
Encrypted Network Traffic Classification with
Higher Order Graph Neural Network

Zulu Okonkwo?, Ernest Foo, Zhe Hou, Qinyi Li, and Zahra Jadidi

Griffith University, Australia
{z.okonkwo,e.foo,z.hou,qinyi.li,z.jadidi}@griffith.edu.au

Abstract. Encryption protects internet users’ data security and privacy
but makes network traffic classification a much harder problem. Net-
work traffic classification is essential for identifying and predicting user
behaviour which is important for the overall task of network manage-
ment. Deep learning methods used to tackle this problem have produced
promising results. However, the conditions on which these experiments
are carried out raise questions about their effectiveness when applied in
the real world. We tackle this problem by modelling network traffic as
graphs and applying deep learning for classification. We design a graph
classifier based on higher order graph neural network with the aim of op-
timum generalisation. To demonstrate the robustness of our model, we
cross validate it on the ISCXVPN and USTC-TFC datasets with vary-
ing input specifications. We use our model to demonstrate the impact of
network data truncation on traffic classification and define benchmarks
for input specifications. Our best results outperform the state-of-the-art
in terms of generalisation strength. Our tool is available online1.

Keywords: Graph Neural Network · Encrypted Network Traffic · Clas-
sification · Network Security · Deep Learning.

1 Introduction

In the design of network security systems, the core aim is an accurate classifica-
tion of network traffic by the security apparatus [2]. Traditional network secu-
rity involves combining various layers of security in a defence-in-depth approach.
Each layer plays a role with the overall aim of controlling what data enters or
exits the network. Encryption aids security by strengthening privacy amongst
communicating channels, leading to its wide adoption across the internet. Over
94% of Google’s traffic now runs over TLS or SSL [3]. While improving privacy
over the internet, encryption has created new attack surfaces for bad actors to
traverse unnoticed in and out of networks. Due to the sophisticated nature of
encryption algorithms, security systems struggle to accurately classify network
traffic. Recently, a new wave of encrypted attacks has spread across the internet,
? Corresponding Author
1 https://github.com/zuluokonkwo/Encrypted-Network-Traffic-Classificatio
n-with-Higher-Order-Graph-Neural-Network

https://github.com/zuluokonkwo/Encrypted-Network-Traffic-Classification-with-Higher-Order-Graph-Neural-Network
https://github.com/zuluokonkwo/Encrypted-Network-Traffic-Classification-with-Higher-Order-Graph-Neural-Network

2 Z. Okonkwo et al.

with the rise of cyber physical systems(CPS) and internet of things (IoT) cyber
threats over encrypted channels saw a 132% increase in 2022, and malware over
HTTPS continues to rise [1].

Machine learning (ML) and Deep Learning (DL) based methods have experi-
enced huge success in the overall task of network traffic classification. However,
their results are questionable because of underlining issues. State-of-the-art ML
based classifiers [2,4,5,6] have more emphasis on the model design stage while
testing on a small set of data and not paying much attention to the data process-
ing/feature extraction stage. This process yields good but questionable results
as the generalisation capability of the model isn’t guaranteed. State-of-the-art
Graph neural networks (GNN) based designs [22,15] are built with low-order
GNNs. This method utilises node locality for classification tasks, not taking
advantage of higher-order information that has proven to preserve structural
embeddings necessary for graph classification.

The imbalanced nature of network traffic datasets is a concern for ML/DL
based classifiers; training with imbalanced data directly impacts a model’s per-
formance. Results produced with such datasets are biased towards the majority
classes. State-of-the-art classifiers [5,4,6] utilised imbalanced datasets for their
training process not clearly stating how this issue is contained. DL/ML classi-
fiers deal with a lot of parameters that increase during model training to enable
the network generalise optimally. An increase in parameters also accounts for an
increased tendency of an over-fitting model. State-of-the-art classifiers [22,5,4,6]
use dropout to deal with this tendency. Research by Garbin et al. [8] advised
that dropouts be used with caution and when in doubt batch normalisation be
used instead. Garbin et al. [8] also advised that dropouts be used with different
rates to find the optimum spot which yields the best accuracy. Cross-validating
and training a model across a range of datasets is a way to show a model is
not overfitting. Network traffic is dynamic and varies in size. The number and
sizes of packets in a traffic session vary for different applications. For ML/DL
classification approaches, defining input specifications is a requirement for mod-
els. Therefore, defining input sizes that yield the best results when variable-size
inputs cannot be used is important. State-of-the-art classifiers [4,6] truncate net-
work input during training. A trade-off of such should be backed with a clear
explanation or leverage DL methods that can perform computation on variable-
sized inputs.

In this paper, we design an encrypted traffic classifier based on a higher-
order graph neural network. Our design is based on a GNN blueprint by Morris
et al. [21] that preserves structural information necessary for graph classifica-
tion. We test our model on two datasets with different input specifications to
investigate which is optimum for the task of encrypted traffic classification. Our
model can be applied to the network layer of CPS, IoT and smart critical in-
frastructures to identify traffic that pose risks to the systems. In our training
phase, we implement a weighted random sampler that ensures every class is well
represented, making our model unbiased towards any class. We perform strati-
fied cross validation across our dataset with a fold of 5 to ensure our results are

Encrypted Network Traffic Classification with Graph Neural Network 3

as realistic as possible. Our model demonstrated better generalisation strength
when compared to state-of-the-art that used the same dataset. Our best results
for the VPN-dataset are above 97% across all evaluation metrics which is bet-
ter than the compared literature. For the non-VPN dataset our best results are
above 87% for all evaluation metrics. For the Benign and Malware classes of the
USTC-TFC dataset, we achieve well over 95% for all evaluation metrics. Our
contributions can be itemized as follows:

– Development of a higher order GNN-based model that can identify and clas-
sify encrypted network traffic with optimum generalisation strength.

– Improved the feature extraction process for encrypted traffic to better rep-
resent and show relationship of traffic flows.

– Evaluate the impacts of data truncation and padding for encrypted network
traffic classification at the data-link layer (L2) and sessions layer (L5).

The rest of this paper is structured as follows: In Section 2, we introduce the
preliminaries that lay foundations to our data processing and model design. In
Section 3, we introduce our GNN-based classifier and define the data processing
methodology. In Section 4, we evaluate our model on the ISCXVPN and USTC-
TFC datasets. We also discuss the results gotten from our experiments and
conduct a comparative analysis with state-of-the-art models. In Section 5, we
highlight some related papers and discuss gaps which our paper addressed. In
Section 6, we conclude the work and highlight future directions.

2 Preliminaries

The advancements in neural networks for tasks like pattern recognition, image
classification, and predictive analytics have made them valuable tools for re-
searchers in tackling complex issues. They excel in uncovering hidden patterns
in data that can be plotted on a plane but struggle with non-euclidean data [9].
This has led to the development of Geometric Deep Learning to better handle
such data. Graphs, which are non-euclidean representations of entities and their
relationships, can effectively show connections between two or more elements.
They are versatile, as they can be used to model anything, and are particu-
larly useful for modelling non-euclidean network data, which contains a wealth
of information. To fully harness its potential, it must be represented formally.

2.1 Graph Neural Network

A simple graph G consists of a non-empty finite set V (G) of elements called nodes
(or vertices), and a finite set E(G) of distinct unordered pairs of distinct elements
of V (G) called edges. Mathematically, a graph G is defined by Equation 1 as:

G = V E, (1)

where V is the vertex set and E is the edge set. For example, a visual rep-
resentation of a graph G, with vertex set V (G) = {a, b, c, d} and edge set
E(G) = {ab, ac, bc, cd} is shown in Figure 1.

4 Z. Okonkwo et al.

Fig. 1. An example graph.

In Figure 1, we assume every vertex possesses
a feature that defines itself called vertex or node
attributes. Graph neural network (GNN) falls un-
der the branch of geometric deep learning, a type
of deep learning for emerging methods aiming to
generalise deep learning models to non-euclidean
domains mainly graphs and manifolds [9]. Early
GNN methods were generated with the main goal of constructing a generali-
sation of CNN architecture on non-euclidean domains. In neural networks, ac-
tivations are received from preceding layers in order to propagate features to
succeeding layers. This is defined in Equation 2 as:

H
[l+1] = �(W [l]

H
[l] + b

[l]), (2)

where H
[l+1] is the feature representation at layer [l+1], � is a non-linear activa-

tion function, W [l] is the weight at the lth layer, H [l] is the feature representation
at the l

th layer and b
[l] is the bias at the l

th layer. Kipf et al. [10] defined a Graph
Convolution Network (GCN) propagation rule by taking into consideration the
adjacency matrix. The adjacency matrix in graph theory shows how nodes are
connected to each other. This helps nodes learn information about their neigh-
bours during forward propagation. The adjacency matrix forward propagation
can be defined in Equation 3 as (we eliminate the bias b for simplicity):

H
[l+1] = �(W [l]

H
[l]
A

⇤). (3)

H
[norm] = D

�1
AH. (4)

H
[norm] = D

�1
ÃH. (4a)

H
[norm] = D

� 1
2 ÃD

� 1
2H. (4b)

H
(l+1) = �(D̃� 1

2 ÃD̃
� 1

2H
l
W

l). (5)

The A⇤ in Equation 3 represents the normalised adjacency matrix, normalisation
prevents numerical instabilities like vanishing and exploding gradients. Matrix
normalisation is the dot product of the inverse of the degree matrix, D�1 with
the adjacency matrix, A and the node features H as shown in Equation 4. By im-
plementing a self-loop, a node takes into account its own feature during forward
propagation. Setting the diagonal elements of an adjacency matrix to 1 imple-
ments self-loops, Ã represents the refined adjacency matrix in Equation 4a. Due
to varying node degrees, higher degrees nodes tend to dominate. Kipf et al. [10]
suggest symmetric normalisation to reduce this dominance in Equation 4b. Af-
ter normalizing A with its degree matrix and enforcing self-loop by adding the
identity matrix. We get the final equation for forward propagation in GCN as
Equation 5, � represents a nonlinear activation function like ReLU or Tanh used
during neural network computation.

GNN’s evaluation and analysis have been more empirical than theoretical,
making the entire process seem like a black box. Morris et al. [21] tried to give

Encrypted Network Traffic Classification with Graph Neural Network 5

clarity to this issue by relating GNN operations to the Weisfeiler-Leman graph
isomorphism heuristic (1-WL). They show that GNNs possess the same expres-
siveness as the 1-WL in terms of distinguishing non-isomorphic graphs. Meaning
that both algorithms have the same imperfections. They propose a higher-order
generalisation of GNNs called k-GNNs which can capture structural information
not visible at the node level. In k-GNNs, messaging passing is between sub-graph
structures rather than just nodes. Let V (G)a be a sub-graph of V (G) and b be
a set of nodes in V (G)a. The neighbourhood of b is defined below.

N(b) = {t ⇢ [V (G)]a s.t. |b \ t |= a� 1} , (6)

Basically, the local neighbourhood NL(b) consists of all elements in the set t ⇢
N(b) such that (v, w) 2 E(G) for unique v 2 b\ t and unique w 2 t\ b. The local
propagation formula of feature vectors for layer ` > 0 becomes:

f
(`)
a, L(s) = �

0

@f
(`�1)
a, L (s) ·W (t)

1 +
X

u2NL(s)

f
(`�1)
a, L (u) ·W (`)

2

1

A , (7)

where f
(`�1)
a, L (s) represents the feature vector of the set of nodes s at layer

t � 1. The aggregation of the local neighbourhood set of s represented by u

is [
P

u2NL(s) f
(`�1)
a, L (u)]. For simplicity, Equation 7 is denoted as:

x0
i = W1xi +W2

X

j2N (i)

ej,i · xj , (8)

where W1 and W2 are trainable weight parameters of the GNN, Xi signifies
the feature vectors of set of nodes i.

P
j2N (i) denotes the aggregation of the

local neighbourhoods of i denoted by j. The edge weight of the local neighbour
is denoted by ej,i and xj signifies the feature vector of the neighbours. A non-
linear function such as ReLU is utilised during computation.

2.2 Pooling

Pooling is popular for dimensionality reduction in convolutional-based systems.
In this process, the dimension of the feature map is reduced while retaining useful
information and eliminating irrelevant information from the input data. Pooling
reduces the complexity of upper layers and simplifies computation by reducing
the weight parameters. It also controls over-fitting to a reasonable extent.

Global mean pooling This method of pooling was introduced by Yann LeCun [11].
It returns batch-wise graph-level-outputs by averaging node features across the
node dimension. The output for a single graph Gi is computed by:

ri =
1

Ni

NiX

n=1

xn (9)

6 Z. Okonkwo et al.

Fig. 2. Condensed graph after top-K pooling. Nodes are dropped after every pooling
layer making neighbourhood computation for generating graph embedding easier.

Global max pooling The max pooling [12] method simply passes to the next layer
the maximum value within a group of R activations. It returns batch-wise graph-
level-outputs by taking the channel-wise maximum across the node dimension.
The output for a single graph Gi is computed by:

ri =
Ni
max
n=1

xn (10)

For Equations 9 and 10, x represents the node feature matrix.

Top-k pooling This is a sort-based method for dimensionality reduction. A pro-
jection vector [13] is used to score nodes and only nodes with TopK scores along
with related edges are retained. This is an important part of our model design as
we perform TopK pooling at every layer to get the optimum embedding for net-
work graph classification. Assuming we have a graph G with vertex set V (G) =
{a, b, c, d, e, f, g, h, i, j} and edge set E(G) = {ab, bc, cd, de, ef, fg, gh, hi, ij}, we
also assume G is undirected. A visual representation of G is shown in Figure 2.
Suppose we want to train a NN model to get optimum embedding that best de-
fines graphs similar to G. Applying top-K pooling will cause our graph to drop
some nodes, as demonstrated in Figure 2.

It is crucial to note that the nodes carried forward are mathematically and
not arbitrarily determined. A measure of how much information is retained after
node feature vectors xi are projected in the direction of the vector p determines
which nodes are dropped and preserved.

3 Proposed Model

In this section, we first describe the process used in generating our network traffic
graphs then define the model used for classification.

Encrypted Network Traffic Classification with Graph Neural Network 7

3.1 Data Processing

Traffic sessions show bidirectional flows of communication between two or more
parties; this makes it a better way of describing packet relationships for classifica-
tion. Wang et al. demonstrated this [4]. Network communications are processed
as packet capture files (pcap or pcapng) for analysis. After collecting packet
capture files, we split them into sessions with an open-source tool called split-
Cap. Packet capture files with pcapng extension are converted to “.pcap” files
before splitting occurs. An open-source tool "LibCap" is used to achieve this.
The next phase deals with the removal of unwanted information. Network traf-
fic data is collected at the data-link layer that carries information about their
physical interfaces. Information contained in the Ethernet header is stripped off
as it is not useful for classification and can be spoofed by attackers. Network
or flow data like IP addresses and port numbers are not used as features. This
restriction forces the model to utilise only the encrypted traffic for classification.
At the network layer, the source and destination IP addresses of every packet
are masked as they can influence the learning process of the model and can also
be easily manipulated by bad actors. At the transport layer, TCP and UDP are
used. Since these protocols have different connection orientations with different
header sizes (TCP=20 and UDP=8), we pad UDP headers with zeros to match
TCP. Since our main aim is to classify encrypted traffic we limit our features
to information that can’t be easily manipulated. Pcap files are then converted
to their raw byte format. The maximum transmission unit (MTU) of a packet
is 1500 bytes, to maximize information, we extract all packet info and convert
it to raw bytes. Where a packet is not up to the MTU, padding is applied. By
doing this, every packet has a length of 1500. Next, we normalise every byte to
fall within the range of 0-1 by converting every byte to decimal and dividing by
255. Although we conduct tests with different MTU and session sizes, this initial
data processing method is the basis for our experiment.

3.2 Model Description

Graph Data Extraction and Creation The next phase deals with defining
and extracting graph information from the pre-processed files. Since network
traffic is collected over time, it can be represented as time series information.
Traffic sessions are also represented as a back-and-forth exchange over time.
Pang et al. [14] generated chained graph structures to represent traffic sessions.
Each packet in a session is modelled as a node or vertex, and the edge shows
the chronological (time) relationship between packets. Peng et al. [20] conducted
experiments to find the number of packets most effective for traffic identifica-
tion. Their experiment [20] showed the first five-to-seven packets are optimal for
classification. We extend this number to ten and extract the first ten packets
per session, we choose ten to ensure sufficient exchange of encrypted application
data after the completion of the TLS handshake process which is usually three
round trips making six packets in Wireshark. A session with ten packets will
be modelled as a graph with ten nodes, the edges are bidirectionally connected

8 Z. Okonkwo et al.

Fig. 3. Graph representation of traffic session

to their adjacent preceding and succeeding nodes. The entire session is labelled
with the application traffic it conveys. Figure 3 demonstrates the structure of
our traffic session graph; our network traffic can be represented mathematically
as a path graph. To create network graphs, we extract the following information
from the pre-processed pcap files. The extracted information is classified into
four files, each file consisting of mappings as follows:

Node attributes file: Node information is extracted from the packet, and ev-
ery node is mapped to its attribute which has an initial feature length of 1500.
Nodes represent packets and attributes are packet contents (raw byte).

Edge file: The edge information shows the relationship between nodes in a
graph. In the edge file, source nodes are mapped to destination nodes. This
preserves the chronological relationship of traffic sessions.

Graph to Label file: After assigning labels to sessions, we extract this map-
ping of sessions (graphs) and their corresponding class label.

Node to Graph file: As packets belong to particular sessions, we extract this
mapping of packets (nodes) and sessions (graphs).

The files are used to create labelled graphs, every graph has nodes with attributes
(raw byte) and time series relationships represented by edges.

Architecture Our architecture as described in Figure 4, consists of two major
parts, the learner and the categorizer. The learner consists of five sub-layers, each
sub-layer comprising of a GraphConv or k�GNN layer as described by Morris et
al, in [21], not be confused with the Graph Convolution layer defined by Kipf et
al, in [10]. For simplicity, we refer to the k�GNN as GraphConv for the rest of
this literature. The next layer is a batch normalisation layer followed by a top-K
pooling layer. The aim of the learner is to produce optimum embedding used for
classification.

GraphConv [21] is based on a localised higher-order approximation of the
Weisfeiler-Leman graph isomorphism heuristic with the propagation rule de-
fined in Equation 8. This is in contrast to the basic convolutional filter which
allows weight sharing (by means of a filter with a fixed kernel size sliding over
an input). Convolution in spatial domains recognises similar features irrespec-
tive of their spatial location. Graphs on the other hand do not have a defined

Encrypted Network Traffic Classification with Graph Neural Network 9

Fig. 4. Proposed encrypted network traffic classifier. Our model consists of two major
parts that work independently. The learner, which focuses on generating graph em-
beddings, and the categorizer which classifies the embedding to its label. The learner
consists of five sub-layers, each sub-layer with three internal layers (a GraphConv, batch
normalisation and top-k polling layer). The graphconv layer leverages sub-graphs rather
than nodes information to perform computation, thereby utilising higher order details
of graphs capable of preserving structural info. The number 128 above the internal
layers signifies its input and output channel size. The input and output channel sizes
remain the same for all sub-layers to deal with the issue of information loss. It is im-
portant to note that the input graph reduces in size after every sub-layer, the top-K
pooling layer makes this possible. Every sub-layer produces an output which is the
concatenated form of its global mean pool and global max pool values, GMP�GAP .
The five sub-layers produce five embeddings which are concatenated and fed to the
categorizer. The symbol � between the learner and categorizer signifies the concatena-
tion function. The number behind and in front of the categorizer’s dense layer signifies
its input and output channel size. The categorizer takes the concatenated embedding
from the learner, passes it through a series of dense layers and finally classifies it. The
final layer is a softmax classifier which assigns a label to the input graph.

spatial concept. Hence, Kipf et al. [10] utilises spectral graph convolution to
lay the mathematical foundation for propagation. Although graph convolution
works optimally for node classification, we utilise its potency for the entire graph
classification. The model accepts graphs of dimensions n ⇥ m, the first Graph-
Conv layer maps the input feature to an output channel of 128 neurons. The
selection of this neuron size is based on ease of computation and experiments

10 Z. Okonkwo et al.

carried out during this work, literature like [15,14] also use similar sizes. Ev-
ery GraphConv layer contains 128 neurons. We keep this number constant for
all sub-layers in our learner because we extract optimal graph embedding after
every sub-layer, since we implement another layer for dimensionality reduction,
generating proper embedding becomes key. During our experiments, we realise
that a reduction in feature length negatively impacts classification accuracy, a
phenomena that occurs in all conducted experiments. This shows that constant
reduction of the input and output channel during the learning stage will also
impact accuracy. To deal with this issue of loss of information we keep the chan-
nel sizes constant and implement dimensionality reduction with a top-K pooling
layer. This way, node features defining the graphs are well represented before
pooling. The non-linear function used is the Rectified Linear Unit (ReLU).

Following the GraphConv is the batch normalisation (BN) layer. Normal-
isation is an important aspect of our whole process and it is implemented at
the data processing and model training level. We introduce this layer to deal
with the internal covariate shift. BN layers standardise the mean and variance
of each unit in order to stabilise learning, making the gradients more predictive
and increasing convergence time. We utilise BN to achieve a stable distribution
of activation values during the training process, hence, it is introduced after the
non-linearity. BN layers have also been proven to reduce over-fitting in convolu-
tional NN. Garbin et al. [8] in an experiment found BN layers a better choice to
improve accuracy and advised BN layers to be considered as an initial means to
deal with over-fitting before other methods.

The next layer is the top-K pooling layer, as described in Section 2.2 the
aim of this layer is overall dimensionality reduction of graphs. We employ this
method because of the irregular sizes of network packets per session, during data
processing we noticed some sessions with over 50 packets. Similar to pooling in
CNN, top-K pooling reduces the number of nodes in the input graph every
time it is used. The nature of our graphs demands a way to optimise feature
propagation for ease of computation. Hence, we apply a top-K pooling layer to
make our model robust. We still perform more experiments with the truncated
network sessions for impact analysis. The Top-K pooling layer uses a trainable
projection vector [13] to select top-K nodes for the next layer. Dimensionality
reduction is also implemented to deal with over-smoothness in our model. Over-
smoothing is a phenomenon where GNN performance gradually reduces with
increasing layers, this occurs when node embedding becomes similar the GNN
does not seem to learn anything new. Sadowski et al. [16] demonstrated how
dimensionality reduction alleviates this issue.

To get embeddings for graph classification, we compute the global mean
pooling and global max pooling after every sub-layer. This embedding is con-
catenated for every sub-layer of the learner, we end up with five embeddings,
one per sub-layer of our learner. The five embeddings are concatenated and fed
to the categorizer.

The categorizer consists of two sub-layers and a softmax classifier. The cat-
egorizer can be seen as a simple feed-forward NN with three linear or dense

Encrypted Network Traffic Classification with Graph Neural Network 11

layers. The concatenated embeddings from the learner are fed to the catego-
rizer which then predicts the label of the graph based on learned parameters.
Since the output of the learner is of dimension 2 ⇥ 128, the first sub-layer of
the categorizer has an input channel of 256 and an output channel of 128. We
introduce a dropout layer with a probability of 0.5 to tackle over-fitting. the
second sub-layer has an input channel of 128 and an output channel of 64, we
also implement a dropout layer with the same probability here. The final layer
has an input channel of 64 and an output channel equal to the total number of
labels. Each with a probability that defines how well a graph fits the label, this
is achieved with a softmax classifier.

4 Evaluation

To validate the robustness of our model, we subject it to a series of tests with a
range of datasets. The evaluation process is divided into four sections as follows.
The dataset, here we give an in-depth description of the dataset and why we
choose it for evaluation. In the experimental methodology section, we explicitly
define the processes and types of experiments conducted, the parameters with
respect to the model training and testing phase are also defined. In section 4.3
we discuss the results of our experiments and finally compare our results with
state-of-the-art.

4.1 Datasets

The VPN-nonVPN dataset (ISCXVPN2016) [17] captures real traffic of users
Alice and Bob created to use services (applications) described in Table 1. Seven
traffic classes are captured for VPN and non-VPN (at the time of dataset col-
lection the P2P class of the non-VPN traffic was removed from the repository).
The VPN-nonVPN dataset [17] is one of the most popular datasets for encrypted
traffic classification tasks, making it suitable for comparative analysis. Reviewed
literature like [4,15] utilised this dataset for their analysis. The dataset is in .pcap

and .pcapng format and 28GB in size.

Table 1. VPN-nonVPN Dataset Summary

Traffic Content
Web Browsing Firefox and Chrome
Email SMPTS, POP3S and IMAPS
Chat ICQ, AIM, Skype, Gmailchat, Facebook and Hangouts
Streaming Vimeo, Youtube and Spotify
File Transfer Skype, FTPS and SFTP
VoIP Facebook, Skype and Hangouts voice calls
P2P Vimeo, Youtube and Spotify

12 Z. Okonkwo et al.

Table 2. USTC-TFC2016 Dataset Summary

Traffic Content

Benign BitTorrent, Facetime, FTP, Gmail, MySQL, Outlook, Skype, SMB, Weibo,
WorldOfWarcraft

Malware Cridex, Geodo, Htbot, Miuref, Neris, Nsis-ay, Shifu, Tinba, Virut, Zeus

The USTC-TFC2016 dataset [18] consists of two parts, the malware class and
benign class. The malware class consists of ten types of malware traffic collected
from public websites in a real network environment. The benign class consists
of ten types of normal traffic collected using a professional traffic simulation
equipment. This dataset is popular for traffic classification tasks and suitable for
comparative analysis. The dataset is in pcap format and 3.71GB in size. Table 2
gives a summary of the USTC-TFC2016 dataset.

4.2 Experimental Methodology

To explicitly demonstrate our contribution and prove the robustness of our
model, we conduct experiments using the datasets defined in Section 4.1. The
VPN-nonVPN dataset is split so separate experiments are carried out on the
VPN traffic and NonVPN traffic. For the USTC-TFC dataset, separate exper-
iments are conducted on the benign and malware traffic respectively. Network
graphs are created from traffic sessions. The traffic session distribution for the
VPN non-VPN dataset is described in Table 3. Real-world datasets are naturally
imbalanced, and classifiers have to incorporate augmentation techniques during
training. The USTC-TFC dataset has an abundance of samples, so we extracted
2000 sessions per application.

The different input parameter sizes for our experiments are defined in Table 4.
For every input parameter, we process the datasets as required and conduct
experiments. For the first experiment, we truncate at the sessions layer, making
every session and resulting graph have a fixed number of packets (nodes). For
the second experiment, truncation isn’t applied, the number of nodes per graph
varies as packets per session vary. For experiment three, we truncate the data-
link and session layer. We slash the packet size by almost half the MTU, ending
up with 784 bytes per packet and also keeping the sessions fixed at 10 packets
per session. The choice of 784 is motivated by literature that utilise images
from network traffic [6,19] to address the classification problem. Zou et al [6]
proved that network images of size 784 bytes are effective for traffic classification,
and are more lightweight than 1500 bytes. Wang et al [19] generated network

Table 3. VPN-nonVPN dataset sessions sample distribution

Class Chat Email File P2P Stream VoIP
VPN 4029 298 1020 477 659 11985
non-VPN 6523 7312 276 - 445 1781

Encrypted Network Traffic Classification with Graph Neural Network 13

Table 4. Input Graph Specifications

Experiment Nodes per graph Node attribute size
1 10 nodes (fixed) 1500
2 Variable (not fixed) 1500
3 10 nodes (fixed) 784
4 Variable (not fixed) 784

traffic images and used only the first 784 bytes to get fixed sized input for
their CNN model. For experiment four, truncation is applied only at the data-
link layer with packet sizes slashed down to 784 bytes.The first experiment lays
the foundation for comparative analysis while demonstrating the generalisation
strength of our model. Other experiments are conducted for impact analysis of
variable length input (data truncation) on encrypted network traffic classification
and to demonstrate the model generalisation strength.

Training Specification The following specifications are used for developing,
training and testing. The PyTorch geometric library with a python 3.9.13 back-
end is used to generate the graphs, build, train and test our model. The hardware
specification is a Linux dell 5.15.0-56-generic server, the processor is a 12th
Gen Intel(R) Core(TM) i9-12900, 125GB of physical RAM and a NVIDIA RTX
A4000 GPU.

During the training process, weighted random sampling is implemented to
deal with the imbalanced nature of the VPN Non-VPN dataset. Weighted ran-
dom sampling ensures minority classes are properly represented during the train-
ing process. For all experiments, we split our datasets into two, 80% for training
and 20% for testing. The hyper-parameters of the model are as follows: batch
size is 256, the number of epochs is 500 for regular training and 200 during cross
validation. The Adam optimizer is used to improve the categorical cross-entropy
loss function with a learning rate of 0.0003, and the decay rate is 0.00001. We
used the same training specifications for all experiments. We evaluate our model
using the four standard classification metrics namely, Precision, Recall, f1Score
and Accuracy.

Test for Over-fitting The increase in parameters during training can cause neu-
ral networks to adapt so much to a particular data that it performs poorly when
unseen data is introduced. Ensuring a model does not overfit is a crucial aspect
of neural network training. To demonstrate the generalisation of our model, we
subject it to a cross-validation test. For this test, we perform stratified cross-
validation on our model with the dataset. Our choice of stratified cross-validation
is motivated by the imbalanced nature of the dataset, and we need to ensure that
classes are well represented during training. We use the same training specifi-
cation as Section 4.2 with few modifications. We split the data set into 5 folds
and reduce the epoch to 200 to limit the tendency of the model adapting to the
training data.

14 Z. Okonkwo et al.

4.3 Results

A total of 12 experiments are conducted with our model on two datasets. Four ex-
periments on the VPN and four on the non-VPN traffic of the ISCXVPN dataset.
Two experiments on the benign and two on the malware traffic of the USTC-
TFC dataset. To validate our results, we perform stratified cross-validation with
a fold of 5 on the dataset.

Table 5 shows the classification of VPN traffic. Our model yields its best
result in the first experiment when truncation is applied at the session layer
and padding at the data-link layer. The model generalises optimally for the
first three experiments but struggles in the last experiment when truncation
is applied only at the data-link layer. For experiments 2 and 4 we use graphs
with variable vertex cardinality for classification. The results demonstrate that
geometric deep learning, like other DL methods, thrives when the input size is
fixed. In situations where the input parameter sizes vary, such as in experiment
4, a compensation to improve accuracy should be well-defined node attributes
of an adequate size.

Table 6 shows very similar results to Table 5 for the non-VPN traffic clas-
sification task. The best result is achieved in the first experiment. Applying
truncation at the data-link layer yields the worst result. Notice how the model
struggles to classify the chat and email traffic across all experiments. This is
attributed to poor distinction of applications within network sessions. In our
work, every session has a label that defines its traffic class. It is possible to have
multiple application leveraging the same session or have a case of tunnelling
where packets are wrapped inside packets. Our model does not pay attention to
this dynamics rather it focuses on distinguishing a particular traffic session by
labelling it. The imbalanced nature of the traffic also contributes a great deal
to this confusion. Figures 5 and 6 show the confusion matrix for the VPN and
Non-VPN traffic of the ISCXVPN dataset.

Table 5. VPN Traffic classification result

Input Spec Metric Chat Email File Stream P2P VoIP Accuracy

10nodes/1500
Precision 0.9738 0.9672 0.9069 0.8993 0.9877 0.9850

0.9784Recall 0.9595 0.9363 0.8685 0.9921 0.9877 0.9891
F1score 0.9666 0.9516 0.8873 0.9434 0.9877 0.9871

v-nodes/1500
Precision 0.9831 0.8983 0.6916 0.7484 0.9444 0.9867

0.9437Recall 0.9509 0.8413 0.9181 0.8406 0.9533 0.9512
F1score 0.9409 0.8689 0.7889 0.7918 0.9488 0.9687

10nodes/784
Precision 0.9674 0.8955 0.7103 0.8529 0.9700 0.9838

0.9548Recall 0.9601 0.9231 0.8861 0.8722 0.9417 0.9648
F1score 0.9637 0.9091 0.7885 0.8625 0.9557 0.9742

v-nodes/784
Precision 0.2273 0.1908 0.2559 0.5215 0.3333 0.7080

0.4312Recall 0.4065 0.3906 0.4645 0.6693 0.6790 0.4168
F1score 0.2916 0.2564 0.3300 0.5862 0.4472 0.5247

Encrypted Network Traffic Classification with Graph Neural Network 15

Table 6. non-VPN Traffic classification result

Input Spec Metric Chat Email File Stream VoIP Accuracy

10nodes/1500
Precision 0.8683 0.8389 0.9412 1.000 1.000

0.8707Recall 0.8139 0.8881 0.9412 0.9867 0.9745
F1score 0.8402 0.8586 0.9412 0.9933 0.9871

v-nodes/1500
Precision 0.8279 0.6483 0.6667 0.8493 0.8697

0.7160Recall 0.4345 0.9241 0.7568 0.8732 0.8566
F1score 0.5699 0.7620 0.7089 0.8611 0.8631

10nodes/784
Precision 0.6823 0.5266 0.8182 0.7719 0.8392

0.5859Recall 0.2465 0.9023 0.7660 0.7333 0.5604
F1score 0.3622 0.6650 0.7912 0.7521 0.6720

v-nodes/784
Precision 0.5852 0.5516 0.2400 0.4017 0.5736

0.5435Recall 0.2469 0.7662 0.6000 0.6026 0.6632
F1score 0.3473 0.6414 0.3429 0.4821 0.6151

Figure 7 shows the confusion matrix for the benign class of the USTC-TFC
dataset. With a balanced dataset, our model perfectly classifies six applications
for the first experiment and classifies five applications perfectly when the feature
vector is slashed by almost half. As demonstrated in Figure 8 our model shows
powerful generalisation strength for the malware class of the USTC-TFC dataset.
We get very similar results for both experiments regardless of data truncation.
This time we test to see the best feature length for optimum generalisation.
Hence, we keep the nodes length fixed at 10 while varying the attribute size. Our
model maintains an accuracy of over 90% after we slash the feature vector by
almost half. For other evaluation metrics, our model again maintains accuracies
of over 90%. The experiments proved that an increase in features size while
keeping vertex cardinality fixed, improves generalisation strength. Table 7 shows
the overall performance of our model after all 12 experiments are carried out.

4.4 Performance comparison

We compare our best results with state-of-the-art results that use the same
dataset and a similar data processing approach. For VPN classification, our

Fig. 5. Confusion matrix for VPN dataset

16 Z. Okonkwo et al.

Fig. 6. Confusion matrix for non-VPN dataset

Fig. 7. Confusion matrix for USTC-TFC Benign Traffic

Fig. 8. Confusion matrix for USTC-TFC Malware Traffic

Encrypted Network Traffic Classification with Graph Neural Network 17

Table 7. Overall Performance Summary

Dataset Input Spec Precision Recall F1Score Accuracy

VPN

10nodes/1500 0.9749 0.9748 0.9747 0.9748
10nodes/784 0.9586 0.9548 0.9561 0.9548
v-nodes/1500 0.9494 0.9437 0.9455 0.9437
v-nodes/784 0.5543 0.4312 0.4587 0.4312

non-VPN

10nodes/1500 0.8722 0.8707 0.8706 0.8707
10nodes/784 0.6398 0.5859 0.5466 0.5859
v-nodes/1500 0.7505 0.7160 0.6978 0.7160
v-nodes/784 0.5588 0.5434 0.5144 0.5435

Benign 10nodes/1500 0.9830 0.9831 0.9831 0.9830
10nodes/784 0.9177 0.9030 0.8983 0.9030

Malware 10nodes/1500 0.9655 0.9655 0.9655 0.9655
10nodes/784 0.6578 0.9573 0.9575 0.9573

model generalises optimally with approximately the same value across all evalu-
ation metrics. Our model maintains an accuracy that doesn’t fall below 97%, an
occurrence not demonstrated by state-of-the-art models. The results of compared
literature remained unstable for different evaluation metrics.

Table 8. Performance Comparison

Dataset Metric DeepPacket
(GAE)[5]

Gil et al.
[17]

Song et al.
[23]

1DCNN
[4]

Huoh et al.
[15]

k-NN.
[24]

Our
work

VPN

Precision 0.97 0.89 95.2 0.949 0.913 - 0.9748
Recall 0.80 - 97.2 0.973 0.940 - 0.9784
F1Score 0.97 - 96.1 - 0.926 - 0.9747
Accuracy - - - - - 0.94 0.9748

non-VPN

Precision 0.87 0.906 87.6 0.855 0.882 - 0.8722
Recall 0.88 - 87.3 0.858 0.866 - 0.8707
F1Score 0.87 - 87.5 - 0.871 - 0.8706
Accuracy - - - - 0.8707

For the task of non-VPN classification, we obtain similar results to the com-
pared literature. Our model still demonstrates optimum generalisation strength
producing accuracies that do not fall below 87%. Gil et al. [17] using flow-based
features got a precision score of 90.6% on the non-VPN dataset. While this
result is impressive, applications share similar flow-based features which can im-
pact classification. Huoh et al. [15] GNN-based classifier performed well for both
tasks; their model does not generalise optimally for VPN classification. Com-
paratively, Song et al. [23] achieved the closest accuracy to our work; they used
text-based CNN for classification. This closeness in results can be attributed to
“sense of locality”. GNNs and CNNs utilise locality relationships for the classifi-
cation tasks. While GNNs can be built with higher order capability to perform
better, results from both methods should not be far apart. Most state-of-the-art
models avoid the use of accuracy as a metric for evaluation. This is a normal

18 Z. Okonkwo et al.

occurrence when the utilised dataset is imbalanced. The accuracy of classifier on
imbalanced dataset does not depict the true nature of the model’s performance
as minority classes can negatively impact accuracy. For our work, we consider
all four evaluation metric (including accuracy) as in the real world, dataset is
mostly imbalanced.

5 Related Work

Deep learning methods have been immensely applied to the task of traffic classifi-
cation, recurrent(RNN) and convolutional neural networks (CNN) [7] account for
the most usage. In analysing network traffic, the data processing stage is crucial
to the overall process. A common practice by state-of-the-art literature [5,4,6] is
utilising raw packet bytes for classification. Extracted byte information is pro-
cessed to have a fixed length as this is a requirement for most deep learning
approaches. Data truncation is applied, and inputs are fed to the network for
classification. The model is left with the task of making sense of the truncated
input. While reviewed state-of-the-art models provide good accuracy, it is im-
portant to note that generalisation isn’t guaranteed as information lost during
data processing is necessary for classification.

Geometric deep learning is an emerging concept that generalise neural net-
works to non-euclidean domains. Graphs are a visual way to demonstrate re-
lationships between two or more entities. Since network data exists in non-
euclidean space, they can be represented as graphs. Unlike RNN and CNN,
GNN can perform computation on variable-sized inputs. Huoh et al. [15] applied
GNN to traffic classification, they conduct a range of experiments which pro-
duced good results. when they use raw bytes for classification, they experience
significant drop in accuracy. Their design does not utilise structural information
necessary for graph classification. GNNs rely on message passing to propagate
information across nodes, this propagation method performs well for the task of
node classification. To classify the entire graph, a stronger propagation function
is necessary. Shen et al [22] used GNN to distinguish decentralised application.
They design simple traffic dispersion graphs representing applications then use
GNN for classification. They achieve promising results, attributed to the sim-
plistic nature of their graphs. When network traffic sessions are modelled as
variable sized inputs, the tendency of having graphs with huge vertex cardinal-
ity increases. In such scenarios, the task of graph classification demands higher
order GNNs that generate optimum embedding for graph classification.

A process not demonstrated by the reviewed literature is defining the impact
of lost information on a model’s performance. The practice of truncating network
packet data leads to loss of classification information, discarding information
impacts the generalisation strength of classifiers and should be analysed before
implemented. Literature that utilise GNN for the task of classification failed
to utilise the potential of graphs by taking advantage of structural details for
graph classification. The imbalance nature of dataset should always be taken
into consideration during training to produce model that generalise optimally.

Encrypted Network Traffic Classification with Graph Neural Network 19

6 Conclusion

This work presents a higher order GNN for the task of encrypted traffic classi-
fication. We build on theoretical foundations that relates the short fall of basic
GNN to that of the Weisfeiler-Leman graph isomorphism. We observe that tra-
ditional machine learning and deep learning based methods demands fixed sized
input for classification. This requirement causes information discarding during
data processing leading to ordinary representations of traffic data. As graphs are
a powerful way to demonstrate relationships between entities, we model traffic
session as graphs. Nodes represents packets and edges define chronological rela-
tionship between nodes. We harness this expressive nature of graphs to model
network traffic with different input specifications, defining a baseline data pro-
cessing method that conforms to state-of-the-art. The selected datasets are based
on popularity within the research domain, and their suitability for comparative
analysis. Our Proposed model which consist of two major parts is capable of
preserving vertex and structural information of graphs suitable for classifica-
tion. In training our model we consider the imbalance nature of network data
and define ways to curb its ripple effect. When compared to state-of-the art,
our model demonstrates optimum generalisation strength on all dataset across
all experiment conducted. We conduct further test to determine the impact of
truncation on traffic classification. Based on the evaluation metric from series of
test, our model’s overall aim was achieved. Higher order graphs proved suitable
for the task of encrypted network traffic classification. In improving the current
work, the focus needs to shift from the classification stage to feature extraction
stage. To harness the full potential of GNN, fined grained graph structures need
to be developed, as graphs can be spectral or spatial in nature. A hybrid of
both methods for feature representation can aid classification. An extension of
the current method to restricted network contexts, such as IoT, IIoT or CPS is
important. Finally, unknown traffic classification should be explored.

References

1. SonicWall 2022 SonicWall Cyber Threat Report: Cyberattacks Climb Due To Seis-
mic Shift In Geopolitical Landscape. (SonicWall,2022)

2. Zhang, J., Chen, X., Xiang, Y., Zhou, W. & Wu, J. Robust network traffic classifi-
cation. IEEE/ACM Transactions On Networking. 23, 1257-1270 (2014)

3. Google Google Transparency Report, HTTPS encryption on the web.
Https://transparencyreport.google.com/https/overview?hl=en. (2023)

4. Wang, W., Zhu, M., Wang, J., Zeng, X. & Yang, Z. End-to-end encrypted traffic
classification with one-dimensional convolution neural networks. IEEE International
Conference On Intelligence And Security Informatics (ISI). pp. 43-48 (2017)

5. Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R. & Saberian, M. Deep
packet: A novel approach for encrypted traffic classification using deep learning. Soft
Computing. 24, 1999-2012 (2020)

6. Zou, Z., Ge, J., Zheng, H., Wu, Y., Han, C. & Yao, Z. Encrypted traffic classification
with a convolutional long short-term memory neural network. IEEE 20th Interna-
tional Conference On High Performance Computing And Communications; IEEE

20 Z. Okonkwo et al.

16th International Conference On Smart City; IEEE 4th International Conference
On Data Science And Systems (HPCC/SmartCity/DSS). pp. 329-334 (2018)

7. Okonkwo, Z., Foo, E., Li, Q. & Hou, Z. A cnn based encrypted network traffic
classifier. Australasian Computer Science Week 2022. pp. 74-83 (2022)

8. Garbin, C., Zhu, X. & Marques, O. Dropout vs. batch normalization: an empirical
study of their impact to deep learning. Multimedia Tools And Applications. 79,
12777-12815 (2020)

9. Bronstein, M., Bruna, J., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine. 34,
18-42 (2017)

10. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional
networks. ArXiv Preprint ArXiv:1609.02907. (2016)

11. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied
to document recognition. Proceedings Of The IEEE. 86, 2278-2324 (1998)

12. LeCun, Y., Kavukcuoglu, K. & Farabet, C. Convolutional networks and applica-
tions in vision. Proceedings Of 2010 IEEE International Symposium On Circuits
And Systems. pp. 253-256 (2010)

13. Gao, H. & Ji, S. Graph u-nets. International Conference On Machine Learning.
pp. 2083-2092 (2019)

14. Pang, B., Fu, Y., Ren, S., Wang, Y., Liao, Q. & Jia, Y. CGNN: Traffic Classification
with Graph Neural Network. ArXiv Preprint ArXiv:2110.09726. (2021)

15. Huoh, T., Luo, Y., Li, P. & Zhang, T. Flow-based Encrypted Network Traffic
Classification with Graph Neural Networks. IEEE Transactions On Network And
Service Management. (2022)

16. Sadowski, K., Szarmach, M. & Mattia, E. Dimensionality reduction meets message
passing for graph node embeddings. ArXiv Preprint ArXiv:2202.00408. (2022)

17. Draper-Gil, G., Lashkari, A., Mamun, M. & Ghorbani, A. Characterization of
encrypted and vpn traffic using time-related. The 2nd International Conference On
Information Systems Security And Privacy (ICISSP). pp. 407-414 (2016)

18. CTU-University The Stratosphere IPS Project Dataset.
Https://stratosphereips.org/category/dataset.html,. (2016)

19. Wang, W., Zhu, M., Zeng, X., Ye, X. & Sheng, Y. Malware traffic classification
using convolutional neural network for representation learning. 2017 International
Conference On Information Networking (ICOIN). pp. 712-717 (2017)

20. Peng, L., Yang, B., Chen, Y. & Wu, T. How many packets are most effective for
early stage traffic identification: An experimental study. China Communications.
11, 183-193 (2014)

21. Morris, C., Ritzert, M., Fey, M., Hamilton, W., Lenssen, J., Rattan, G. & Grohe,
M. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. CoRR.
abs/1810.02244 (2018), http://arxiv.org/abs/1810.02244

22. Shen, M., Zhang, J., Zhu, L., Xu, K. & Du, X. Accurate decentralized applica-
tion identification via encrypted traffic analysis using graph neural networks. IEEE
Transactions On Information Forensics And Security. 16 pp. 2367-2380 (2021)

23. Song, M., Ran, J. & Li, S. Encrypted traffic classification based on text convolution
neural networks. 2019 IEEE 7th International Conference On Computer Science
And Network Technology (ICCSNT). pp. 432-436 (2019)

24. Yamansavascilar, B., Guvensan, M., Yavuz, A. & Karsligil, M. Application iden-
tification via network traffic classification. 2017 International Conference On Com-
puting, Networking And Communications (ICNC). pp. 843-848 (2017)

View publication stats

https://www.researchgate.net/publication/370526594

	Encrypted Network Traffic Classification with Higher Order Graph Neural Network

