs a
given operation. In our case, an integration test is essential
for the exchange of value (token) between networks. The
application is deployed across different networks which run
asynchronously through integration interfaces. Since there
are multiple integration interfaces, the performance of end-
to-end scenarios (that is, a complete transfer from the
sender to the receiver) is more suitable for a comprehensive
performance test of the application.

6.4. Transaction time

The time for transferring a token between networks is
measured in seconds. This measure is used in performance
bench-marking with respect to the duration of the trans-
fer process for the application. However, typically in a
distributed network, the latency depends on the network
topology. Therefore these results are used as a guideline
to estimate the cost of a cross-blockchain transfer. In our
experiment, we considered an end-to-end transfer as the
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Table 3: Smart contract function

Contract steps Function
Sender.deploy() and Recipient.deploy() Deploy the contract on the networks
Sender.exitTransaction() Initiate by the sender to burn the token
Recipient.add() Burn token event, gateway node to update
Recipient.entryTransaction() Initiate by the recipient to claim the token
Sender.update() Token claim event, gateway node to update
Sender.reclaimTransaction() Initiate by the sender if not claimed by recipient

Figure 7: Experimental transaction duration

result of two transactions, the exitTransaction on source
network and the entryTransaction on destination network.

Figure 7 shows two sets of results from the actual trans-
fer experiments. The first result from Test 1 transfers a
token from Alice on the Ropsten network to Bob on the
Rinkeby network, and the second result Test 2 is from Bob
on the Rinkeby network to Alice on the Ropsten network.
Each transfer goes through of a sequence of steps: the first
step is the approval (the sender approves the contract ad-
dress to spend the token), then execute exitTransaction,
after that, we wait (sleep) for 55 seconds in order to reach
a probabilistic finality, and finally execute entryTransac-
tion. We assume that testing on a single network may not
reflect the real-life scenario, whereas taking an average re-
sult from two different networks may yield more realistic
results.

The implementation is scripted to send each transac-
tion after a previous one was confirmed. During the test,
the network status14 recorded active participation of 43
nodes in the verification process. In order to maintain
consistent gas-limit, mining parameters are fixed for every
transaction throughout the test. As we explore the end-to-
end time of cross-blockchain transfer on different networks,
there are significant differences in response and confirma-
tion time, and even multiple tests on the same network
recorded varying results. We experiment with multiples
sets of tests and reached a point where the standard de-
viations of 30 and 50 transfers are 27.531 and 27.276 with
95% confidence levels of 9.7 and 9.8 for test 1 and stan-
dard deviations of 41.470 and 44.231 with 95% confidence

14https://www.rinkeby.io/#stats

levels of 15.82 and 11.494 for test 2 respectively. Since
the difference between 30 and 50 transfers is very similar,
we conclude that the experiment has covered most cases.
Therefore, there is no need to extend the experiment with
more tests. The results presented are from the average
of 100 transactions from two different tests (50 on each
network).

For evaluation, we omit the timing of sleep, add, up-
date and only consider the transaction finality time of exit-
Transaction and entryTransaction function. Thus the ex-
perimental results present an average time of 86.74 seconds
for the Burn-to-Claim protocol. The results, shown in Fig-
ure 7, were an average end-to-end transfer time of 66.84
seconds for test 1, and of 84.74 for test 2.

6.5. Transaction cost

In Ethereum, smart contracts are deployed as bytecode
in blockchain and accessed via a contract address. The
contracts are then executed in EVM (Ethereum Virtual
Machine) on each client. The transaction execution cost
in Ethereum based blockchain networks is measured in the
unit of gas. The cost is calculated based on the operation
steps of the smart contract and its storage size (Wood
et al., 2014).

From our test, the gas consumption for the functions
described in Section 6.1 are outlined in Table 4. We have
set a Gas limit of 200000 per unit and a gas price of
0.00000002 Ether (20 Gwei) per unit of gas for the test.
For the analysis, we take into consideration of the end-
to-end transaction cost of approve, exitTransaction and
entryTransaction. There are also additional costs involved
in keeping the gateway node running. We assume these
are included in the form of an incentive mechanism; there-
fore, they are ignored for now. For the test purpose the
add and update cost are paid by the respective contract.
From the experiment, our protocol requires 316507 units
of gas (316 kGas) for an end-to-end transfer (the sum of
Txt and Txe).

Table 4: Cost analysis of contract functions

Contract function Gas used
approve 44114
exitTransaction 184444
add 152313
entryTransaction 87949
update 64947
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6.6. Communication overheads

In regards to communication overheads, we evaluate
our protocol under the number of messages required to
complete the exchange process. Further, we divide the
communication overheads into two categories: users and
integration participants. Users communication overheads
include transactions and messages from the users (this
does not include private message between sender and re-
cipient) and integration participants communication over-
heads include messages between integration participant
mining or gateway nodes. For evaluation, we only con-
sider the messages initiated by the sender and recipient.
All other messages across network participants are as part
of the system, and therefore omitted for now.

Based on the design, some protocol require more cross-
blockchain tasks than others. With more tasks, more mes-
sages need to be handled, which results in time and com-
munication costs. Generally, one successful cross-blockchain
task requires at least two messages request, a commit and
an execute whereas a pre-commit and coknowledgenfirm
support more features but bring its own complexity.

The proposed cross-blockchain protocol uses multi-chain
architecture based on some integration mechanisms. The
transactions are initiated on the relevant network based
on some pre-agreed knowledge. Some approaches make a
pre-commit and confirmation to ensure efficiency. In other
words they do a check before and after making the com-
mit. This process may avoid aborting the transaction if
it is not valid. However, this pre-checking process or con-
firmation process is executed at the cost of the network,
which increases complexity. Whereas a two-phase process
that satisfies the property bring a multi-phase process can
reduce network communicate cost and complexity.

In our protocol, there are three steps: prepare, commit
and execute. Prepare happens on a private channel there-
fore not burdening the blockchain network. The commit
and execute steps carry out the burn and claim on the
network and satisfy the properties defined in Section 5.

6.7. Performance comparison

In this section, we briefly compare the experimental
performance results in accordance with the existing works
in Borkowski et al. (2019); Kan et al. (2018); Sigwart
et al. (2020) and present a summary in Table 5. Per-
formance refers to an outcome obtained from a process.
Here the performance is defined as the outcome of a cross-
blockchain transaction’s response time, cost and number-
of-messages. This initial analysis can provide an overview
to understand the feasibility of different cross-blockchain
protocols. The existing works’ performance value are ob-
tained from the relevant paper; however, not all these
works provide details for all three parameter, therefore,
we omit unknown data.

In regards to time, in Sigwart et al. (2020) the cross-
communication experiments recorded 91 seconds for the
burn process, and 117 seconds for the claim process, which

totals 208 seconds for an end-to-end transfer for Protocol
1. For Protocol 2, there is an additional time for the confir-
mation process of 89 seconds, which total to 297 seconds.
In contrast, our protocol records 86.74 seconds to execute
an end-to-end transfer process. Even though it is the na-
ture of blockchain-based systems that a transaction times
may vary based on network parameters, we have taken an
average of 50 transactions and still show significant im-
provement. Both the tests are contacted in the Etherium-
based test network; therefore, the network parameters are
the same for the tests.

In regards to gas cost, in Sigwart et al. (2020), the
experiment records a gas consumption of 40.79 kGas for
the burn process, 121.47 kGas for the claim process and
104.62 kGas for the confirmation process, which add up to
266.88 kGas of end-to-end costs excluding the integration
cost. In Borkowski et al. (2019), the experiment shows
a 57.7 kGas for the claim, 81.5 kGas for the contest and
45.5 kGas for finalising the transfer, which add up to 187.7
kGas for an overall end-to-end transfer.

Regarding the communication overheads, in Borkowski
et al. (2019), the sender initiates the transfer and waits
for the recipient’s acknowledgement before considering it
as a valid Proof of Intent. The CLAIM transaction is then
initiated and CONTEST (witnessed) by the network par-
ticipants. Therefore, we consider it to be a two-stage pro-
cess. In (Sigwart et al., 2020), the basic protocol utilises
a burn and claim, whereas the updated version utilises
the CONFIRM process. Therefore, we consider it to be
a three-stage process. In Kan et al. (2018), the process
of executing crossing-chain transactions goes through a
three-phase process. First, there is a prepare stage, where
a transaction is put forward to the destination chain. If
valid, a pre-commit is issued by the destination chain, and
finally a transaction commit is issued on both the chain.
Therefore, we consider it to be a three-stage process. In
comparison, our protocol consists of a two-stage process:
exitTransaction to burn the token and entryTransaction
to reclaim the asset.

Table 5: Performance comparison summary

Reference Time Cost Message
Seconds kGas Numbers

Borkowski et al. (2019) N/A 187.7 2
Sigwart et al. (2020) 297 266.88 3
Burn-to-Claim 86.74 177 2

7. Conclusion and future work

In this paper, we analysed blockchain transaction pro-
tocol for permissionless systems such as Ethereum and
we formalised a protocol for cross-blockchain asset trans-
fer. One of the critical features of our proposal is that
it presents an internal functionality for interoperability.
An internal (built-in) protocol provides a common mech-
anism. Via such a protocol, blockchain users can com-
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municate directly and transfer various forms of data and
digital assets using standardised pathways. Furthermore,
we briefly showed that the Burn-to-Claim protocol is re-
silient to double-spending because of its correctness and
fairness properties.

We formalised the cross-blockchain interoperability proof-
problem and showed that it can be solved without needing
a trusted third party in contrast to the assumptions often
made in the blockchain community. Our approach is to in-
troduce a built-in function to address the proof-problem.
However, our protocol will require revisions to the archi-
tecture of many target blockchains as most do not support
time-locking, asset-burning, or gateway nodes.

Future work will include formal model analysis and ver-
ification of our protocol in an environment with network
nodes of malicious actors.

Acknowledgement. We acknowledge Paul Collins, who as-
sisted in the development of the test application.
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