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Abstract

Ensemble trees are a popular machine learning model which often
yields high prediction performance when analysing structured data.
Although individual small decision trees are deemed explainable by
nature, an ensemble of large trees is often difficult to understand.
In this work, we propose an approach called optimised explanation
(OptExplain) that faithfully extracts global explanations of ensemble
trees using a combination of logical reasoning, sampling and nature-
inspired optimisation. OptExplain is an interpretable surrogate model
that is as close as possible to the prediction ability of the origi-
nal model. Building on top of this, we propose a method called the
profile of equivalent classes (ProClass), which simplifies the expla-
nation even further by solving the maximum satisfiability problem
(MAX-SAT). ProClass gives the profile of the classes and features
from the perspective of the model∗. Experiment on several datasets
shows that our approach can provide high-quality explanations to
large ensemble trees models, and it betters recent top performers.

Keywords: Explainable Artificial Intelligence (XAI), Random Forest,
Classification, Decision Rule Extraction

∗The code is available at https://github.com/GreeenZhang/OptExplain.
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1 Introduction

Background.

Ensemble trees are a family of machine learning techniques that combine indi-
vidual decision trees to form a better prediction model. Examples include
random forest [1, 2], which combines strong learners (e.g., large trees) to reduce
variance and avoid overfitting. Boosting [3, 4], on the other hand, combines
weak learners (e.g., small trees) to reduce bias. Ensemble trees are very success-
ful in today’s data analytics competitions and applications; they are especially
suited to analyse structured data such as databases and spreadsheets, where
they sometimes outperform deep learning [5].

Although decision trees are often deemed explainable, or even a “white-
box” model, such an impression usually refers to a single, short decision tree.
In the context of ensemble trees, such as the models generated by random
forest or boosting, there can be a large number of trees and each tree can be
gigantic. For example, to achieve a 0.76+ area-under-the-curve (AUC) for the
1 million flight dataset [5], Silas [6, 7] trains a model of 100 trees, and each
tree has more than 32,000 branches. Such a model certainly does not manifest
itself in an explainable manner to the general user. The main goal of this work
is to extract faithful explanations for such large-scale models.

There are several existing methods for analysing and interpreting machine
learning models. For example, the LIME tool [8] and the SHAP values [9]
are both promising techniques for solving this problem. We will discuss more
details of related work in Section 2. However, most existing work is done from
a statistics perspective. Such methods use a prediction model as a black-box
and attempt to find statistical (e.g., linear) approximations of the model. By
contrast, our philosophy is that we should analyse the internal working of the
model and obtain an understanding of how it works logically. Further, many
existing techniques are focused on local explanations, that is, how the model
predicts for a particular data instance. This work is primarily about global
explanations, which explains how the model behaves generally.

Our approach.

In our previous work [7], we used sampling and maximum satisfiable subsets to
extract the decision logic of the model. However, it is non-trivial to manually
adjust the sampling parameters, which may lead to vastly different explana-
tions. Default parameters often lead to very simple explanations that diverge
from the original model. In this paper, we propose an integrated and auto-
mated framework for providing global explanations. Moreover, our goal is not
just to give an explanation as is done in the literature, but to give the optimal
explanation in terms of simplicity and faithfulness.

The utilities of this work are manifold. First, our approach can provide
human-understandable explanations that are very close to the original ensem-
ble trees model in predictive behaviour. Second, such an explanation can also
be used as an approximation of the original model that can be used for other
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purposes such as verification and testing. Finally, this work can serve as a step-
ping stone toward explaining deep learning by combining existing work that
transforms neural networks into decision trees [10].

Contributions.

The main contributions of this paper are as follows:

1. We formalise ensemble trees into logical formulae and develop simplification
and abstraction algorithms that are specialised for machine learning.

2. We propose an automated explanation extraction method called Opt-
Explain, which combines logical reasoning, sampling, and bio-inspired
optimisation.

3. We also develop a method called ProClass that computes the abstractions
of each (equivalent) class using MAX-SAT.

4. Through case studies and experiments, we show that our method is practical
and useful on different datasets. It also outperforms similar tools.

The remainder of this paper is organised as follows: Section 2 discusses
related work, Section 3 details the proposed approach, Section 4 gives case
studies and experiment, and Section 5 concludes the paper.

2 Related Work

There are a variety of approaches for tackling machine learning interpretability.
Some recent and popular ones are focused on local explanations, that is, how
the model predicts for a particular data instance. LIME [8] is such a tool
that finds linear approximations of the prediction model and gives importance
weights for certain predicates used in the prediction. Anchors [11] generates
“if-then” style explanations for predictions. Such explanations have similar
forms to our decision rules and are considered intuitive and easy to understand
by the user. Shapley (SHAP) Values [9] are often used to extract importance
scores and impacts on features. Like LIME, SHAP also provides user-friendly
graphical presentations (e.g., bar charts) for explaining predictions. It should
be noted that SHAP can also be used to obtain global feature importance.
The above three methods are model-agnostic, which means that in the process
of providing explanations and making machine learning more “white-box”,
they take prediction models as a “black-box” and attempt to find patterns of
features when the model makes predictions. An advantage is that they can
be applied to different machine learning techniques, including ensemble trees
and neural networks. CHIRPS [12] is another technique for local explanations.
In contrast to the above techniques, CHIRPS looks into decision trees and
uses frequent pattern mining on decision nodes to obtain decision rules as the
explanation.

Global explanations that explains how the model behaves generally are
more closely related to this work. Recent examples include Hara and Hayashi’s
approach [13] that uses Bayesian model selection to extract decision rules.
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Deng’s inTrees [14] extracts, selects and prunes rules from a set of decision
trees and uses frequent pattern analysis to summarise rules into a smaller
prediction model.

Most relevant techniques come from a statistics perspective. Their sim-
plification process often consists of selection, pruning and frequency analysis.
By contrast, our work comes from a logician’s point of view and, on top of
the usual selection and pruning operations, uses automated reasoning to sim-
plify logical formulae and find abstractions of equivalent classes. We see many
related methods as complementary ones rather than competitors because they
output in different forms. For example, one can combine SHAP values and our
work to form a more comprehensive explanation.

3 The Proposed Method: OptExplain and
ProClass
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Fig. 1 An overview of the proposed method

An outline of our approach follows: we extract logical formulae from a set of
trees where each branch forms a “decision rule”. We then reduce the size of the
model by filtering out low-quality nodes (i.e., sub-formulae) and branches. We
also devise a customised formulae simplification algorithm to obtain logically
equivalent smaller models. In case there are still too many decision rules, we
group the rules into “equivalent classes” to further abstract the model. The
parameters in the above process are optimised using particle swarm towards a
sweet spot of simplicity and faithfulness. As an extra step, we can simplify the
explanation using MAX-SAT to obtain even more abstract representations of
each equivalent class, which we call the “profiles of classes”. Such profiles can
provide straightforward and even visual explanations of the model.
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3.1 From Decision Trees to Decision Rules

Decision Tree.

Let t(x) = y, where t is the decision tree [15], x is an input instance, y is
the output class. A decision tree is composed of internal nodes and terminal
nodes called leaves. Each internal node is associated with a logical formula
over a feature. Each leaf node contains a set of instances, which yield a vote
distribution of the form (n1, · · · , nm) where m is the number of classes and ni
(1 ≤ i ≤ m) is the number of instances of the corresponding class.

It is straightforward to obtain the formula that is associated with each
internal node. From there, we can obtain the “decision logic” of a branch via
the branch formula of the form (

∧
F ) → D, where

∧
F is the conjunction of

all the (possibly negated) internal node formulae on the branch, and D is the
vote distribution at the leaf node. That is, if the branch goes through a node
F to the right branch, then we include F in the conjunction. Otherwise, we
include ¬F . We refer to a formula of the above form as a decision rule.

The tree conversion algorithm is given in Algorithm 1.

Algorithm 1 The tree conversion algorithm

Input: a decision tree t
Output: a set Rt of branch formulae
1: Rt ⇐ {}
2: for branch b in t do
3: C ← >
4: for node n on b with an associated formula F do
5: if b goes through the right child of n then
6: C ← C ∧ F
7: else
8: C ← C ∧ (¬F )
9: end if

10: end for
11: D ←

∧
(ci = ni), 1 ≤ i ≤ m . ci is the variable for the ith class and ni

is the number of instances of that class in the leaf of b.
12: Rt ← Rt ∪ {C → D}
13: end for

A decision tree t can be converted into a set Rt of mutually exclusive
decision rules. Rt can be used in classification tasks by finding the decision
rule that satisfies an instance and outputting the class of the largest number
of votes.

Ensemble Trees.

We adopt the definitions of Cui et al. [16]. Let an ensemble be a set of
decision trees of size T . It gives the weighted sum of the trees as follows:
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E(x) =
∑T

i=1 wi · ti(x), where E is the function for the ensemble, wi and ti are
respectively the weight and function for each tree. The summation aggregates
the weighted votes from each tree and obtains the final votes for each class.
The above method can be extended to handle an ensemble of trees produced
by random forest [2] or boosting [3, 17]. The ensemble trees conversion algo-
rithm is given in Algorithm 2. In this work, we evaluate our approach using
random forest, but our approach can also be adapted to handle boosting mod-
els. In such cases, we need to consider a set E of trees, and we need to multiply
the vote distribution D of each tree by its weight in the ensemble. The result,
which we refer to as RE , is the union of the set of decision rules from each tree.

Algorithm 2 The ensemble trees conversion algorithm

Input: a set E of weighted decision trees
Output: a set RE of decision rules
1: RE ← {}
2: for tree ti ∈ E which has weight wi do
3: obtain Rti via Algorithm 1
4: for vote distribution D in Rti do
5: multiply the vote count of each class by wi

6: end for
7: RE ← RE ∪Rti

8: end for

For an ensemble E of n trees and for any data instance, there should
be exactly n decision rules in the set RE that are satisfied by the instance
— one from each tree. To use RE in classification tasks, one can find the
subset of decision rules that are satisfied by an instance x and aggregate the
weighted vote counts for each class from those rules. The class with the highest
weighted count is the output, which we refer to as RE(x). The following result
is straightforward:

Proposition 1 For any ensemble trees model E and any data instance x, suppose
RE is the set of decision rules of E derived by the method above, then E(x) = RE(x).

In the sequel, we denote the original ensemble trees model as E and the
converted set of decision rules as RE .

3.2 Simplification of Decision Rules

As discussed in Section 1, some ensemble trees models used in real-life applica-
tions are enormous and complex. Consequently, the converted set of decision
rules for such a model consists of a huge number of rules and each rule may be
a very long formula. To reduce the complexity of the explanation, we consider
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simplifying the set of decision rules in two dimensions: the length of the rules
and the number of the rules.

Continuing from the output RE of Section 3.1, each formula in RE is a
branch formula, which we can simplify using a node filter as step one.

Parameter 1 (Node Filter θ) We measure the “quality” of a node (NQ) by
information gain [18] (IG):

NQ(n) = IG(n) (1)

where n is the target node. We scan the nodes of each branch in each tree, and
remove the nodes with NQ below θ, which is a real positive number.

The second step is to simplify each branch formula by merging the nodes.

Lemma 1 For any branch formula (
∧
Fi)→ D, where each Fi is the formula asso-

ciated with a node on the branch, the left-hand side can be simplified to conjunction
normal form (CNF) with at most n conjuncts, where n is the number of features of
the dataset.

Proof of Lemma 1 By the construction of decision trees, for any two conjuncts v ≥ l
and v ≥ l′ over a numeric feature v that appears in

∧
Fi, we can simplify them into

one conjunct v ≥ l′′ where l′′ = max(l, l′).
For any two conjuncts v ≥ l and ¬(v ≥ l′) over v, if l < l′, then they can be

simplified to l ≤ v < l′. Otherwise, we have l ≥ l′. In this case, the two conjuncts do
not have an intersection, and there would be no instances at the leaf node, and the
training algorithm should not let this case happen.

For any two conjuncts ¬(v ≥ l) and ¬(v ≥ l′) over v, they can be simplified to
v < l′′ where l′′ = min(l, l′).

For any two conjuncts v′ ∈ C and v′ ∈ C′ over a nominal feature v′, they can be
simplified into one conjunct v′ ∈ C′′ where C′′ = C ∩C′. If any of the two conjuncts
is negated, e.g., ¬(v′ ∈ C), we can simply take the complement set C′′′ = Cv \ C,
where Cv is the full set of permitted discrete values of the feature v, and convert the
negated conjunct into v′ ∈ C′′′. The remainder of the proof is analogous.

Thus, the left-hand side of the branch formula can be simplified to one conjunct
per feature. �

Note that the simplification of Lemma 1 preserves logical equivalence of
the set of decision rules while the other steps of this section do not. The reason
why we use node filter in combination with Lemma 1 is that using all the
nodes in a branch may result in very narrow and focused explanations, so we
use θ as a parameter to adjust the scope.

The above two steps aim to shorten the decision rules. The third step is to
reduce the number of rules by filtering out those of low quality.
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Parameter 2 (Rule Filter φ) We measure the “quality” of a decision rule (RQ) by
the following formula:

RQ(r) =
(log2(m)−H(lr))

log2(m)
×Acc (2)

where r is the target rule, m is the number of classes, H(lr) is the entropy [19] of
the leaf of the rule, and Acc is the accuracy of the corresponding tree on the OOB
dataset. We remove a rule if its RQ is less than φ, which is a real number between
0 and 1.

The fourth step merges decision rules into groups of the same class
signature.

Parameter 3 (Leaf Merger ψ) Given a vote distribution (n1, · · · , nm), where m is
the number of classes, we convert the distribution into ratios (ξ1,· · · ,ξm) where each
ξi, 1 ≤ i ≤ m, is the ratio of class i in the leaf node. The class signature of this leaf
node is defined as the tuple (dξi/ψ, · · · , dξm/ψe), where ψ is a real number between
0 and 1.

Using the above definition, we divide the set of decision rules into a set
of sets {G1, · · · , Gj}. Each Gi, 1 ≤ i ≤ j, contains the set of rules of the
same class signature. Intuitively, a larger ψ yields fewer distinct equivalent
classes/groups and vice versa. We use this parameter to control the number of
groups in the final explanation.

For a large-scale random forest, the filtered rules are still a large-scale
formula set. In the last step, we control the number of decision rules we get.

Parameter 4 (Size Filter k) In each Gi, we take the number of instances in the leaf
node of each rule as the weight of the rule, and we select k rules in a weight-first
manner.

Associating each rule with the weight is crucial because now the vote dis-
tribution has been converted into ratios, and we have lost the information on
the number of votes in the distribution. The weight retains this information.
For example, we would prefer a ratio of (0.7, 0.3) with 100 votes to overwhelm
a ratio of (0.1, 0.9) with 10 votes.

We denote the composition of the above steps as Simp, which produces a
set R′E of weighted decision rules, and give the procedure in Algorithm 3.

3.3 Prediction

To use R′E in a classification task, let x be a data instance, we first find all the
decision rules in R′E that are satisfied by x, then multiply the class signature
of each rule by the corresponding weight, and finally, add up to get a tuple.
The class with the largest value is the output. This procedure is denoted as
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Algorithm 3 Simp(RE , θ, φ, ψ, k)

Input: RE , θ, φ, ψ, k
Output: R′E
1: R′E ← {}
2: for rule r in RE do . The object rule has three attributes: F(branch

formula), D(vote distribution) and W(weight).
3: if RQ(r) < φ then . See Eq2
4: Continue
5: end if
6: for node n in F [r] do
7: if NQ(n) < θ then . See Eq1
8: Delete n from r
9: end if

10: end for
11: Simplify r according to Lemma 1
12: D[r]← dD[r]/ψe
13: if ∃ group g ∈ R′E and Sig[g]⇔ D[r] then . The object group has

two attributes: R(a set of rules), Sig(class signature).
14: Insert r into g and keep top k weighted rules in R[g]
15: else
16: Sig[newGroup]← D[r]
17: Insert r in R[newGroup]
18: Insert newGroup in R′E
19: end if
20: end for

Instance x

Match r1, r2, r5

(2,0) * 30

+

(2,0) * 25

+

(0,2) * 26

(110,52) → c : class1

Fig. 2 An example of the prediction procedure using the simplified rules R′
E

R′E(x) = c where c is a class. We give an example in Fig. 2 where we put the
satisfied rules in red boxes.

3.4 Optimal Explanations

Now we consider a step further: how to evaluate explanations and find the
optimal one? Intuitively, a good explanation should meet the following two
criteria:
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• The classification behaviour of the explanation R′E should be similar to the
original model E.

• The explanation should be concise and small.

We use fidelity to measure the first criterion. Fidelity is defined as the
degree of similarity between the predictions of R′E and E on unseen data [20].
First, we take the test set without labels as X∗. Then we use the classification
results on X∗ from the original model E as the “ground truth”. Lastly, we
evaluate the classification accuracy of the explanation R′E on X∗ as fidelity.
The fidelity component is denoted as Fd(R′E , E,X

∗).
The second criterion is scale which is measured by the total number of

conjuncts in the rules of R′E and is denoted as Sc(R′E).
The score of an explanation R′E is defined as

Sopt(R
′
E) = Fd(R′E , E,X

∗)× ε+
1− ε

1 + e5×(
Sc(R′

E
)

m×n −1)
(3)

where ε is a real number between 0 and 1, n is the number of features, and
m is the number of classes. The intuition is that the score grows linearly with
fidelity, but it drops significantly when the explanation is too large. The second
component is a sigmoid-shaped function. Also, a large ε puts more importance
on fidelity, and a small ε puts more importance on the scale.

To obtain an optimal explanation, we use the linearly decreasing inertia
weigh particle swarm optimization algorithm (LDIW-PSO) [21] to optimise the
parameters mentioned in section 3.2: (θopt, φopt, ψopt, kopt) = argmax(Sopt),
where Sopt is the fitness function to be optimised. Then we apply the optimal
parameters to Simp and obtain the optimal explanation Ropt. We refer to the
above procedure as OptExplain, and the algorithm is given in Algorithm 4, in
which we denote the application of the LDIW-PSO algorithm by PSO(E,S),
where E is the original model and S is the fitness function. Note that the
LDIW-PSO application iteratively calls Simp() to obtain intermediate results.

Algorithm 4 OptExplain(E,X∗, ε)

Input: E,X∗, ε
Output: Ropt

1: Optimal parameters (θopt, φopt, ψopt, kopt)← PSO(E,Sopt) . X∗ and ε
are parameters of Sopt. See Eq 3.

2: RE ← Extract decision rules from E via Algorithm 2
3: Ropt ← Simp(RE , θopt, φopt, ψopt, kopt)

3.5 Profile of Equivalent Classes

An explanation with high fidelity is usually large, while a concise explanation
can allow users to quickly understand the predictive behavior of the model at
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the sacrifice of fidelity. Sometimes the latter is preferred to draw a high-level
conclusion about the classification behavior. We propose a new method called
the Profile of Equivalent Classes (ProClass), which describes the distribution
of features that best match each class from the perspective of the model.

The ProClass procedure is based on an explanation obtained by Algorithm
3. Different from Section 3.4, an explanation used for ProClass requires more
rules, and the number of groups is equal to the number of classes. We denote
the explanation as R′′E , and the number of groups in R′′E is denoted as M(R′′E).
For the above needs, we defined another score for the optimization in ProClass:

Spro(R′′E) = (m−M(R′′E) + 1)× Sc(R′′E) (4)

where m is the number of classes. Using Spro as fitness, we obtain the optimized
result is denoted as R′opt. An ideal R′opt has m groups {G1, · · · , Gm}. For each
group Gi (1 ≤ i ≤ m), some rules in Gi may be mutually exclusive. To solve
this problem, we associate the weight of each rule to each of its conjuncts and
send all the weighed conjuncts in the group to an SMT solver such as Z3 [22].
The solver will return a subset of satisfied conjuncts that maximise the total
weight by solving a weighted maximum satisfiable (MAX-SAT) problem [23].
Then we simplify the conjuncts into one rule r′i using Lemma 1. Performing
the above steps on all groups, we get the profile of equivalent classes denoted
as Rpro, which has the form Rpro = {r′1 → S1, · · · , r′m → Sm}, where r′i is the
logic for predicting the class Si. The ProClass algorithm is given in Algorithm
5.

Algorithm 5 ProClass(E)

Input: E
Output: Rpro

1: Optimized parameters (θpro, φpro, ψpro, kpro)← PSO(E,Spro)
2: RE ← Extract decision rules from E via Algorithm 2
3: R′opt ← Simp(RE , θpro, φpro, ψpro, kpro)
4: Rpro ← {}
5: for group g in R′opt do
6: R[g]←MAXSAT (R[g])
7: r ← >
8: for conjunct c in R[g] do
9: r ← (r ∧ c)

10: end for
11: r ← (r → Sig[g])
12: Insert r into Rpro

13: end for
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4 Case Studies and Experiment

In this section, we demonstrate our method through case studies. We used
scikit-learn to train random forest models. We implemented our method in
Python and evaluated it on multiple datasets: adult, credit, diabetes, german,
mnist, spambase, all of which are available on OpenML [24]. There are two
important parameters in LDIW-PSO algorithm: particle size and iteration
period. In our experiments, both particle size and iteration period are set to
20 by default. Experiments were conducted on a machine with an Intel Core
i9-7960X CPU and 32GB RAM.

4.1 Case Study 1: Diabetes Prediction

We first evaluate OptExplain on diabetes dataset [25], which has 8 features, 2
classes, and 768 samples. The eight features are the number of times pregnant
(preg), plasma glucose concentration (plas), diastolic blood pressure (pres), 2-
hour serum insulin (insu), triceps skinfold thickness (skin), body mass index
(mass), diabetes pedigree function (pedi) and age. We randomly select 100
samples as the testing set, and the rest as the training set. Then we train a
random forest with 100 trees and unlimited depth.

Table 1 Optimized parameters and predictive performance of the explanation

(φ, θ, ψ, k)
RE Ropt

scale accuracy scale accuracy fidelity

(0.55, 0.45, 0.83, 3.0) 102584 80% 6 80% 92%

Table 2 The optimal explanation of a random forest model for diabetes

Groups
Class Signature

(negative, positive)
Rules Weight

Group1 (2.0, 0.0)
pedi ≤ 0.7 30
plas ≤ 130.0 23
plas ≤ 157.5 21

Group2 (0.0, 2.0)
mass > 28.7 30
age > 27.5 22
plas > 122.5 20

We set ε to 0.9, and the explanation Ropt produced by OptExplain is shown
in Table 1 and Table 2. Recall that RE is equivalent to the original model E
(Proposition 1). Both RE and Ropt have 80% accuracy on the test set. RE has
11106 rules with 102584 conjuncts, while Ropt has 6 rules with 6 conjuncts.
The fidelity of Ropt is 92%, which means it is very similar to the original model.
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By observing the decision rules, users can analyze what role each feature plays
in the prediction process. In this explanation, if an instance has plas > 157.5,
then the chance of predicting positive diabetes is high.

Table 3 gives the profile Rpro derived from ProClass. The profile is divided
into two groups corresponding to equivalent class labels: negative diabetes and
positive diabetes. Medical practitioners can quickly obtain the salient feature
values corresponding to each class according to the profile.

Table 3 The profile of equivalent classes of a random forest model for diabetes

negative positive

2.0 < preg ≤ 2.5 7.5 < preg ≤ 8
90 < plas ≤ 91.5 173.5 < plas ≤ 175
74 < pres ≤ 74.5 70 < pres ≤ 71
28.5 < skin ≤ 29 23.5 < skin ≤ 24
61.5 < insu ≤ 63 126.5 < insu ≤ 127.5
25.9 < mass ≤ 26 32.9 < mass ≤ 33

pedi = 0.2 pedi = 0.5
23.5 < age ≤ 24 33 < age ≤ 33.5

4.2 Case Study 2: Digit Recognition (MNIST)

In order to visually demonstrate the profile, we use the MNIST dataset [24]
to illustrate ProClass. The MNIST dataset contains 70,000 images of size 28
× 28 pixels. In order to reduce the complexity, we randomly picked 10,000
samples from the dataset as the training set, and train a random forest with
100 trees and 15 max-depth. ProClass produces a profile Rpro which gives
the range of some pixels. Then we take the median of the range as the pixel
value. The remaining pixels that do not appear in the profile are set to light
blue. Fig. 3 shows “how the prediction model see digits.” The profile is not
concerned with the peripheral pixels that are not significant in the prediction.
It can be observed that the profile indeed shows human-readable visualisation
of each class. The user can observe the visualisation and assess whether the
ML model has potential issues when predicting certain classes. For example,
by inspecting Figure 3, the user can see that the classification for digits 4, 5, 6,
and 9 looks quite vague, which means that these cases are potential weaknesses
of the model and retraining may be required. It can also be observed that there
might be adversarial samples when trying to distinguish 4 and 9, as well as 5,
6 and 8 because these cases largely overlap.

We note that OptExplain is designed to extract the logical decision-making
of the ML model by analysing features. This procedure is (though possible)
not suitable for image datasets because the features are simply pixels, and the
logical formulae of pixels are hard to understand, which defeats the purpose
of the explanation. This is part of the reason why we developed ProClass,
which can visualise the explanation for image datasets from a different angle.
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Consequently, we do not include the MNIST dataset in the experiment of
OptExplain.

Fig. 3 As visualisation of classes profile (Rpro) on MNIST

4.3 Experiment and Comparison

We compared the proposed method to recent methods — Hara and Hayashi’s
approach named degragTrees [13], and Deng’s approach named inTrees [14]. In
Hara’s work, defragTrees has been compared with BATrees [26], inTrees [14]
and Node Harvest [27]. Their result suggests that defragTrees generated a
smaller set of rules with higher fidelity than the other methods. We choose
the following datasets: adult, credit, diabetes, german, spambase [25]. We split
the datasets into two subsets at random: a 70% training set and a 30% testing
set. Then we train the ensemble trees with 100 trees and 10 max-depth for
OptExplain and defragTrees. inTrees is implemented in R language, we use its
default setting of 100 trees. For OptExplain, we set two experimental groups
and set ε as 0.5 and 0.9 respectively.

We conducted the experiment over ten random data realizations for each
dataset. Table 4 shows the average values of the ten tests. The number in
bold is the best scale/fidelity value for each dataset. Table 4 shows that the
scale of explanations generated by OptExplain with 0.5 ε is the smallest except
on the adult and german datasets, and the fidelity is generally better than
defragTrees and inTrees. The small-scale explanation on german generated
by defragTrees has much lower fidelity. OptExplain with 0.9 ε can generate
the highest fidelity explanation with similar scale than defragTrees. In both
settings of ε, OptExplain generates superior explanations in most cases. In
addition, our approach supports user-customized generation explanations by
modifying parameters ε.

Finally, we visually compare the computation time in Fig. 4, and show the
mean time of 10 tests. We run OptExplain on models of 100 trees with depths
of 10 and 30. The method inTrees and defragTrees on 100 is also used as a
reference. The results show that inTrees has the best computational perfor-
mance; however, this method often produces explanations with lower fidelity
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Table 4 Comparison of OptExplain with inTrees and defragTrees in terms of scale and
fidelity of the explanation on various datasets.

Data
inTrees defragTrees

OptExplain
ε = 0.5 ε = 0.9

scale fidelity% scale fidelity% scale fidelity% scale fidelity%

adult 23.4 80.7 65.5 81.9 37.2 87.0 43.2 88.4
credit 24 76 8.7 85 2.8 94.2 9.8 94.6
diabetes 152 72.3 14.2 74.8 4 85.8 8.3 88.3
german 14.2 70.2 5.4 69.8 19 87.3 50.2 88.7
spambase 51.3 82.7 82 91.7 22 91.6 40.6 92.9

Fig. 4 Comparison of OptExplain with inTrees and defragTrees in terms of computational
speed. The y-axis is in logarithmic scale.

compared to the other two methods, as can be observed in Table 4. OptExplain
has better computational performance than defragTrees on the adult, diabetes
and spambase datasets. For the above three datasets, OptExplain can gener-
ate explanations for trees of depth 30 faster than defragTrees can for depth
10. For a concrete example, the mean computation time of OptExplain on the
adult dataset is 1,949 s, while the time of defragTrees is 5,797 s (both depth
10). Overall, OptExplain on average provides better quality explanations in a
shorter time than defragTrees.

4.4 Discussion

The first novel feature of this work is OptExplain, which optimizes the extrac-
tion process according to the objective function Eq 3 to obtain not just an
explanation but the optimal explanation. The optimal explanation is a trade-
off between scale and fidelity. Most other methods simply give an explanation
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without examining whether the explanation is good or not. If the explanation
is too large, it will be hard or time-consuming for users to understand (e.g., [28]
Figure 14), whereas if it is too small, it may be of poor fidelity, so the trade-
off is particularly important. Table 1 and Table 2 show that our method can
obtain small size and high fidelity explanations, and Figure 4 shows that we
do compute them in a reasonable time, often faster than comparable methods
such as defragTrees, though not as fast as inTrees, which often yields worse
explanations.

The other new feature we provide is ProClass, which is useful for showing
the global decisions of ML models. Complementing OptExplain, ProClass can
be used to visualise global explanations as “heatmaps” for image datasets.

Users can adjust the objective function parameter ε of OptExplain accord-
ing to domain knowledge and application scenarios so as to adjust whether
scale or fidelity is more important in a specific scenario. With ProClass, domain
knowledge could help to improve the original model by inspecting the expla-
nations for each class and assessing the strengths and weaknesses of the ML
model, as discussed in Section 4.2.

5 Conclusion and Future Work

This paper presents a streamlined procedure for extracting optimal logical
explanations from ensemble trees models. As an additional feature, our method
can also output the “profile” of each class so that the user can see how the
model predicts in different cases. We give two case studies to illustrate how our
method works and show that our method outperforms state-of-the-art through
experimental results.

In future work, we plan to use this work to perform efficient verification
tasks. A general sound and complete verification algorithm for ensemble trees is
impractical [29]. As a step back, we can look at the software testing perspective:
since the explanation mimics the behaviour of the original model, if it violates a
property, then it is likely that the original model would fail the verification, too.
In such cases, we can use the explanation to constrain the search space when
finding counterexamples. A prototype built on top of this paper and the above
idea has shown potential and been published [30]. Another important future
direction is to convert deep neural networks to ensemble trees and extend this
work to explain deep learning. Existing methods only induce a single decision
tree whose predictive performance is incomparable to the deep learning model.
We plan to develop a new approach to convert neural networks to a set of
decision trees instead, and then this work can be directly applied to obtain
explanations.

We note that different aggregation strategies of voting in random for-
est or boosting algorithms may affect the classification performance in some
applications, as discussed and evaluated in-depth in [31]. However, voting
mechanisms are non-trivial to be integrated into explanations and may add
unnecessary complexity to the outcome, so our methods focus on the decision
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rules extracted from the internal nodes of decision trees. The integration of
voting in explanation is left as future work.
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