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Abstract. The adoption of blockchain technology within various criti-
cal infrastructures is on the rise. Concurrently, there has been a corre-
sponding increase in its misuse, primarily through the exploitation of its
pseudo-anonymous characteristic. Encouraging blockchain adoption and
improving security in the decentralised environment require techniques to
detect wallets and/or smart contracts owned by malicious entities. Illegal
activities such as dark market trades, money laundering, and receiving
unlawful payments are performed by connecting various wallets or smart
contracts in a meticulous way. A graph can be a potential representation
to visualise such interconnections via various patterns, and graph-based
data may represent the topological structure of the blockchain network.
Recently, Graph Neural Networks (GNN) have been widely used for
analysing the structure of complex networks and identifying patterns.
This is the first work that considers a generalised graph representation
for the Bitcoin and Ethereum networks and analyses their behaviour
using a combination of heterogeneous GNN framework’s GraphSAGE
and Graph Attention Network (GAT). The classification results reveal
that the proposed approach modestly improved Bitcoin network analysis,
whereas Ethereum smart contract analysis needs further investigation in
terms of incorporating other aspects of smart contracts, such as code-
base, byte length, and lifetime features.

Keywords: blockchain · ransomewre settlement · ponzi smart contract
· graph-based analysis.

1 Introduction

Blockchain is a distributed and decentralised digital ledger technology that
records transactions securely and transparently. Key properties of this technol-
ogy include immutability, transparency, pseudo-anonymity, and decentralisation,
making it suitable for various applications: tracking manufacturing in the sup-
ply chain, health record and insurance claim monitoring, peer-to-peer energy
trading, and secure data sharing in IoT [15, 8]. The pseudo-anonymity ensures
the privacy of participants in blockchain networks. Malicious actors that are
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receiving ransomware or phishing payments in the form of cryptocurrency, in-
volving dark-market trades, and dealing with money laundering exploited the
pseudo-anonymous property to obscure their real identity from legal authorities
or financial regulators. For instance, approximately $3.36 billion worth of dark
web-related transactions concealed within Silk Road were Seized and those re-
sponsible were convicted in 2021, as reported by the U.S. Attorney. Such misuse
holds the potential to gradually diminish public confidence in the widespread
acceptance of blockchain technology. Additionally, these illegal activities present
regulatory challenges in ensuring that the technology is not manipulated for
malicious intentions. Preventing illegal activities and supporting the implemen-
tation of regularity schemes are urgently needed in the monitoring and analysis of
blockchain networks. Large volumes and complex structures of blockchain trans-
actions are significant limitations for the analysis. An efficient analysis needs
a meaningful transformation for blockchain data that can inform the intercon-
nection between wallets, smart contracts, and their transactions. A graph is a
well-defined data structure for representing relations between different types of
nodes and can reflect the interconnections via graph patterns [5], [6], [16], [26].

Graph-based analysis can fall into three categories: node classification, edge
classification, and graph classification. The graph-based analysis for blockchain
transactions can be beneficial in terms of node classification to classify the be-
haviour of wallets, smart contracts, or transactions or graph classification to
identify groups of wallets owned by mixing services or dark markets. Litera-
ture study has identified previous research work using graph-based representa-
tion and analysis to identify mixing services [24], [27], [31], dark market-related
trades [20], and Ponzi schemes [32] in Bitcoin and Ethereum networks. The exist-
ing studies involved manual processes, domain knowledge, focused on a specific
blockchain network, and inefficient resource utilisation. Heuristics-based analy-
sis is mostly subjective based on the selected domain or attack. By considering
these limitations and challenges this study made the following contributions.

1. The proposed study considered a generalised graph modelling known as a hy-
pergraph, which allows the analysis of blockchain networks without concern
for the different structures of transaction data.

2. Embedding feature generation for this study considered both raw and in-
terconnection information of address-to-transaction and smart contract-to-
transaction. This is useful to train a model by considering the self and rela-
tional features of nodes (wallet and smart contracts).

3. This is the first study performed on graph-based learning using heterogenous
GNN frameworks by combining GraphSAGE and GAT GNNs. The result
leads to the implementation of a heterogenous GNN model for real-time
blockchain network analysis to identify suspicious behaviour of wallet or
smart contracts.

The structure of the paper is as follows: Section 2 presents a critical review of
related studies of GNN-based blockchain network analysis. Section 3 describes
the proposed heterogenous GNN-based classification. Section 4 presents classi-
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fication results for blockchain transactions and discusses the significance of the
proposed GNN-based analysis. Finally, Section 5 concludes the paper.

2 Related work

This section details existing research works related to suspicious transaction
detection in blockchain networks. The recent research approaches used Artifi-
cial Neural Networks (ANN) [20], Deep autoencoder [24], Convolution Neural
Network [22], Graph Convolution Networks (GCN) [30], [32], and Random For-
est [11, 21] to classify malicious blockchain transactions.

Lee et al. [20] proposed a supervised learning approach using Random Forest
(RF) and Artificial Neural Networks (ANN) to classify malicious Bitcoin trans-
actions related to Silk Road dark market trades. Their ANN-based network is
designed with an input layer, two hidden layers, and an output layer. Trans-
action features considered for the classification reflect the number of inputs,
outputs, and their values. Noticeably, their classification does not consider the
interconnection information between wallet and transactions.

Lihao Nan et al. [24] proposed an address graph-embedding feature-based
approach to identify the community of mixing services on the Bitcoin network.
They obtained graph embedding features using a deep auto-encoder and fed
them into a k-means clustering to identify the community clusters. The local
outlier probabilities [19] used in their approach identified nodes related to mix-
ing services. The identified limitations in their approach are the local outlier
probabilities method is much slower for large-scale graphs, there are no address-
based features involved in the node embedding, and the experiment was not
tested with real mixing data.

Mark Weber et al. [30] used GCN to classify binary class Bitcoin trans-
action network. Their experiment considered raw transaction features as well
as transaction-to-transaction graph data for licit and illicit node classification.
Their proposed GCN considered a two-layer, runs 1000 epochs employs the Adam
optimizer with a learning rate of 0.001 and utilises an embedding vector size of
100. Considerably, their proposed approach is only applicable to the Bitcoin
network.

Shanquing Yu et al. [32] proposed a graph convolutional network-based clas-
sification model to identify Ponzi scheme smart contracts using transaction
networks. They obtained fourteen raw features of smart contracts and node-
embedding features of transaction networks. A 32-dimension node embedding
vector was obtained using a three-layer GCN architecture. Their classification
considered supervised learning approaches: linear regression [23], support vector
machine [12], adaptive learning rate optimisation [17], and random forest [7],
network embedding-based approach: LINE [28], random-walk-based approaches:
deepwalk [25] and node2vec [9]. They found that the combination of basic fea-
tures with the GCN outperforms the other methods.

Lou et al. [22] proposed an improved convolution neural network to analyse
the bytecode image of smart contracts to predict Ponzi schemes. Their proposed
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approach outperformed the supervised learning approaches Random Forest, sup-
port vector machine, XGBoost, and Isolation forest. Noticeably, their proposed
preprocessing for bytecodes of each smart contract slows down when a large
amount of training and testing data is used.

Xuezhi He et al. [11] proposed a decision tree-based supervised learning ap-
proach called Code and Transaction Random Forest (CTRF) to identify Ponzi
contracts on Ethereum networks. Their experimental dataset considered word
and sequence features of smart contract’s code, and transaction features. The
dataset was validated against supervised learning approaches KNN, CNN, de-
cision tree, SVM, XGBoost, and CTRF. Their experimental results identified
that the sequence feature of smart contract opcode and the transaction features
improved model performance in identifying Ponzi contracts.

Lo et al. [21] proposed a GNN framework based on self-supervised Deep
Graph Infomax (DGI) and Graph Isomorphism Network (GIN), with Random
Forest (RF). Their proposed approach first constructs embedding vectors for
Bitcoin transaction networks and then uses them as features to train RF to
classify money laundering transactions. Results revealed that their proposed
approach outperforms the traditional approaches and obtained a 0.828 F1-score.

The existing approaches stated above involved manual processes, domain
knowledge, and high resource utilisation. Heuristics-based node labelling is pri-
marily subjective based on the selected domain or attack. Considering these
limitations and challenges, this research work provides an automated generalised
graph modelling and GNN-based analysis framework to classify various anoma-
lous behaviours of nodes in blockchain networks.

3 Methodology

This section details the proposed approach for Graph Neural Networks (GNNs)
based analysis to classify malicious participants (wallet or transaction or smart
contracts). The proposed approach includes four phases: data collection, data
modelling, data pre-processing, and analysis, as described in Fig 1. First, the
data collection phase details the experimental data used for generalised graph
modelling. Then data modelling phase explains feature extraction [13] of wal-
let, transactions, smart contracts and graph structure information via hyper-
graph [14]. Finally, the analysis details the GNN-based classification approaches
and their outcomes.

3.1 Data collection

Data collection describes the scrapping of blockchain transactions for normal
and malicious activities in Bitcoin and Ethereum networks. The analysis of this
research involves normal & ransomware settlement-based and non-Ponzi & Ponzi
scheme-based transactions.
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Fig. 1: Overview of the proposed methodology.

Bitcoin ransomware transactions The labels of normal and ransomware
settlement-based Bitcoin network wallets were referred from the BitcoinHeist [4]
dataset, then recent 100 transactions corresponding with 16938 wallets were
captured using public API[1].

Ethereum Ponzi smart contract transactions The labels of non-Ponzi
and Ponzi smart contracts were referred from the public dataset [2] and the
detailed information of smart contract transactions was obtained using public
API [3]. The collected transactions include 200 Ponzi and 3590 non-Ponzi smart
contracts.

3.2 Data modelling

This section describes node features that are used as inputs for GNN-based
analysis. The node features are derived based on raw transaction information
and their maximum, minimum, mean, mode, median, and standard deviation
measures. Tables 1, 2, and 3 detail major features of Bitcoin transactions, and
wallets, and Ethereum smart contract transactions which are used as initial node
properties during generation of graph embedding.

Bitcoin transactions The graphs of the Bitcoin network considered in this
study included two types of nodes: transaction and wallet. A transaction con-
tains nineteen features explained in Table 1, whereas a wallet consists of sixteen
features shown in Table 2.

Ethereum smart contract transactions The graph of the Ethereum network
considered in this study involves two types of nodes: transactions and smart
contracts. A smart contract transaction contains five features detailed in Table 3,
whereas a smart contract address involves sixteen features described in Table 2.

This research aims to propose a generalised approach to analyse any type of
blockchain network. Hypergraph Gh is a generalised graph modelling for differ-
ent types of blockchain transactions which represents the interactions between
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Table 1: Features for Bitcoin transaction.

Features Description
inDegree number of incoming transactions (UTXOs)
outDegree number of outgoing transactions
totalInput total amount of Bitcoins received from other transactions (UTXO)
totalOutput total amount of Bitcoin sent
inout− ratio ratio between the number of inputs and outputs
unique− out number of unique output addresses involved in a transaction

Table 2: Features for Bitcoin wallets and smart contract addresses.

Features Description
asASender total number of times a specific address as a sender
asAReceiver total number of times a specific address as a receiver
totalSpent total amount spent by a specific address
totalReceive total amount received by a specific address

Table 3: Node features for Ethereum transactions.

Feature Description
betweenesst betweenness centrality value between the transaction and the smart con-

tract
closnesst closeness centrality value between the transaction and the smart contract
degreet degree centrality value between the transaction and the smart contract
eigenvectort eigenvector centrality value between the transaction and the smart contract
balancet balance after the transaction

transactions and wallets or smart contracts. Edge information e(u, v) indicates
the type of transaction v (spent or received) corresponding with the wallet or
smart contracts u. For this reason, we select a hypergraph that is proposed
in the research [14] to extract the graph structure features. Further, these fea-
tures facilitate training a single model to analyse various types of nodes in the
blockchain network. This study considers Bitcoin transactions related to normal
and ransomware settlements and Ethereum transactions related to non-Ponzi
and Ponzi smart contracts. In the Bitcoin hypergraph, nodes are wallets (normal
and ransomware-related) and their transactions. Edges are the type of transac-
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tion (spent or received) corresponding with wallets. Bitcoin transactions contain
two major elements namely inputs and outputs. Inputs detail the Unspent Trans-
action Outputs (UTXOs), and outputs explain where the UTXOs are spent. In
ransomware settlements inputs represent bitcoins received from the victims and
the outputs indicate the wallet that accumulated all bitcoins from the victims.
Fig. 2 depicts an example of hypergraphs obtained for ransomware settlements,
using the experimental data detailed in section 3.1.

In the Ethereum hypergraph, nodes are smart contracts (non-Ponzi and
Ponzi) and their transactions. Edges are the type of transaction (spent or re-
ceived) corresponding with smart contracts. The main elements of Ethereum
smart contract transactions are the address of the smart contract, details of the
transaction that invoked the smart contract or invoked by the smart contract,
and the amount spent/received during contract invocation. In Ponzi scheme
settlements, ether was received from new investors and spent immediately for
earlier investors. Fig. 3 depicts an example of hypergraphs obtained for Ponzi
smart contract settlements from the experimental data described in section 3.1.

3.3 Data pre-processing

The data pre-processing phase received node properties and graph structure-
based data from the data modelling phase and divided them into training, vali-
dation, and testing sets. This study considered 60% of data for training, 20% of
data for validation and 20% of data for testing. Table 4 presents the amount of
data considered in each of the three sets of Bitcoin and Ethereum networks.

Table 4: Data allocation for classification.
Blockchain Node type Training Validation Testing

Bitcoin
Transactions 17122 6423 6354
Addresses 10162 3388 3388
Edge list 21896 7593 7213

Ethereum smart contract
Transactions 4707 1740 1766
Addresses 240 80 80
Edge list 4707 1740 1766

3.4 Grap Neural Network-based (GNN) analysis

This section details Grap Neural Network (GNN)-based analysis to classify ma-
licious wallets or smart contracts and their transactions in blockchain networks
as shown in Fig. 1. The proposed GNN-based approach contains three layers:
the input layer, the GNN layer, and the prediction layer. A detailed description
of each layer is as follows:
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Fig. 2: Hypergraph for ransomware settlement. Here blue circles are transactions,
orange circles are the wallets, red arrows represent inputs and green ones are the
outputs.

Input layer: The input layer consists of node features, edge relations (spent
or receive), and graph structure. The features αt ∈ R and αn ∈ R represent
transaction features and wallet or smart contract features, respectively. These
features are passed as an embedding to d-dimensional hidden features hl=0

i via
simple linear projection. The edge information βtn ∈ R consider the type of
transactions (received or spent) corresponding with a wallet or smart contract.
Similar to the node features, edge information is also considered for embedding
to d-dimensional hidden feature el=0

ij . Finally, graph structure e(t, n), from hy-
pergraphs inputs as connection information where t is a spending or receiving
transaction and n can be a wallet or smart contract.
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Fig. 3: Hypergraph for Ponzi smart contract. Here yellow circle represents the
Ponzi smart contract, the blue circles represent the transactions, the red arrows
spending transactions, and the green ones represent receiving transactions.

L× GNN layer: The GNN layer consists of the L layer neural network. The L
layer deep network corresponds to L−hop neighbourhood aggregation across the
entire network. This is an iterative process, which can be visualised as a message-
passing mechanism where each node (wallet/smart contract/transaction) re-
ceives updates from all its neighbours. The updated feature vector hl+1

i for wallet
or smart contract or transaction i is simply a function of its previous feature vec-
tor hl

i and feature vectors of all its neighbours j as described in equation (1).

hl+1
i = f(hl+1

i , hl
j : j → i) (1)

The blockchain network involves different types of nodes, changes dynamically,
and is large in volume. By considering these constraints, this study used two het-
erogeneous GNN models Graph Attention Network Convolution (GAT) [29] and
the GraphSAGE Convolution (SAGE) [10] are the extended versions of Graph
Convolution Network (GCN) [18]. The selected convolution networks are capable
of considering different types of nodes and their properties during the training.
The architecture of GAT needs whole graph information for node representation
(embedding), whereas SAGE generates node representation by sampling. Both
SAGE and GAT can predict unseen nodes without re-training.

The proposed GNN-based approach for blockchain network analysis utilised
both SAGE and GAT convolution layers. Learning details of SAGE and GAT
are as follows:
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– GraphSAGE: The GraphSAGE learns representations for each node by
considering information from its neighbouring nodes. GraphSAGE achieved
this learning in a two-step process: sampling and aggregation. The detailed
description for GraphSAGE embedding is as follows:

h0
v ← xv,∀v ∈ V (2)

hN (v)k ← faggregate({hk−1
u | ∀u ∈ N(v)}) (3)

hk
v ← σ(W k(hk−1

v || hk
N(v))) (4)

hk
v ← hk

v/||hk
v ||2,∀v ∈ V (5)

At first, all wallets or smart contracts and transactions in the hypergraph
are initialised to their original feature vector xv as described in equation (2).
Then the feature aggregation at level k is processed as described in equation
(3), here N(v) denotes a list of neighbours of node v. Finally, the embedding
vector at kth level updating via concatenates hk−1

v and hk
N(v) embeddings

of wallet or smart contract and transaction, where || denotes concatenation,
then takes a dot product of it and a learnable weight vector W k and applies
an activation function σ in the end as stated in equation (4). The general
distribution of node embedding is achieved in GraphSAGE via normalisation
as in equation (5).

– GAT: Graph Attention Network Convolution (GAT) employs attention mech-
anisms to determine how much focus each node in a graph should give to its
neighbouring nodes. The attention mechanism allows nodes to selectively ag-
gregate information from their neighbours, giving more weight to nodes that
are more relevant to the current task. The details of the attention mechanism
are as follows:

z
(l)
i = W (l)h

(l)
i , (6)

e
(l)
ij = LeakyReLU(U (l)T (z

(l)
i ||z

(l)
j )), (7)

α
(l)
ij =

exp(e
(l)
ij )∑

k∈N(i) exp(e
(l)
ik )

, (8)

h
(l+1)
i = σ(

∑
j∈N(i)

α
(l)
ij z

(l)
j ) (9)

The linear transformation of lower layer embedding h
(l)
i of a wallet or smart

contract and transaction and their learnable weight matrix W (l) approached
as described in equation (6). A pair-wise un-normalised attention score be-
tween a wallet or smart contract and its neighbour transactions computes
via concatenates z embeddings of the wallet or smart contract and the trans-
action then takes a dot product of it and a learnable weight vector U (l) and
applies a LeakyReLU in the end as detailed in equation (7). A softmax oper-
ation applies to normalise the attention scores on each node’s incoming edges
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as detailed in equation (8). Finally, the embeddings from the neighbours are
aggregated together and scaled by the attention scores as in equation (9).
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Fig. 4: Structure of the proposed GNN network for the analysis of blockchain
network. Here, Conv1, Conv2, Conv3, and Conv4 represent the SAGE or/and
GAT convolution layers, L1, and L2 are the liner layers, and dropout value
p = 0.2. ReLU and Softmax are the activation functions.

The proposed GNN-based approach shown in Fig. 4 choose L = 4 and align
Conv1 = GAT, Conv2 = SAGE, Conv3 = GAT, Conv4 = SAGE, liner layers L1
and L2, dropout value p = 0.2, learning rate 0.01, and the activation functions
ReLU and Softmax. The alignment of the SAGE convolution layer followed
by the GAT convolution layer, first extracts the aggregate information from the
target wallet’s or smart contract’s neighbour transactions, giving more weight to
transactions that are more relevant to normal or malicious settlement behaviour.
This weighted outcome provides an informative sample for the SAGE layer and
improves the learning of the classification models.

Prediction layer: The prediction layer utilises GNN-based node embedding
outcomes to predict malicious wallets or smart contracts and transactions in
Bitcoin and Ethereum networks. In this layer, we designed a cross entropy-
based loss function, Adam optimiser for model optimisation, and applied gradient
descent to improve classification. This helps the proposed GNN-based approach
learn more task-based discriminative node embeddings for each wallet, smart
contracts and transactions.

4 Evaluation

This section first details the experimental setup and the classification results
obtained for hypergraph-based Graph Neural Network (GNN) analysis. Further,
this section analyses and discusses the significance of the proposed approach by
comparing the results reported in related works. The implementation of the pro-
posed graph-based analysis was carried out on a computer with Ubuntu 22.04.2
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LTS x86_64, 12th Gen Intel i9-12900 and 16085MiB/ 128511MiB, and PyTorch
geometric with 3.10 kernel version.

The experimental setup of this study considered three different experimental
setups using combinations of selected convolution networks. The first setup only
considered the SAGE convolution network (Conv1 = Conv2 = Conv3 = Conv 4
= SAGE). Second, only considered GAT convolution network (Conv1 = Conv2 =
Conv3 = Conv 4 = GAT) and the final one is the proposed approach explained
in section 3.4. The settings for the linear layers L1 and L2 remain consistent
across all three setups, with a fixed dropout rate of p = 0.2, a learning rate of
0.01, and the activation functions of ReLU and Softmax being unchanged. The
classification results were obtained for three different dimensions (64,128, and
256) of graph embedding vectors. The experiment of this study classified Bitcoin
transactions and wallets, Ethereum smart contract transactions and addresses.

During the training, d dimension output from Conv1 is fed into a linear
layer to obtain d dimensional linear output. The liner outputs are then fed into
Conv2, which provides another d dimensional embedding vector. The output
vectors produced by Conv2 are passed to the dropout layer with p = 0.2 to
prevent overfitting during training. The output of the dropout layer is passed
through a ReLU activation function to ensure that negative neuron outputs are
rectified to zero. The outcome of the ReLU is transferred to Conv3 and produces
a two-dimensional vector of values. The outcome is passed to the linear layer L2
to obtain linear output values. Then the linearly transformed outcomes are fed
to the Conv4 layer and provide another two-dimensional vector of values. The
outcome from the Con4 layer is fed to the dropout layer with p = 0.2 to prevent
overfitting during training. Finally, the Softmax layer processes the outcomes to
ensure that the output values are between 0 and 1, representing the probability
of each class (normal or malicious) for each type of node (wallet/smart con-
tract/transaction). The output from the Softmax is compared with the actual
labels of wallet or smart contracts or transactions to identify loss. The loss value
is fed back to the Adam optimiser to update the weights in each hidden layer
for a new round of training. These iterations (500 epochs) increase the classifica-
tion accuracy for the training set. Finally, a test set is used to obtain precision,
recall, and F1 scores. These evaluation measures were selected to compare the
experimental results with the results presented in literature studies.

Table 5 presents results for the classification of normal and malicious Bitcoin
transactions. The 64 and 256 dimensions of the proposed GNN-based approach
achieved high precision, recall, and F1-score, whereas for 128 dimensions SAGE
convolution obtained the highest result. Based on the classification result for
Ethereum smart contract transactions presented in Table 6 the proposed ap-
proach obtained a high precision, recall, and F1-score for 64 and 128 dimen-
sions, whereas SAGE convolution obtained a high recall and F1-score for 256
dimensions.

The classification results for Bitcoin wallets are presented in Table 7 specifies
that for 64 and 128 dimensions, the proposed approach obtained high precision,
recall, and F1-score, whereas for 256 dimensions GraphSAGE obtained the best
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results. Results for the Ethereum smart contract address classification are de-
tailed in Table 8, which reveals that for all dimensions of embedding vectors
the proposed approach obtained a high recall and F1-score. For 128 and 256
dimensions, the GAT obtained the highest precision value.

Overall, the proposed GNN obtained a 0.8978 F1-score for Bitcoin transac-
tions with 256 dimensions and a 0.8857 F1-score for Bitcoin wallets with 128
dimensions. For the Ethereum smart contracts, the proposed GNN obtained a
0.8481 F1-score with 256 dimensions for transactions and a 0.8399 F1-score with
64 dimensions for addresses. The learning time of the proposed GNN is compar-
atively higher than the SAGE-based GNN and less than the GAT-based GNN.

Table 5: Classification results for Bitcoin transactions.

GNN
Dimension of the embedding vector

d = 64 d = 128 d = 256
PrecisionRecall F1 PrecisionRecall F1 PrecisionRecall F1

SAGE 0.8796 0.8169 0.8471 0.9140 0.8716 0.8923 0.8061 0.7404 0.7719
GAT 0.8344 0.8534 0.8438 0.8842 0.8095 0.8452 0.8863 0.8265 0.8554
Proposed
GNN

0.8988 0.8828 0.8907 0.9104 0.8538 0.8812 0.9223 0.8745 0.8978

Table 6: Classification results for smart contract transactions.

GNN
Dimension of the embedding vector

d = 64 d = 128 d = 256
PrecisionRecall F1 PrecisionRecall F1 PrecisionRecall F1

SAGE 0.6908 0.9501 0.8000 0.6815 0.9239 0.7844 0.6912 0.9534 0.8013
GAT 0.8667 0.6116 0.7172 0.8882 0.6558 0.7545 0.8501 0.8021 0.8254
Proposed
GNN

0.8499 0.8430 0.8464 0.9615 0.6950 0.8068 0.9050 0.8414 0.8720

The classification results presented in Table 5 to 8 reveal the significance of
the hypergraph-based GNN classification and the proposed GNN-based approach
via high evaluation scores.

The comparison for binary class classification results of the Bitcoin transac-
tions is provided in Table 5 and results presented in related studies are detailed
in Table 9. There is no related literature for Bitcoin wallet classification, hence
no comparison details are provided. Similarly, the comparison of classification
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Table 7: Classification results for Bitcoin wallets.

GNN
Dimension of the embedding vector

d = 64 d = 128 d = 256
PrecisionRecall F1 PrecisionRecall F1 PrecisionRecall F1

SAGE 0.8436 0.8926 0.8674 0.8508 0.8680 0.8594 0.8212 0.9094 0.8631
GAT 0.8410 0.8758 0.8581 0.8176 0.8221 0.8199 0.7956 0.8535 0.8235
Proposed
GNN

0.8576 0.9027 0.8796 0.8746 0.8971 0.8857 0.8385 0.8826 0.8599

Table 8: Classification results for smart contract addresses.

GNN
Dimension of the embedding vector

d = 64 d = 128 d = 256
PrecisionRecall F1 PrecisionRecall F1 PrecisionRecall F1

SAGE 0.5846 0.8085 0.6786 0.5735 0.6783 0.8297 0.5946 0.9362 0.7273
GAT 0.7742 0.5106 0.6154 0.8387 0.5532 0.6667 0.7813 0.6329 0.5319
Proposed
GNN

0.7924 0.8936 0.8399 0.7679 0.9149 0.8349 0.7288 0.9149 0.8113

results of Ethereum smart contract addresses are provided in Table 8 and the
results reported in the literature are detailed in Table 9.

Table 9: Comparison details for the classification results obtained via proposed
GNN and the results in the related literature.

Blockchain Approach F1-score

Bitcoin

Artificial Neural Network 0.8854 [20]

Deep Autoencoder 0.2081 [24]

Graph Convolution Network 0.628 [30]

Inspection-L 0.828 [21]

Proposed GNN 0.8978

Ethereum

GCN 0.8963 [32]

CNN 0.959 [22]

Code and Transaction Ran-
dom Forest (CTRF)

0.909 [11]

Proposed GNN 0.8399

Based on Table9 the proposed GNN-based approach produced the most
promising results for Bitcoin networks. Whereas, the results for the Ethereum
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smart contracts reveal the significance of the smart contract features related to
code structure, byte contract length, and lifetime in the identification of suspi-
cious behaviour [11] and [22].

The unique graph patterns for ransomware settlements and Ponzi contracts
shown in Fig. 2 and Fig. 3 reveal that to distinguish the behaviour of the normal
and malicious Bitcoin wallets we have to focus on up to four hops, whereas for
the smart contract, it’s only one. This could be the reason for the decrease in
classification performance when L > 4. In terms of the dimension of the vector,
the performance gets reduced when d < 64 or d > 256.

The main limitation of the above analysis is that the study was performed us-
ing transaction data stored in a local machine. The transaction node’s properties
used for smart contract analysis do not consider the raw data and code-based
features.

Future work will investigate an improved GNN-based approach for Ethereum
network analysis and integrate the proposed approach for a real-time and interac-
tive monitoring tool to enhance the decision-making of end-users at blockchain-
based systems, including critical infrastructures, by providing meaningful visu-
alisation and early warnings.

5 Conclusion

This research work investigated the effectiveness of generalised heterogeneous
graph modelling and proposed a GNN-based approach to predict malicious wal-
lets and/ or smart contracts and their transactions in blockchain networks.
The proposed hypergraph-based GNN analysis gave promising F1 scores for
the prediction of malicious wallets, smart contracts, and transactions. The re-
sults obtained for Bitcoin network classification based on the proposed approach
achieved marginal improvement compared to the results reported in related stud-
ies. The Ethereum smart contract-based classification results indicate the need
for including the code and lifetime-based features of smart contracts in suspi-
cious behaviour identification. The proposed generalised GNN-based approach
may integrate with the real-time blockchain network to monitor and analyse ma-
licious behaviour. Such integration is beneficial in terms of prompt alerts or early
warnings for forensic analysers, law enforcement authorities, and financial regu-
lators to maintain a secure and trusted blockchain ecosystem, which is essential
for the adoption and success of blockchain technology across various industries.
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