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Automated model repair techniques enable machines to synthesise patches that ensure models meet given
requirements. B-repair, which is an existing model repair approach, assists users in repairing erroneous models
in the B formal method, but repairing large models is inefficient due to successive applications of repair. In
this work, we improve the performance of B-repair using simultaneous modifications, repair refactoring and
better classifiers. The simultaneous modifications can eliminate multiple invariant violations at a time so that
the average time to repair each fault can be reduced. Further, the modifications can be refactored to reduce
the length of repair. The purpose of using better classifiers is to perform more accurate and general repairs
and avoid inefficient brute-force searches. We conducted an empirical study to demonstrate that the improved
implementation leads to the entire model process achieving higher accuracy, generality and efficiency.
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1 INTRODUCTION
Automatic Software Repair (ASR) [4, 13] aims to use verification, testing and program synthesis
techniques to assist humans to repair erroneous programs. In general, repairing software requires
machines to locate faults before generating the repairs. Spectrum-based fault localisation has been
heavily used to locate faults in imperative programs [1, 20]. It uses a set of I/O pairs to test a
program and records traces of successful cases and failed cases. According to the occurrences of
operations in the traces, suspicious code that causes the failed cases can be found, and candidate
repairs can be generated using various techniques. For example, GenProg [21] and SCRepair [16]
can generate mutation repairs; PASAN [34], AutoFix-E [26] and SPR [24] can use pre-defined
template repairs to generate repairs; CASC [37], pyEDB [3] and GenProg [21] can use genetic
programming to generate repairs. However, these ASR tools only focus on traditional test-based
software development at the concrete code level. Little work has been done on ASR for correct-
by-construction software development at the abstract design level, as much work in this field has
focused on the computer-assisted diagnosis of faulty models. For example, a theory for identifying
consistent behavioural modes in abstract models has been proposed by [11]. Moreover, Linear
Temporal Logic (LTL) specifications, which are used to specify sequential properties of programs
at the abstract design level, can be diagnosed using SAT encodings and reasoning [27]. However,
model repair after diagnosis requires more investigation. In this work, we study automatic model
repair techniques based on the B method.
The B method [2] is a formal software development method at the abstract design level, where

design specifications are represented as abstract machines (called “models”). B has been used to
develop a number of automatic railway control systems in France, Sweden, and USA [6], formalise
the security properties of the L4 microkernel [15] and verify industrial PLC controllers [5]. The idea
of Bmodel repair is proposed by Schmidt et al. [32], and the goal of Bmodel repair is to automatically
(or semi-automatically) eliminate invariant violations and deadlocks in abstract machines. Moreover,
Schmidt et al. [33] have developed a model repair approach that eliminates invariant violations
by strengthening pre-conditions and relaxing invariants and eliminates deadlocks by weakening
pre-conditions and generating new operations. This approach is semi-automatic because users
are required to manually give I/O examples to synthesise new operations, and the code of new
operations is constructed using a pre-defined program component library. Another automated B
model repair approach is called B-repair [10], which uses machine learning techniques to learn the
state spaces of abstract machines and select well-behaved repairs that preserve the original state
spaces as much as possible. However, B-repair eliminates only one fault during each loop of repair,
which means that repairing a large number of faults is time-consuming.

In this paper, we improve B-repair by implementing Abstract Machine Batch Modification
(AMBM), which is more automatic and efficient than the previous B-repair. AMBM can repair
multiple invariant violations at a time using simultaneous modifications, repair refactoring and
better classifiers. AMBM inherits the concept of B-repair, which aims to repair design models at
a high level of abstraction. The design models consist of operations describing changes in model
states and invariants describing model properties, and the operations are expected to satisfy the
properties with respect to the system requirements [2]. If the design models are logically verified
to be correct, they can be further developed into executable software via different techniques,
e.g., they can be rewritten as concrete models by refinement and finally converted to concrete
programs. If faults exist in a design model, succeeding concrete models and final concrete programs
can be faulty. Thus, repairing faulty design models is of great importance to the secure software
development process.
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Fig. 1. The Overall Flow Chart of AMBM.

The workflow of AMBM is revealed in Fig. 1. Firstly, an initial abstract machine that specifies
the design model, which possibly has invariant violations, is constructed by the user. The machine
consists of initialisation and a number of operations. In the learning module, the state space of
the machine is analysed using a model checker and learnt using a classifier, leading to a repair
evaluator. We have the following two assumptions. Firstly, high-quality repairs are expected to
retain the state space of the original model as much as possible. Secondly, instead of manual
estimation, the quality of repair can be automatically estimated using the repair evaluator. Based
on the above assumptions, the repair evaluator will be used to maximise the similarities of state
space before and after repair. Next, in the modification module, the model checker is used to detect
invariant violations in the machine. If invariant violations exist, a set of atomic modifications that
can eliminate the invariant violations will be synthesised. These modifications are found via a
constraint solver and selected using the repair evaluator. A modification will be selected if the
repair evaluator predicts a high likelihood that the modification can lead to a minimal change in the
state space. Each selected atomic modification can eliminate exactly one invariant violation. After
that, in the refactoring module, the atomic modifications are simplified as compound modifications.
Each compound modification can eliminate one or more invariant violations. Finally, in the update
module, the compound modifications are applied to the initial abstract machine, leading to an
updated machine. The updated machine will be forwarded to the modification module. If any
invariant violations are detected, further modifications will be required; otherwise, the workflow
terminates.

The contributions of this work include:

• B-repair [10] is extended by implementing batch modifications and integrating better
machine learning models, which leads to higher speed and accuracy on B model repair
tasks.
• A repair refactoring algorithm is introduced to generalise the code of modifications.
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• An empirical study is conducted to demonstrate the accuracy, generality and efficiency of
the extended model repair tool1.

The rest of this paper is organised as follows. Section 2 revisits the B method, supervised machine
learning and B-repair. Section 3 presents technical details of AMBM. Section 4 presents a case
study on the use of AMBM to repair a faulty B model. Section 5 presents an empirical study of our
approach. Section 6 discusses modifications on non-determinism and compares our study with
related work. Section 7 concludes this work and outlines future directions.

2 PRELIMINARIES
This section revisits the B method, supervised machine learning and B-repair. Emphasised words
are terminology that will be used in later discussions.

2.1 The B Method
The B method [2] is a correct-by-construction formal design modelling technique, where models
are represented as abstract machines consisting of constants, variables, initialisations, operations,
invariants and properties. Constants define unchangeable values in models, and variables define
changeable values that record states of models. Initialisations can assign initial values to variables,
and operations can generate new states by assigning new values to variables. Invariants describe
conditions that all states must satisfy, and properties describe conditions that must be satisfied
by the constants. The derivation and checking of model states can be achieved using model
checkers such as the ProB tool [22]. Given an abstract machine that has N variables, the ProB
model checker can approximate a state space that consists of a set of state transitions of the form
[𝑣1, 𝑣2, . . . , 𝑣𝑁 ]

𝛼−→ [𝑣 ′1, 𝑣 ′2, . . . , 𝑣 ′𝑁 ], where 𝛼 is an operation, 𝑣1, 𝑣2, . . . , 𝑣𝑁 are the values of the
variables before applying the operation, and 𝑣 ′1, 𝑣

′
2, . . . , 𝑣

′
𝑁
are the values of the variables after

applying the operation. In other words, the new state [𝑣 ′1, 𝑣 ′2, . . . , 𝑣 ′𝑁 ] results from the application
of the operation 𝛼 to the existing state [𝑣1, 𝑣2, . . . , 𝑣𝑁 ]. When deriving such transitions, the model
checker verifies whether all 𝑣1, 𝑣2, . . . , 𝑣𝑁 and 𝑣 ′1, 𝑣

′
2, . . . , 𝑣

′
𝑁
satisfy the given invariants. If not, an

invariant violation will be triggered and reported. Initialisations can trigger invariant violations as
well, but in this study we do not repair faulty initialisations.

Operations are the core components of abstract machines as they determine the derivation of
transitions. They are described using different forms of substitutions, such as pre-conditioned
substitutions and conditional substitutions. A pre-conditioned substitution is of the form
PRE 𝑃 THEN 𝑄 END, where 𝑃 is a predicate, and 𝑄 is a substitution. 𝑃 is a pre-condition that must
be true for a state 𝑠 when the operation is applied. If 𝑃 is false for 𝑠 , the operation will not be
activated. A conditional substitution is of the form IF 𝑃 THEN𝑄 ELSE 𝑅 END, where 𝑃 is a predicate,
and 𝑄 and 𝑅 are substitutions. If 𝑃 is true for a state 𝑠 , 𝑄 will be applied. If 𝑃 is false for 𝑠 , 𝑅 will be
applied to 𝑠 . In this study, the above two types of substitution are used to construct repair operators
that can generally handle other types of substitution. Additionally, a pre-state and an operation can
either deterministically lead to only one post-state, or non-deterministically lead to more than one
post-state. In this work, we focus on such determinism and leave non-determinism as future work.

2.2 Supervised Machine Learning
Supervised machine learning aims at constructing a function that maps given input-output pairs
[29]. Although supervised machine learning and the B method are rooted from two separate
domains, the vectorisation techniques can bridge the gap between the two domains. According
to [35] and [10], the states of B model can be converted into binary vectors by applying a set
1The source code is available via https://github.com/cchrewrite/ambm.
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of pre-defined transformations to variables in the states. If a variable is an integer, a Boolean
value, a distinct element or a first-order set, then it can be vectorised by one-hot encoding. In
the vectorisation process, infinite types such as INTEGER and NATURAL are converted to finite
sets by collecting all the values that occur in a state space and ignoring all unseen values so that
such infinite types can be partially vectorised. The unseen values are ignored because supervised
machine learning models usually cannot learn unseen values as they do not occur in training
sets; therefore, unseen values should be excluded in order to avoid noise. Besides, in order to
vectorise higher-order sets, sets in sets can be considered as string elements. Section 6.2 will discuss
limitations and alternatives of the vectorisation method. Regardless of the number of variables, a
state 𝑠 can be vectorised by converting all variables in 𝑠 to vectors and concatenating the vectors.
Using vectorisation, states of a B formal model can be represented as sequences of 0 and 1, so

that they can be learnt using supervised learning models such as Bernoulli Naive Bayes (BNB)
classifiers, Logistic Regression (LR) classifiers, Support Vector Machines (SVM), Random Forests
(RF) and various neural network architectures [7, 14]. In particular, Silas is an explainable and
verifiable classifier that learns patterns using random forests and applies automated reasoning
techniques to explain and verify the learning results [8, 9]. Although the theories of these learning
models differ from each other, their usages are similar. Each model must have a training algorithm
and a prediction algorithm. The training algorithm takes as input a training set containing a list of
vectors with their labels. Each label is an identifier representing exactly one class, and each vector
has exactly one label. The training algorithm updates parameters of the model in order to map the
vectors in the training set to their corresponding labels. The prediction algorithm takes as input a
vector 𝑥 and returns a vector 𝑦 = (𝑦1, . . . , 𝑦𝐾 ) such that 𝑦𝑘 (𝑘 = 1, . . . , 𝐾) is the likelihood that 𝑥 is
mapped to the 𝑘th label. In the next section, we will explain how to use the supervised machine
learning models to learn the states of a B design model.

2.3 B-repair
B-repair [10] aims to use model checking, constraint solving and machine learning to search for
repairs that solve invariant violations in B abstract machines. After the use of ProB [22] to detect a
state transition that violates invariants, the constraint solver in ProB is used to suggest candidate
repairs that change the state transition to satisfy the invariants. One of the core steps of B-repair is
to use a repair evaluator based on binary classification to select repairs from the candidate repairs.

Model checkers can approximate an abstract machine using a set of state transitions, where each
transition is of the form 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 and can be rewritten as a triple [𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝛼] consisting of a
pre-state 𝑆𝑝𝑟𝑒 , a post-state 𝑆𝑝𝑜𝑠𝑡 and an operation 𝛼 . The operation 𝛼 consists of a pre-condition
𝑃 and a post-condition 𝑄 (which is usually represented as a generalised substitution). The triple
[𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝛼] means that 𝑆𝑝𝑟𝑒 is a state satisfying 𝑃 , and 𝑆𝑝𝑜𝑠𝑡 is a state satisfying 𝑄 . The analysis
of the state space can be converted into a classification problem, i.e., the triple [𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝛼] can
be classified into either a set of “possible” transitions 𝑆𝑃 or a set of “impossible” transitions 𝑆𝐼 .
[𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝛼] is in 𝑆𝑃 if and only if 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 is a possible transition with respect to the machine.
[𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝛼] is in 𝑆𝐼 if and only if 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 is impossible with respect to the machine. B-repair
can use binary classifiers to learn the mapping from state transitions to 𝑆𝑃 and 𝑆𝐼 . The trained
classifiers are considered as repair evaluators, i.e., given a repair, the classifiers use their prediction
functions to output repair scores indicating the likelihood that the repair results in a state transition
in 𝑆𝑃 .
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3 ABSTRACT MACHINE BATCH MODIFICATION
This section gives details on how B-repair is improved by implementing AMBM. AMBM reuses
the learning and update modules of B-repair and adapts the modification module to support
batch modifications. Additionally, a new refactoring module is used to simplify the code of batch
modifications. Algorithm 1 describes the main function of AMBM. It takes as input a source B
machine that contains invariant violations and outputs a repaired machine without any invariant
violations. The algorithm consists of the learning phase (Line 1-2), the modification phase (Line
3-18), the refactoring phase (Line 19-23) and the update phase (Line 24-25), which are indicated
using the “▷” symbols. The motivation and intuition of the four phases are as follows:

• The learning phase is used to train a classifier that learns the state space of the B machine.
The trained classifier can be used to rank repairs. Without the ranking process, it will be
difficult to select appropriate repairs.
• Themodification phase is used to detect invariant violations and suggest repairs. As different
candidate repairs are available, the classifier is used to rank the repairs.
• The refactoring phase is an optional process that can simplify the code of repair when
multiple repairs are applied to an operation. Without simplification, the repair still works,
but the resulting B machine may have tedious code.
• The update phase is used to update the B machine based on the suggested repairs.

Referring to Fig. 1 in Section 1, the four phases correspond to the learning module, the
modification module, the refactoring module and the update module, which describe a single loop
of modification. During the learning phase, the state space of the source machine is approximated
using the ProB model checker [22] and used to train a repair evaluator. During the modification
phase, invariant violations are detected and removed from the source machine. Firstly, the model
checker is used to find all faulty transitions that trigger invariant violations. Secondly, the constraint
solver embedded in ProB is used to randomly compute a set of candidate states that satisfy all
invariants in the source machine. Thirdly, a set of candidate atomic modifications, which can repair
single faulty transitions, are produced using the candidate states. (To understand how the candidate
atomic modifications are generated, refer to the Atomic-Modifications function and the Update
function in Section 3.1.) Their repair scores are estimated using the learnt classifier. For each faulty
transition, an atomic modification with the highest repair score is selected. Fourthly, the source
machine is updated using all selected modifications. The modification phase is repeated until no
faulty transitions can be found. During the refactoring phase, atomic modifications applied to each
operation are collected and rewritten using Algorithm 2, resulting in a set containing compound
modifications and atomic modifications that cannot be refactored. Finally, during the update phase,
the source machine is changed using the modifications, and the updated machine is returned.

Algorithm 2 is an algorithm that rewrites atomic modifications into compound modifications. It
takes as input a set of atomic modifications and outputs a set of compound modifications. Firstly, the
atomic modifications are converted to atomic modification predicates (which are generated using
the Modifications-To-Predicates function in Section 3.1). Secondly, Context-Free Grammars
(CFG) are used to generate a set of relation predicates describing possible relations between the pre-
and post-states. Thirdly, candidate relation predicates that are satisfied by each atomic modification
predicate are collected. According to the candidate relation predicates, the atomic modification
predicates are split into two partitions. The first partition 𝑃𝐵 includes all atomic modification
predicates that satisfy a common relation predicate. The second partition 𝑃𝐴 includes all atomic
modification predicates that do not satisfy the relation predicate. Finally, the above partition process
is applied to 𝑃𝐴 iteratively until no further partitions can be produced. If such a partition cannot
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Algorithm 1 Abstract Machine Batch Modification
Input: source machine𝑀𝑆

Parameter: the maximum number of candidate states 𝑁𝑋 , classifier type 𝑇𝑊
Output: repaired machine𝑀𝑅

1: 𝐷𝑆 ← State-Space(𝑀𝑆 ) ▷ Learning Phase
2: 𝑊 ← Repair-Evaluator-Training(𝐷𝑆 ,𝑇𝑊 )
3: 𝑋 ← Invariant-Solutions(𝑀𝑆 , 𝑁𝑋 ) ▷ Modification Phase
4: 𝑀𝑇 ← 𝑀𝑆

5: 𝑅𝐴𝑙𝑙 ← ∅
6: while 𝑇𝑟𝑢𝑒 do
7: 𝐷𝑇 ← State-Space(𝑀𝑇 )
8: 𝑇𝐹 ← Faulty-Transitions(𝐷𝑇 )
9: if 𝑇𝐹 = ∅ then
10: break
11: end if
12: 𝑆𝑀 ← Correct-States(𝐷𝑇 ) ∪ 𝑋
13: 𝑅𝑀 ← Atomic-Modifications(𝑇𝐹 , 𝑆𝑀 )
14: 𝑃𝑀 ← Repair-Scores(𝑅𝑀 ,𝑊 )
15: 𝑅𝐶 ← Modification-Selection(𝑅𝑀 , 𝑃𝑀 )
16: 𝑀𝑇 ← Update(𝑀𝑇 , 𝑅𝐶 )
17: 𝑅𝐴𝑙𝑙 ← 𝑅𝐴𝑙𝑙 ∪ 𝑅𝐶
18: end while
19: 𝑅𝑈 ← ∅ ▷ Refactoring Phase
20: for 𝛼 in Operations(𝑀𝑆 ) do
21: 𝑅𝛼 ← Collect-Modifications(𝑅𝐴𝑙𝑙 , 𝛼)
22: 𝑅𝑈 ← 𝑅𝑈 ∪ Refactoring(𝑅𝛼 ) (Algorithm 2)
23: end for
24: 𝑀𝑅 ← Update(𝑀𝑆 , 𝑅𝑈 ) ▷ Update Phase
25: return𝑀𝑅

be produced, the partitions will be converted to compound modifications using their relation
predicates.
In order to help readers understand the algorithms, the following subsection provides details

of core functions used in Algorithm 1 and Algorithm 2. The functions are listed in order of line
numbers in the algorithms.

3.1 Core Functions
Algorithm 1 includes the following functions.

• 𝐷 ← State-Space(𝑀) (in Line 1 and Line 7) returns the state space 𝐷 of a given abstract
machine𝑀 . It is a function of the ProB model checker. The given abstract machine must
be finite with respect to its invariant and have no deadlock states. In order to approximate
a finite state space, ProB is run to generate all states that satisfy the invariant and freeze
all states that violate the invariant. In particular, if ProB detects any states violating the
invariant, ProB will be controlled to check other normal states rather than stopping at
the violation points. The resulting finite state space 𝐷 is converted to a list of triples.
Each triple is of the form [𝑆, 𝑆 ′, 𝛼], where 𝑆 is a pre-state of the form [𝑥1, 𝑥2, . . . , 𝑥𝑁 ], 𝑆 ′
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Algorithm 2Modification Refactoring
Input: atomic modification set𝑀𝐴

Parameter: maximum depth of CFG predicates 𝐷𝐶𝐹𝐺
Output: compound modification set𝑀𝐶
1: 𝛼 ← Get-Operation(𝑀𝐴)
2: 𝑃𝐴 ← Modifications-To-Predicates(𝑀𝐴)
3: 𝑃𝐶𝐹𝐺 ← CFG-Predicates(𝑀𝐴, 𝐷𝐶𝐹𝐺 )
4: 𝑀𝐶 ← ∅
5: while 𝑃𝐴 ≠ ∅ do
6: 𝑊𝑆 ← Candidate-Predicates(𝑃𝐴, 𝑃𝐶𝐹𝐺 )
7: [𝑃𝐵, 𝑃𝐴] ← Best-Partition(𝑃𝐴,𝑊𝑆 )
8: 𝑀𝐶 ← 𝑀𝐶 ∪ {Compound-Modification(𝑃𝐵, 𝛼)}
9: end while
10: return𝑀𝐶

is a post-state of the form [𝑥 ′1, 𝑥 ′2, . . . , 𝑥 ′𝑁 ], and 𝛼 is an operation. The triple means that
[𝑥1, 𝑥2, . . . , 𝑥𝑁 ]

𝛼−→ [𝑥 ′1, 𝑥 ′2, . . . , 𝑥 ′𝑁 ] is a possible transition of𝑀 , where 𝑥𝑖 (𝑖 = 1, . . . , 𝑁 ) and
𝑥 ′𝑖 (𝑖 = 1, . . . , 𝑁 ) are values of variables in𝑀 . The above form of triples is consistently used
in our functions.
• 𝑊 ← Repair-Evaluator-Training(𝐷,𝑇 ) (in Line 2) learns a binary classifier of type𝑇 for

a state space𝐷 and returns the learnt classifier𝑊 . The learning of the classifier is performed
by the following steps. Firstly, a set of triples 𝑍 is randomly produced such that |𝑍 | = |𝐷 |
and 𝐷 ∩ 𝑍 = ∅. Secondly, the triples in 𝐷 and 𝑍 are vectorised as features with labels.
Features of 𝐷 are labelled as “0” (i.e., possible transitions). Features of 𝑍 are labelled as “1”
(i.e., impossible transitions). Thirdly, the features with labels are learnt using a classifier of
the type𝑇 .𝑇 can be BNB, LR, SVM, RF or Silas. Regardless of the theories of these classifiers,
each classifier has a training algorithm implemented as a method, fit(𝑋,𝑌 ), that takes as
input a list of features 𝑋 with a list of labels 𝑌 and updates parameters of the classifier in
order to fit 𝑋 and 𝑌 . The goal of fitting is to map features in 𝑋 to their corresponding labels
in 𝑌 as much as possible. For our repair evaluator training function, the method fit is used
to learn the mappings between the features and the labels of the triples. Finally, the learnt
classifier is returned.
• 𝑋 ← Invariant-Solutions(𝑀, 𝑁 ) (in Line 3) computed at most 𝑁 states satisfying the
invariant of an abstract machine𝑀 and returns a set 𝑋 containing the 𝑁 computed states.
The function consists of the following steps. Firstly, the invariant of𝑀 is extracted. Secondly,
the invariant is converted into a constraint where all variables in𝑀 are considered unknowns.
Finally, the constraint solver of ProB searches solutions satisfying the constraint in random
order and returns 𝑁 solutions, where each solution is a state [𝑥1, 𝑥2, . . . , 𝑥𝑁 ] satisfying the
invariant of𝑀 . The purpose of this function is to find candidate components (i.e., modified
states) for producing atomic modifications.
• 𝑇 ← Faulty-Transitions(𝐷) (in Line 8) returns a set 𝑇 containing all faulty transitions

in the state space 𝐷 . 𝐷 must be produced using the function 𝐷 ← State-Space(𝑀). Note
that 𝐷 is assumed to have no deadlock states. If ProB detects an invariant violation, the
computation of the state space will stop and only one faulty state can be reported. In order
to report all invariant violations, we use a trick to control ProB to develop a whole state
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space and collect all invariant violations, i.e., all states that trigger invariant violations are
frozen, and all states that have no outgoing transitions are reported.
• 𝑆 ← Correct-States(𝐷) (in Line 12) returns a set 𝑆 containing all correct states in the
state space 𝐷 . 𝐷 must be produced using the function 𝐷 ← State-Space(𝑀). Correct
states in 𝐷 are collected by finding all states with at least one outgoing transition.
• 𝑅 ← Atomic-Modifications(𝑇, 𝑆) (in Line 13) takes as input a set of faulty transitions
𝑇 and a set of correct states 𝑆 . Any transition 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 ∈ 𝑇 and any state 𝑆𝑚𝑜𝑑 ∈ 𝑆
correspond to an atomic modification [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ], which means that changing
𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 to 𝑆𝑝𝑟𝑒
𝛼−→ 𝑆𝑚𝑜𝑑 can eliminate the faulty state 𝑆𝑝𝑜𝑠𝑡 . All possible atomic

modifications are collected into a set 𝑅 and returned. The purpose of this function is to
synthesise atomic modifications that can eliminate invariant violations.
• 𝑃 ← Repair-Scores(𝑅,𝑊 ) (in Line 14) predicts repair scores of a set of atomic
modifications 𝑅 via a classifier𝑊 . The classifier must be produced using the function
𝑊 ← Repair-Evaluator-Training(𝐷,𝑇 ). The repair scores are computed via the
following steps. Firstly, each atomic modification [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ] is reduced to a triple
[𝑆𝑝𝑟𝑒 , 𝑆𝑚𝑜𝑑 , 𝛼]. Secondly, [𝑆𝑝𝑟𝑒 , 𝑆𝑚𝑜𝑑 , 𝛼] is vectorised as a binary feature 𝑥0. Thirdly, the
classifier𝑊 is used to predict the repair score of 𝑥0. Regardless of the type of𝑊 , it must
have a prediction algorithm implemented as a method predict(𝑥,𝑦) that takes as input
a feature 𝑥 and a label 𝑦 and returns the likelihood that 𝑥 is mapped to 𝑦. For our repair
evaluator training algorithm, the repair score of the triple is the value of predict(𝑥0, “0”).
Finally, a list 𝑃 containing the repair scores of all the modifications is returned.
• 𝑆 ← Modification-Selection(𝑅, 𝑃) (in Line 15) selects modifications in a list of atomic
modifications 𝑅 with a list of repair scores 𝑃 and returns a list of selected modifications 𝑆 .
The 𝑖th number in 𝑃 is the repair score of the 𝑖th modification in 𝑅. The selecting process has
the following steps. Firstly, modifications in 𝑅 are sorted by their repair scores in descending
order. Secondly, for any modification [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ] in the sorted 𝑅, if 𝛼 , 𝑆𝑝𝑟𝑒 and 𝑆𝑝𝑜𝑠𝑡
is the first occurrence, [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ] will be considered as the best modification for
the transition 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 . Finally, all the best modifications are collected into a list 𝑆
and returned. The purpose of this function is to find the best atomic modifications, i.e., for
each invariant violation, the trained classifier is used to estimate the repair scores of all
applicable candidate modifications, and only the modification with the highest repair score
will be selected.
• 𝑈 ← Update(𝑀,𝑅) (in Line 16 and 24) updates an abstract machine 𝑀 using a list of

modifications 𝑅 and returns an updated machine𝑈 . A modification is applied to an operation
𝛼 via a pair (𝑃 ′, 𝑌 ′), where 𝑃 ′ is a condition, and 𝑌 ′ is a substitution. For an atomic
modification [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ], 𝑃 ′ is the predicate form of 𝑆𝑝𝑟𝑒 , and 𝑌 ′ is the substitution
form of 𝑆𝑚𝑜𝑑 . For a compound modification [𝛼, 𝑃,𝑌 ], 𝑃 ′ is the predicate form of 𝑃 , and 𝑌 ′
is the substitution form of 𝑌 . If 𝛼 is a substitution 𝑇 without any pre-conditions, applying
the modification to 𝛼 will lead to a conditional substitution as follows:

IF 𝑛𝑜𝑡 (𝑃 ′) THEN 𝑇 ELSE 𝑌 ′ END (1)

If 𝛼 is a pre-conditioned substitution “PRE 𝑆 THEN 𝑇 END”, applying the modification to 𝛼
leads to a pre-conditioned substitution as follows.

PRE 𝑆 THEN
IF 𝑛𝑜𝑡 (𝑃 ′) THEN 𝑇 ELSE 𝑌 ′ END

END
(2)
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Moreover, when 𝑁 (𝑁 ≥ 1) modifications (𝑃 ′1, 𝑌 ′1 ), . . . , (𝑃 ′𝑁 , 𝑌 ′𝑁 ), where 𝑃 ′𝑖 (𝑖 = 1, . . . , 𝑁 ) is
a condition and 𝑌 ′𝑖 (𝑖 = 1, . . . , 𝑁 ) is a substitution, are applied to the same operation with a
substitution 𝑇 and without any pre-conditions, the following template can be used:

IF 𝑃 ′1 THEN 𝑌
′
1

. . .

ELSIF 𝑃 ′𝑁 THEN 𝑌 ′𝑁
ELSE 𝑇
END

(3)

If the operation has a pre-condition 𝑆 and a substitution 𝑇 , the following template can be
used:

PRE 𝑆 THEN
IF 𝑃 ′1 THEN 𝑌

′
1

. . .

ELSIF 𝑃 ′𝑁 THEN 𝑌 ′𝑁
ELSE 𝑇
END

END

(4)

After applying all modifications to𝑀 , the resulting machine𝑈 is returned.
• 𝑆 ← Collect-Modifications(𝑅, 𝛼) (in Line 21) takes as input a set of modifications 𝑅 and
an operation 𝛼 and returns a set 𝑆 containing all modifications that are in 𝑅 and can be
applied to 𝛼 .
• 𝑆 ← Refactoring(𝑅) (in Line 22) takes as input a set of atomic modifications 𝑅 and returns

a set of compound modifications 𝑆 via Algorithm 2. Each compound modification is of the
form [𝛼, 𝑃,𝑌 ], where 𝛼 is an operation, 𝑃 is a list of pre-states, and 𝑌 is a list of substitutions
reflecting the relations between the pre-states and the post-states. The purpose of this
function is to simplify atomic modifications.

Algorithm 2 includes the following functions.
• 𝛼 ← Get-Operation(𝑀) (in Line 1) takes as input a set of atomic modifications 𝑀 . If all
modifications correspond to a certain operation 𝛼 , then 𝛼 is returned. If the modifications
correspond to two or more operations, an error is raised.
• 𝑈 ← Modifications-To-Predicates(𝑀) (in Line 2) converts a set of atomicmodifications
𝑀 to a set of predicates 𝑈 . Each atomic modification is of the form [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ],
suggesting that a transition 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆𝑝𝑜𝑠𝑡 should be changed to 𝑆𝑝𝑟𝑒
𝛼−→ 𝑆𝑚𝑜𝑑 . Only 𝑆𝑝𝑟𝑒 and

𝑆𝑚𝑜𝑑 need to be converted to predicate forms. Suppose that 𝑆𝑝𝑟𝑒 and 𝑆𝑚𝑜𝑑 are [𝑥1, . . . , 𝑥𝑁 ]
and [𝑦1, . . . , 𝑦𝑁 ] respectively, and 𝑣𝑝𝑟𝑒𝑖

and 𝑣𝑚𝑜𝑑𝑖 (𝑖 = 1, . . . , 𝑁 ) are identifiers of variables
in the pre-state 𝑃 and the modified state 𝑌 respectively. The predicate forms of 𝑃 and 𝑌
are 𝑣𝑝𝑟𝑒1 = 𝑥1 ∧ . . . ∧ 𝑣

𝑝𝑟𝑒

𝑁
= 𝑥𝑁 and 𝑣𝑚𝑜𝑑1 = 𝑦1 ∧ . . . ∧ 𝑣𝑚𝑜𝑑

𝑁
= 𝑦𝑁 respectively. Thus,

the predicate form of [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆𝑝𝑜𝑠𝑡 , 𝑆𝑚𝑜𝑑 ] is the conjunction of the above two predicates,
which is 𝑣𝑝𝑟𝑒1 = 𝑝1 ∧ . . . ∧ 𝑣

𝑝𝑟𝑒

𝑁
= 𝑝𝑁 ∧ 𝑣𝑚𝑜𝑑1 = 𝑦1 ∧ . . . ∧ 𝑣𝑚𝑜𝑑

𝑁
= 𝑦𝑁 . This predicate

is called a modification predicate. The purpose of producing modification predicates is to
enable the constraint solving function in ProB to find relationships between pre-states and
modified states.
• 𝑃 ← CFG-Predicates(𝑀,𝐷) (in Line 3) takes as input a set of atomic modifications 𝑀
and a search depth 𝐷 and synthesises a set of predicates 𝑃 using Context-Free Grammars
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(CFG). The CFGs are constructed using: (1) the identifiers of variables in the pre-states
and the modified states, including 𝑣𝑝𝑟𝑒

𝑖
and 𝑣𝑚𝑜𝑑𝑖 (𝑖 = 1, . . . , 𝑁 ), (2) values of variables that

occur in 𝑀 , and (3) the B operators such as arithmetic, Boolean and set operators. The
maximum depth of synthesised predicates is 𝐷 . Synthesised predicates are of the form
𝑣𝑚𝑜𝑑𝑖 = 𝐹 (𝑣𝑝𝑟𝑒1 , . . . , 𝑣

𝑝𝑟𝑒

𝑁
), where 𝐹 is a function. The synthesised predicates are called CFG

predicates. The purpose of synthesising CFG predicates is to find candidate predicates that
represent relations between pre-states and modified states. By default, the maximum depth
of the CFG predicate is set to 3, and the number of candidate predicates is set to 1,000. Each
variable can match at least one candidate predicate because a variable 𝑣𝑖 with a value 𝑥𝑖 can
be directly converted to a predicate 𝑣𝑚𝑜𝑑𝑖 = 𝑥𝑖 .
• 𝑊 ← Candidate-Predicates(𝑋, 𝑃) (in Line 6) takes as input a set of modification
predicates 𝑋 and a set of CFG predicates 𝑃 and returns a set 𝑊 containing candidate
pairs that are of the form (𝑅, 𝑆) such that 𝑅 ∈ 𝑋 , 𝑆 ∈ 𝑃 , and 𝑆 is a candidate predicate of
𝑅. To obtain such pairs, for any 𝑅 ∈ 𝑋 and any 𝑆 ∈ 𝑃 , the constraint solving function in
the ProB model checker is used to resolve 𝑅 ∧ 𝑆 . If 𝑅 ∧ 𝑆 is true, 𝑆 will be considered as a
candidate predicate of 𝑅. The pair (𝑅, 𝑆) will be a member of𝑊 and is called a candidate
pair. After obtaining all candidate pairs,𝑊 is returned. The purpose of finding candidate
pairs is to discover hidden relations between pre-states and modified states.
• [𝑃𝐵, 𝑃𝐴] ← Best-Partition(𝑋,𝑊 ) (in Line 7) takes as input a set of modifi-
cation predicates 𝑋 and a set of candidate pairs 𝑊 . Recall the explanations of
Modifications-To-Predicates and CFG-Predicates. We continue to use the notation of
modification predicates 𝑣𝑝𝑟𝑒1 = 𝑝1 ∧ . . . ∧ 𝑣𝑝𝑟𝑒

𝑁
= 𝑝𝑁 ∧ 𝑣𝑚𝑜𝑑1 = 𝑦1 ∧ . . . ∧ 𝑣𝑚𝑜𝑑

𝑁
= 𝑦𝑁 and

the notation of candidate predicates 𝑣𝑚𝑜𝑑𝑖 = 𝐹 (𝑣𝑝𝑟𝑒1 , . . . , 𝑣
𝑝𝑟𝑒

𝑁
). For each 𝑣𝑚𝑜𝑑𝑖 (𝑖 = 1, . . . , 𝑁 ),

a candidate predicate𝑈𝑖 is found in𝑊 such that:
– 𝑈1 ∧ . . . ∧𝑈𝑁 is true for all predicates in a subset 𝑋1 ⊆ 𝑋 ,
– 𝑈1 ∧ . . . ∧𝑈𝑁 is false for all predicates in a subset 𝑋2 ⊆ 𝑋 ,
– 𝑋1 ∪ 𝑋2 = 𝑋 ∧ 𝑋1 ∩ 𝑋2 = ∅, and
– the cardinality of 𝑋1 is maximised.

In the above process, 𝑈1 ∧ . . . ∧ 𝑈𝑁 is called a compound modification predicate, which
uses a set of CFG predicates to describe atomic modifications. After finding such 𝑋1 and
𝑋2, the best partition 𝑃𝐵 = [𝑋1, [𝑈1, . . . ,𝑈𝑁 ]] and a partition 𝑃𝐴 = 𝑋2 that contains all the
remaining atomic modifications will be returned. The purpose of this function is to find
common relations between pre-states and modified states.
• 𝑍 ← Compound-Modification(𝑃𝐵, 𝛼) (in Line 8) converts the partition 𝑃𝐵 =

[𝑋1, [𝑈1, . . . ,𝑈𝑁 ]], which is produced using Best-Partition, to a compound modification
𝑍 for an operation 𝛼 . 𝑍 is of the form [𝛼, 𝑃, [𝑈1, . . . ,𝑈𝑁 ]], where 𝑃 is a set containing all
pre-states covered by 𝑋1. The purpose of this function is to synthesis modifications using
common relations between pre-states and modified states.

3.2 Implementation
AMBM is implemented by extending B-repair [10]. Its main dependencies include ProB 1.7.1 [22],
scikit-learn 0.19.2 [25] and Silas Edu 0.8.5 [8, 9]. The model checker in ProB is used to approximate
state spaces of abstract machines and detect invariant violations. The constraint solver in ProB
is used to find candidate modifications. The constraint solving function in ProB is used to find
relations between pre-states and modified states. Regarding scikit-learn, it provides well-behaved
classifiers, including BNB, LR, SVM and RF, as well as training and prediction functions that can be
directly used for the purpose of repair evaluator training. Besides, Silas Edu provides an improved
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Fig. 2. The Implementation of AMBM.

implementation of random forest and corresponding training and prediction functions. In our tool,
these classifiers are used as black boxes. The source code of the tool can be downloaded2.

2Silas Edu is developed by us and can be downloaded from https://www.depintel.com/silas_download.html.
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Fig. 2 shows the architecture of the implemented AMBM tool. The tool consists of four modules
that correspond to the four phases of Algorithm 1. The following descriptions provide details of
the four modules.

• The learning module trains a repair evaluator for a given abstract machine. To obtain the
training data, correct state transitions of the abstract machine are approximated using the
ProB model checker. The state transitions are vectorised as training data using the state
transition encoder in B-repair. Repair evaluators can be a Bernoulli naive Bayes classifier,
a logistic regression classifier, a support vector machine, or a random forest. Training
functions for these classifiers are inherited from scikit-learn and Silas.
• The modification module generates atomic modifications for the abstract machine. In this
module, the abstract machine is checked using the ProB model checker, and all state
transitions and all invariant violations are collected. After analysing the state transitions
and the invariant violations, the constraint generator and solver work out candidate atomic
modifications that can remove all the invariant violations from the state transitions. Features
of the candidate atomic modifications are computed using the state transition encoder in
B-repair. These features and the trained repair evaluator are used to predict repair scores in
the repair score predictor. The predictor makes use of the prediction functions in scikit-learn
and Silas to estimate the repair scores. After that, the candidate atomic modifications are
sorted by their repair scores, and those with high repair scores are selected.
• The refactoring module converts the selected atomic modifications to compound
modifications. First, the Mod2Pred convertor rewrites the atomic modifications to their
predicate forms, and the context-free grammar predicate generator generates candidate
predicates from predefined context-free grammars of B and types of variables in the atomic
modifications. Then the atomic modifications are clustered into a number of partitions by
the satisfiability between the predicate forms of the atomic modifications and the candidate
predicates. Next, the predicate extractor collects predicates of each partition. Finally, these
predicates are converted to compound modifications via the Pred2Mod convertor.
• The update module uses a machine updater to apply the compound modifications to the

original abstract machine and uses the ProB model checker to check the correctness of the
updated abstract machine. If the model checker does not report any invariant violation,
the AMBM tool will terminate and return the abstract machine. Otherwise, a new loop of
AMBM is started to eliminate invariant violations in the abstract machine.

In Sections 4 and 5, the AMBM tool is used to conduct experiments.

4 A CASE STUDY ON AMBM
This section provides a case study to explain Algorithm 1 and Algorithm 2. The two algorithms

are used to repair the bus control model in Fig. 3. The model has the following features:

• Buses are numbered as 1, 2, . . . , 𝑁 .
• “Selected_Bus” is a variable that denotes the ID of a selected bus that is being controlled.
When Selected_Bus = 0, no bus is selected.
• “Current_Location(i)” is a variable that denotes the current location of the 𝑖th bus.
• “Next_Location(i)” is a variable that denotes the next scheduled location of the 𝑖th bus.
• “Moving(i)” is a variable that denotes whether or not the 𝑖th bus is moving.
• 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3 and 𝑆𝑡4 are stations, and 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 is an airport.
• Initially, all buses are at 𝑆𝑡1, not moving and not scheduled.
• “Bus_Selector” is an operation that selects a bus to send a signal.
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MACHINE Bus_Control
SETS Location = {St1, St2, St3, St4, St5, Airport}
CONSTANTS Map, N
PROPERTIES Map = {(St1,St2), (St2,St3), (St1,St3),
(St3,St4), (St4,St5), (St5,Airport), (Airport,St1)} & N = 2

VARIABLES Selected_Bus, Moving, Current_Location, Next_Location
INVARIANT Selected_Bus : 0..N & Moving : 1..N −−> BOOL &
Current_Location : 1..N −−> Location & Next_Location : 1..N −−> Location &
!(ii,jj).(ii : 1..N & jj : 1..N & not(ii = jj) & Current_Location(ii) = St4 &
Moving(ii) = FALSE => not(Current_Location(jj) = St4 & Moving(jj) = FALSE))

INITIALISATION Selected_Bus := 0; Moving := (1..N) ∗ {FALSE};
Current_Location := (1..N) ∗ {St1}; Next_Location := (1..N) ∗ {St1}

OPERATIONS
Bus_Selector =
ANY Bus_ID WHERE Bus_ID : 1..N & Selected_Bus = 0
THEN Selected_Bus := Bus_ID
END;

Signal_Sender =
ANY Destination WHERE not(Selected_Bus = 0) &
Destination : Location & (Current_Location(Selected_Bus),Destination) : Map

THEN Next_Location(Selected_Bus) := Destination ; Selected_Bus := 0
END;

Bus_Controller =
PRE not(Selected_Bus = 0) &
not(Next_Location(Selected_Bus) = Current_Location(Selected_Bus))

THEN
IF Moving(Selected_Bus) = FALSE
THENMoving(Selected_Bus) := TRUE
ELSE Current_Location(Selected_Bus) := Next_Location(Selected_Bus) ;
Moving(Selected_Bus) := FALSE

END;
Selected_Bus := 0

END
END

Fig. 3. A Bus Control Model

• “Signal_Sender” is an operation that sends a signal to the selected bus to schedule a
destination.
• “Bus_Controller” is an operation that moves the selected bus to the scheduled destination.

In the model, a bus controller is described by the Bus_Controller operation. It has a pre-conditioned
substitution of the form PRE . . . THEN . . . END, where the predicate between PRE and THEN is
a pre-condition meaning that if the selected bus does not reach its next scheduled location, the bus
controller will start controlling it to reach the location. The substitution between the first THEN
and the last END describes how to change the state of the bus. If the bus is not moving, then it
starts moving to the next location. If the bus is on the way to the next location, it will stop at the
next location. The operation is required to satisfy the invariant, where variable identifiers “ii” and
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“jj” are used instead of “i” and “j” because single letters are not allowed to be identifiers in some B
model checkers. The last two lines of the invariant mean that St4 can hold at most one bus, but the
invariant is violated because the operation allows two buses to stop at St4. We use Algorithm 1 to
solve such invariant violations.

4.1 The Learning Phase
We used the case of 𝑁 = 2 as an example, i.e., the bus controller controlled two buses with IDs
1 and 2. In the learning phase, the State-Space function can approximate state transitions of
the model. To aid the readability, we recorded a state as [Selected_Bus, Moving(1), Moving(2),
Current_Location(1), Current_Location(2), Next_Location(1), Next_Location(2)], and “TRUE” and
“FALSE” are recorded as “T” and “F” respectively. Due to the large state space, we give the following
state transitions as examples, where changed values are underlined.

• [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1] 𝐵𝑢𝑠_𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟−−−−−−−−−−→ [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1]
• [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1]

𝑆𝑖𝑔𝑛𝑎𝑙_𝑆𝑒𝑛𝑑𝑒𝑟
−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]

• [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟−−−−−−−−−−→ [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]
• [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]
• [0,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟−−−−−−−−−−→ [1,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]
• [1,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡2, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]

The above state transitions show how the first bus moves from St0 to St1, and they are considered
possible state transitions.
Using the Repair-Evaluator-Training function, a set of impossible state transitions can be

generated so that a binary classifier can be trained to distinguish the two classes of state transitions.
Due to a large number of impossible state transitions, we give the following examples.

• [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1] 𝐵𝑢𝑠_𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]
• [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1]

𝑆𝑖𝑔𝑛𝑎𝑙_𝑆𝑒𝑛𝑑𝑒𝑟
−−−−−−−−−−−→ [0,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]

• [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟−−−−−−−−−−→ [1,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]
• [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [1, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1]
• [0,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡1]
• [1,𝑇 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡1, 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡1]

To avoid unnecessary details, we suggest readers refer to [10] for details of repair evaluator training.
The trained classifier is stored for future use.

4.2 The Modification Phase
In the modification phase, in order to produce atomic modifications, the Invariant-Solutions
function can compute a set of solutions satisfying the invariant. For example:
• [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4]
• [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5]
• [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4]
• [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡5, 𝑆𝑡4]

Next, the model is iteratively repaired until no further invariant violations can be detected. To
detect invariant violations, the State-Space function is used to approximate the state space of the
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current model, and the Faulty-Transitions function is used to collect invariant violations in the
state space. The following four faulty state transitions are found.

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4]
• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5]
• [2, 𝐹 ,𝑇 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4]
• [2, 𝐹 ,𝑇 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡5, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5, 𝑆𝑡4]

The above state transitions violate the invariant because they allow the two buses to stop at
St4 at the same time. To repair the above state transitions, their post-states will be replaced
with other candidate post-states satisfying the invariant. All correct states in the state space,
which are collected using the Correct-States function, and the states computed using the
Invariant-Solutions function, are considered as candidate post-states. For each faulty state
transition, the Atomic-Modifications function can use the candidate post-states to generate a
set of candidate modifications, and the Repair-Score function can estimate their repair scores.
For example, to repair [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] using the
four solutions, the following candidate modifications with repair scores (𝜎) are generated.

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] (𝜎 = 0.458)

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5] (𝜎 = 0.274)

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4] (𝜎 = 0.403)

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡5, 𝑆𝑡4] (𝜎 = 0.159)
As the first modification has the highest 𝜎 value, it is selected to repair the model. Similarly, for
all the faulty state transitions, the Modification-Selection function can select the following

modifications, which are of the form “pre-state
operation
−−−−−−−→ faulty post-state ↩→ modified post-state”.

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→
[0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] ↩→ [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4]

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→
[0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5] ↩→ [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5]

• [2, 𝐹 ,𝑇 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→
[0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] ↩→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4]

• [2, 𝐹 ,𝑇 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡5, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→
[0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5, 𝑆𝑡4] ↩→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡5, 𝑆𝑡4]

The Update function can use the above atomic modifications to repair the Bus_Controller
operation, leading to the repaired operation in Fig. 4. As a result, the repaired operation no longer
triggers any invariant violations. A problem is that each atomic modification can only remove one
invariant violation, resulting in tedious code. The code can be simplified in the refactoring phase.

4.3 The Refactoring Phase
The atomic modifications are refactored using the Refactoring function, i.e., Algo-
rithm 2. We use [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] ↩→
[0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] as an example. The Modifications-To-Predicates function converts
the pre-state [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] and the modified state [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] to the
predicate “Pre_Selected_Bus = 0 & Pre_Moving(1) = FALSE & Pre_Moving(2) = FALSE &
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Bus_Controller =
PRE not(Selected_Bus = 0) &
not(Next_Location(Selected_Bus) = Current_Location(Selected_Bus))

THEN
IF Selected_Bus = 1 & Moving(1) = TRUE & Moving(2) = FALSE &
Current_Location(1) = St3 & Current_Location(2) = St4 &
Next_Location(1) = St4 & Next_Location(2) = St4

THEN Selected_Bus := 0; Moving(1) := FALSE; Moving(2) := FALSE;
Current_Location(1) := St3; Current_Location(2) := St4;
Next_Location(1) := St4; Next_Location(2) := St4

ELSIF Selected_Bus = 1 & Moving(1) = TRUE & Moving(2) = FALSE &
Current_Location(1) = St3 & Current_Location(2) = St4 &
Next_Location(1) = St4 & Next_Location(2) = St5

THEN Selected_Bus := 0; Moving(1) := FALSE; Moving(2) := FALSE;
Current_Location(1) := St3; Current_Location(2) := St4;
Next_Location(1) := St4; Next_Location(2) := St5

ELSIF Selected_Bus = 2 & Moving(1) = FALSE & Moving(2) = TRUE &
Current_Location(1) = St4 & Current_Location(2) = St3 &
Next_Location(1) = St4 & Next_Location(2) = St4

THEN Selected_Bus := 0; Moving(1) := FALSE; Moving(2) := FALSE;
Current_Location(1) := St4; Current_Location(2) := St3;
Next_Location(1) := St4; Next_Location(2) := St4

ELSIF Selected_Bus = 2 & Moving(1) = FALSE & Moving(2) = TRUE &
Current_Location(1) = St4 & Current_Location(2) = St3 &
Next_Location(1) = St5 & Next_Location(2) = St4

THEN Selected_Bus := 0; Moving(1) := FALSE; Moving(2) := FALSE;
Current_Location(1) := St4; Current_Location(2) := St3;
Next_Location(1) := St5; Next_Location(2) := St4

ELSE
IF Moving(Selected_Bus) = FALSE
THENMoving(Selected_Bus) := TRUE
ELSE Current_Location(Selected_Bus) := Next_Location(Selected_Bus);
Moving(Selected_Bus) := FALSE

END;
Selected_Bus := 0

END
END

Fig. 4. The Repaired Bus Controller Operation Before Refactoring

Pre_Current_Location(1) = St3 & Pre_Current_Location(2) = St4 & Pre_Next_Location(1) =
St4 & Pre_Next_Location(2) = St4 & Mod_Selected_Bus = 0 & Mod_Moving(1) = FALSE &
Mod_Moving(2) = FALSE & Mod_Current_Location(1) = St3 & Mod_Current_Location(2) = St4 &
Mod_Next_Location(1) = St4 & Mod_Next_Location(2) = St4”.

Next, the CFG-Predicates function generates a set of predicates using context-free grammars,
e.g., Mod_Selected_Bus = 0, Mod_Selected_Bus = 1, Mod_Selected_Bus = Pre_Selected_Bus,
Mod_Selected_Bus = 1 - Pre_Selected_Bus, Mod_Moving(1) = TRUE, Mod_Moving(1) =
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FALSE, Mod_Next_Location(1) = St4, Mod_Next_Location(1) = St5 and Mod_Next_Location(1)
= Pre_Next_Location(2). Based on the predicates, the Candidate-Predicates function will
find candidate predicates that describe the modifications. For example, the modification
[1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] 𝐵𝑢𝑠_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟−−−−−−−−−−−−→ [0, 𝐹 , 𝐹 , 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4] ↩→ [0, 𝐹 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4]
can be described using 𝑀𝑜𝑑_𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐵𝑢𝑠 = 0, 𝑀𝑜𝑑_𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐵𝑢𝑠 = 1 − 𝑃𝑟𝑒_𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐵𝑢𝑠 ,
𝑀𝑜𝑑_𝑀𝑜𝑣𝑖𝑛𝑔(1) = 𝐹𝐴𝐿𝑆𝐸, 𝑀𝑜𝑑_𝑁𝑒𝑥𝑡_𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(1) = 𝑆𝑡4, 𝑀𝑜𝑑_𝑁𝑒𝑥𝑡_𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(1) =

𝑃𝑟𝑒_𝑁𝑒𝑥𝑡_𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(2), etc.
The Best-Partition function can produce the best partitions of modification predicates using

the following predicates.

• Mod_Selected_Bus = 0
• Mod_Moving(1) = FALSE
• Mod_Moving(2) = FALSE
• Mod_Current_Location(1) = PRE_Current_Location(1)
• Mod_Current_Location(2) = PRE_Current_Location(2)
• Mod_Next_Location(1) = PRE_Next_Location(1)
• Mod_Next_Location(2) = PRE_Next_Location(2)

The above predicates can lead to the best partition because they are satisfied by all the modifications,
leading to a partition that includes all the modifications and an empty partition. As the second
partition is empty, the current partitions are the best partitions, and no further partitions will
be produced. As a counterexample, if another candidate predicate “Mod_Next_Location(1) = St4”
is used to split the modification predicates, then the resulting two partitions will include three
modifications and one modification, respectively, which are not the best partitions.

Finally, the Compound-Modification can convert the partition to a compound modification that
covers the following pre-states.

• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡4]
• [1,𝑇 , 𝐹 , 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4, 𝑆𝑡5]
• [2, 𝐹 ,𝑇 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡4]
• [2, 𝐹 ,𝑇 , 𝑆𝑡4, 𝑆𝑡3, 𝑆𝑡5, 𝑆𝑡4]

The compound modification uses the following refactored substitutions to generate post-states.

• Selected_Bus := 0
• Moving(1) := FALSE
• Moving(2) := FALSE

The above compoundmodification means that if a bus is already at St4, and the other bus is currently
on the way to St4, then the latter should stop at the current location. After returning the compound
modification, Algorithm 2 terminates.

4.4 The Update Phase
During the update phase, the compound modification is applied to the original Bus_Controller

operation, leading to the repaired operation in Fig. 5. Due to the existence of the extra IF-
THEN-ELSE-END construct, the compound modification can disable the faulty post-states while
maintaining other correct behaviours of the original operation. For any pre-states that are covered
by the compound modification, their post-states are determined using the refactored substitution.
For any other pre-states, their post-states are determined using the original substitution.
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Bus_Controller =
PRE not(Selected_Bus = 0) &
not(Next_Location(Selected_Bus) = Current_Location(Selected_Bus))

THEN
IF Selected_Bus = 1 & Moving(1) = TRUE & Moving(2) = FALSE &
Current_Location(1) = St3 & Current_Location(2) = St4 &
Next_Location(1) = St4 & Next_Location(2) = St4

or Selected_Bus = 1 & Moving(1) = TRUE & Moving(2) = FALSE &
Current_Location(1) = St3 & Current_Location(2) = St4 &
Next_Location(1) = St4 & Next_Location(2) = St5

or Selected_Bus = 2 & Moving(1) = FALSE & Moving(2) = TRUE &
Current_Location(1) = St4 & Current_Location(2) = St3 &
Next_Location(1) = St4 & Next_Location(2) = St4

or Selected_Bus = 2 & Moving(1) = FALSE & Moving(2) = TRUE &
Current_Location(1) = St4 & Current_Location(2) = St3 &
Next_Location(1) = St5 & Next_Location(2) = St4

THENMoving(1) := FALSE ; Moving(2) := FALSE ; Selected_Bus := 0
ELSE
IF Moving(Selected_Bus) = FALSE
THENMoving(Selected_Bus) := TRUE
ELSE Current_Location(Selected_Bus) := Next_Location(Selected_Bus);
Moving(Selected_Bus) := FALSE

END;
Selected_Bus := 0

END
END

Fig. 5. The Refactored Bus Controller Operation

5 EVALUATION
This section presents an empirical study of the AMBM tool. The experiments consist of two parts:
Part I includes experiments of repair evaluator training, and Part II includes experiments of the
entire abstract machine modification processes.

5.1 Purpose of the Evaluation
The objective of Part I was to demonstrate that the classifiers can distinguish between possible
state transitions and impossible state transitions. Part I evaluated five types of classifiers, including
Bernoulli Naive Bayes (BNB) classifiers, Logistic Regression (LR) classifiers, Support Vector
Machines (SVM) with radial basis function kernels, Random Forests (RF) and Silas, on repair
evaluator training tasks. In order to compare this work with our previous work [10], we conducted
the same evaluation for the traditional B-repair with Classification And Regression Trees (CART)
and ResNet. We used a set of correct abstract machines (in Table 1, which will be explained in
Section 5.2) to generate training and test sets. Firstly, for each subject, the model checker was
used to approximate a state space of the abstract machine, and possible transitions were extracted
from the state space. Secondly, impossible transitions were randomly generated. This process did
not randomly generate any new states, but used existing states to randomly generate impossible

Form. Asp. Comput., Vol. X, No. X, Article 111. Publication date: December 2022.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Fast Automated Abstract Machine Repair Using Simultaneous Modifications and Refactoring 111:21

state transitions. For example, if we have a variable 𝑥 = 0 and an operation 𝐴𝑑𝑑2 = PRE 𝑥 <

3 THEN 𝑥 := 𝑥 + 2 END, then possible state transitions will include 𝑥 = 0
𝐴𝑑𝑑2−−−−→ 𝑥 = 2 and

𝑥 = 2
𝐴𝑑𝑑2−−−−→ 𝑥 = 4, and existing states will be 𝑥 = 0, 𝑥 = 2 and 𝑥 = 4. Impossible state transitions

will include 𝑥 = 0
𝐴𝑑𝑑2−−−−→ 𝑥 = 0, 𝑥 = 0

𝐴𝑑𝑑2−−−−→ 𝑥 = 4, 𝑥 = 2
𝐴𝑑𝑑2−−−−→ 𝑥 = 0, 𝑥 = 2

𝐴𝑑𝑑2−−−−→ 𝑥 = 2,
𝑥 = 4

𝐴𝑑𝑑2−−−−→ 𝑥 = 0, 𝑥 = 4
𝐴𝑑𝑑2−−−−→ 𝑥 = 2 and 𝑥 = 4

𝐴𝑑𝑑2−−−−→ 𝑥 = 4. In our experiments, in order to
avoid combinatorial explosion, existing states were randomly selected to generate impossible state
transitions, and the generation process would terminate if the number of generated impossible
state transitions reached the number of possible state transitions. As a result, 50% of the transitions
were of the “possible” class, and the remaining 50% of the transitions were of the “impossible” class.
All transitions were shuffled and split into a training set and a test set that contained 80% and 20%
of the transitions respectively. Thirdly, the five classifiers were trained using the training set, and
consistent hyper-parameters were used during the training.3 Finally, the trained classifiers were
evaluated on the test set, and evaluation metrics included the classification accuracy and the area
under the receiver operating characteristic curve (ROC-AUC) [12].

Part II evaluated the whole abstract machine modification process with the five classifiers and the
modification refactoring function. We used fault seeding and removal to evaluate the algorithms.
Firstly, for each subject, faults were randomly seeded into 100 deterministic transitions of the
correct abstract machine, leading to a faulty machine that could trigger 100 invariant violations
and a set of standard answers indicating correct modifications. For instance, if 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆⊤ is a
correct transition, and 𝑆⊥ is a state that triggers an invariant violation, a fault will be seeded by
replacing 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆⊤ with 𝑆𝑝𝑟𝑒
𝛼−→ 𝑆⊥, and the corresponding standard answer is [𝑆𝑝𝑟𝑒 , 𝛼, 𝑆⊥, 𝑆⊤],

which means that 𝑆𝑝𝑟𝑒
𝛼−→ 𝑆⊥ is a faulty transition and should be repaired by replacing 𝑆⊥ with 𝑆⊤.

Faulty state transitions were randomly injected into a correct abstract machine using the following
steps.
• The type constraints of variables are extracted from the model.
• A large number of states satisfying the type constraints are randomly generated. The states

are verified against the invariant of the abstract machine, and faulty states that violate the
invariant are collected.
• A faulty state 𝑆⊥ is randomly selected, and a correct state transition 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆⊤ that is
generated by the abstract machine is randomly selected as a position to inject 𝑆⊥. In order
to inject 𝑆⊥ into 𝑆𝑝𝑟𝑒

𝛼−→ 𝑆⊤, we produce an atomic modification [𝛼, 𝑆𝑝𝑟𝑒 , 𝑆⊤, 𝑆⊥] and use the
Update function in Section 3.1 to apply the modification.

The above method was used to make 10 faulty machines based on each correct machine in Table
1. Consequently, 10 × 24 = 240 faulty machines were made. In total, 240 faulty machines with
24,000 faulty transitions were produced. After using AMBM to repair all faulty machines, suggested
modifications were compared with the standard answers and evaluated using the following metrics:
• modification accuracy 𝑀𝐴 = 𝑁 𝑣𝑎𝑙

𝑐𝑜𝑟 / 𝑁 𝑣𝑎𝑙
𝑡𝑜𝑡 , where 𝑁 𝑣𝑎𝑙

𝑐𝑜𝑟 denotes the number of correctly
modified values with reference to the standard answers, and 𝑁 𝑣𝑎𝑙

𝑡𝑜𝑡 denotes the total number
of values;
• refactoring generality 𝑅𝐺 = 1 − 𝑁𝑟𝑒𝑐 / 𝑁0, where 𝑁0 denotes the number of modifications
before refactoring, and 𝑁𝑟𝑒𝑐 denotes the number of modifications after refactoring;

3For BNB, LR, SVM and RF, default settings in scikit-learn were used. The default settings of Silas is for datasets containing
over 1 million entries. We therefore used another set of settings for smaller datasets, where the number of decision trees in
Silas is equal to its counterpart in RF.
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• average repair time 𝐴𝑅𝑇 = 𝑇 / 𝑁𝐹 , where 𝑇 denotes running time and 𝑁𝐹 denotes the
number of faults.

The intuition of MA is that the suggested atomic modifications are expected to coincide with
standard answers. The intuition of RG is that the suggested atomic modifications are expected to
be generalised as fewer compound modifications. When computing RG, both correct and incorrect
atomic modifications are taken into account. Generalisation is the outcome of refactoring. Before
refactoring, all modifications are atomic modifications. After refactoring, a number of atomic
modifications have been replaced with fewer compound modifications. As a single compound
modification can cover the functions of multiple atomic modifications, it can reduce the total
number of modifications and make the modifications more expressive. In the best case, a compound
modification covers all atomic modifications, leading to 𝑁𝑟𝑒𝑐 = 1 and 𝑅𝐺 = 1 − 1 / 𝑁0 (i.e., the
maximum RG). In the worst case, no compound modification is produced, leading to 𝑁𝑟𝑒𝑐 = 𝑁0
and 𝑅𝐺 = 0 (i.e., the minimum RG). With regard to ART, the intuition is that the average time for
eliminating a fault should be reasonable.

5.2 Experimental Settings
All experiments were run on a machine equipped with Intel(R) Core(TM) i5-4670 CPU (4 cores,
3.40GHz) and 8GB memory. The operating system was Ubuntu Desktop 16.04.4 A specific dataset
to evaluate our solution was constructed using the materials from the ProB Public Examples
repository.5 We used the following filters to select machines.
• Filter #1 selects machines that are syntactically correct.
• Filter #2 selects machines that have variables, invariants and operations.
• Filter #3 selects machines that approximate at most 30K state transitions (in order to avoid
memory exhaustion on our equipment).
• Filter #4 selects machines that approximate at least 500 deterministic state transitions. Note
that the selected machines may include non-determinism as well. In order to get more
machines, the scales of small machines may be expanded by adjusting their set cardinalities
and integer scopes.
• Filter #5 selects machines that can pass the model checking.
• Filter #6 selects machines that only have Boolean values, integers, distinct elements and
first-order sets as single variables or arrays.

After using the above filters, we manually removed redundant machines and machines without
actual meanings. Consequently, we obtained 18 well-formed and error-free machines for evaluation,
and the size of their state space (i.e., the number of states plus the number of state transitions)
ranged from 1K to 27K. Table 1 provides information on the 18 machines, i.e., M01 - M18, including
the source file of each machine, the number of lines of code (# LOC), the number of variables (#
Var.), the number of invariants (# Inv.) and the number of operations (# Ope.). A subset of the
abstract machines and their essential information (e.g., source files and # LOC) were used by [10],
where # LOC was counted after using ProB [22] to convert the source files into the pretty-printed
format.
Additionally, we added M19 - M24 into the evaluation dataset. M19 and M20 were relevant to

the wireless network protocols studied by [30] and [31]. The original B models of M19 and M20
were found from the repository shared by [19].6 M21 - M24 were originally a part of automotive

4Scripts and datasets of our experiments can be found in https://github.com/cchrewrite/ambm.
5https://www3.hhu.de/stups/downloads/prob/source/.
6https://github.com/hhu-stups/specifications/tree/update/prob-examples/B/MobileComm
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Table 1. Dataset of Abstract Machines
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models developed by [23].7 We adapted M19 - M24 to suit the capabilities of AMBM. For example,
partial functions were replaced by total functions as partial functions could not be processed by
the repair evaluators. Besides, composite models were expanded as whole models as AMBM could
not process the INCLUDES mechanism.

7https://github.com/hhu-stups/abz2020-models
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Table 2. Results of Repair Evaluator Training
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5.3 Results and Discussions
5.3.1 Results of Part I. Table 2 shows the results of repair evaluator training experiments, including
the number of training and test examples (i.e., # Examples), the ROC-AUC of classifiers in each
subject, the total ROC-AUC and the total classification accuracy (CA). We observed that with regard
to ROC-AUC and CA, RF and Silas obtained the best results, i.e., over 99% ROC-AUC and over
98% CA, and the difference between Silas and RF on these metrics was insignificant. Besides, SVM
performed well and obtained over 96% ROC-AUC and over 91% CA, whereas LR and BNB fell
behind the others. Additionally, both RF and Silas gained better ROC-AUC and CA than the two
traditional repair evaluators of B-repair, i.e., ResNet and CART. In summary, RF and Silas showed
high predictive performance on the repair evaluator training tasks.
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Table 3. Results of Abstract Machine Batch Modification
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5.3.2 Results of Part II. Table 3 shows modification accuracies (MA), refactoring generalities (RG)
and average repair time (ART) of the abstract machine batch modification experiments. We observed
that with regard to MA, RF was the leading classifier with over 88% MA, followed by Silas with
over 83% MA. The use of BNB and LR resulted in significantly bad accuracy because the two
models were too simple to approximate the encodings of state transitions. SVM obtained better
MA because its kernel functions could form more complex transforms than BNB and LR. Besides,
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Fig. 6. Comparing AMBM with the Traditional B-repair [10].

Silas showed better generalisation capability than RF. The use of RF resulted in significantly bad
generality probably because the strong fitting ability caused overfitting. By contrast, BNB and LR
had significantly lower accuracy and higher generality because their fitting ability was too weak to
cause overfitting.
Regarding the performance of AMBM, all classifiers required similar ART of approximately 3

seconds with the exception of SVM, which required over 8 seconds. These results demonstrate the
feasibility and the pertinence of the AMBM approach. More specifically, these results suggest that
among the classifiers considered in the experiments, Silas is the most suitable for approximating
the repair scores of abstract machines as it has both high accuracy and generalisation capability.
The above experiments have demonstrated that the modification accuracy of B model repair

can achieve a high level by means of a well-trained classifier, while the refactoring generality of
modifications is dependent upon the classifier. Considering both the modification accuracy and the
refactoring generality, Silas has the best performance on model repair tasks. Moreover, the finding
implies that model repair processes can benefit from the repair evaluators. With repair evaluator
training and constraint solving, machines are able to automatically produce repairs and select
well-behaved repairs that eliminate faults in the models and preserve the state spaces of the models
as much as possible. As the modification accuracy and the refactoring generality have achieved
0.8 and 0.7, respectively, we infer that a large number of suggested modifications are correct and
simple. Furthermore, the study has shown the effectiveness of the AMBM algorithm. AMBM is able
to automatically eliminate hundreds of faults within a reasonable time, while manually eliminating
these faults may require a considerable amount of human effort. Thus, our study suggests that
AMBM can assist programmers in designing abstract machines and possibly realise automated
model generation via step-by-step incremental design repairs.
Finally, Fig. 6 compared AMBM and the traditional B-repair with respect to accuracy and

performance. Fig. 6 (a) indicated that AMBM with RF and Silas gained better accuracies than the
traditional B-repair with CART and ResNet. Moreover, Silas had better accuracy than CART because
Silas’s internal decision trees could model more data types than CART. Additionally, ResNet failed
to suggest accurate modifications probably because such a neural network architecture is not
appropriate for learning small data. Fig. 6 (b) indicated that AMBM’s performance was significantly
better than B-repair. B-repair’s performance bottleneck was mainly caused by successive repairs,
i.e., after eliminating a single invariant violation, a model checking process was started to detect the
next invariant violation. Consequently, B-repair was slowed down when the model repair processes
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Fig. 7. The Road Map of the AVC Model

were run repeatedly. AMBM solved this problem by detecting multiple invariant violations during
only one model checking process so that the number of required model checking processes could
be reduced. Overall, the above results showed that AMBM had higher accuracy and performance
than the traditional B-repair.

6 DISCUSSIONS
In this section, we discuss a feasible extension to generally repair non-determinism. Additionally,
we discuss the limitations of our approach and compare this study with other existing studies.

6.1 Modifications on Non-determinism
As previously mentioned, the modification operator eliminates invariant violations triggered by
deterministic state transitions. To repair non-determinism, we suggest a new modification operator.
For an operation, given a pre-state 𝑝 and an erroneous post state 𝑞, a modification operator
modifies 𝑞 to a correct post state 𝑟 . The modification operator can be described using a triple
[𝑢, “𝑚𝑜𝑑𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛”, 𝑟 ], where 𝑢 is the concatenation of 𝑝 and 𝑞. The triple means that the faulty
state pair (𝑝, 𝑞) is rewritten as a correct state pair (𝑝, 𝑟 ) using the modification operator. To control
the application domain of modification, 𝑢 is converted to the following condition:

𝑣
𝑝𝑟𝑒

1 = 𝑝 [𝑣1] ∧ 𝑣
𝑝𝑜𝑠𝑡

1 = 𝑞 [𝑣1] ∧ . . . ∧ 𝑣
𝑝𝑟𝑒
𝑛 = 𝑝 [𝑣𝑛] ∧ 𝑣

𝑝𝑜𝑠𝑡
𝑛 = 𝑞 [𝑣𝑛] (5)

where 𝑣𝑝𝑟𝑒
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a pre-variable identifier of 𝑣𝑖 , 𝑣𝑝𝑜𝑠𝑡𝑖

(𝑖 = 1, 2, . . . , 𝑛) is a post-variable
identifier of 𝑣𝑖 , 𝑝 [𝑣𝑖 ] is the value of 𝑣𝑖 in 𝑝 , and 𝑞 [𝑣𝑖 ] is the value of 𝑣𝑖 in 𝑞. Moreover, 𝑟 can be
converted to the following substitution:

𝑣
𝑝𝑜𝑠𝑡

1 := 𝑟 [𝑣1] ; . . . ; 𝑣𝑝𝑜𝑠𝑡𝑛 := 𝑟 [𝑣𝑛] (6)

where 𝑣𝑝𝑜𝑠𝑡
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a post-variable identifier of 𝑣𝑖 , and 𝑟 [𝑣𝑖 ] is the value of 𝑣𝑖 in 𝑟 . The Non-

Determinism Modification (NDM) operator to repair non-determinism is defined as follows. Given
𝑀 modification operators that are described using𝑀 triples [𝑢 𝑗 , “𝑚𝑜𝑑𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛”, 𝑟 𝑗 ] ( 𝑗 = 1, . . . , 𝑀),
we use Eq. (5) to convert each𝑢 𝑗 to a condition𝑈 𝑗 and use Eq. (6) to convert each 𝑟 𝑗 to a substitution
𝑅 𝑗 . Given an operation 𝛼 = PRE 𝑃 THEN 𝑆 END, where 𝑃 is a pre-condition, and 𝑆 is a substitution,
a NDM can be applied to 𝛼 using the following template.

PRE 𝑃 THEN
VAR <pre−variables>, <post−variables> IN
<pre−variables> := <state−variables>;
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𝑆 ;
<post−variables> := <state−variables>;
IF𝑈1 THEN 𝑅1 END;
...
IF𝑈𝑀 THEN 𝑅𝑀 END;
<state−variables> := <post−variables>

END
END

In particular, if the original operation does not have a pre-condition, then the repaired operation
does not have the outer “PRE-THEN-END” statement. The above template uses the “VAR-IN-END”
construct with two blocks of temporary variables, i.e., “<pre-variables>” and “<post-variables>”, to
store pre-values and post-values. Before applying the substitution 𝑆 , the values of the state variables
are the pre-values, so that “<pre-variables> := <state-variables>” can assign the pre-values to the
pre-variables. After applying 𝑆 , the values of the state variables become the post-values, so that
“<post-variables> := <state-variables>” can assign the post-values to the post-variables. As a result,
the pre-values and the post-values are obtained. After using the conditions𝑈 𝑗 ( 𝑗 = 1, . . . , 𝑀) and
the substitutions 𝑅 𝑗 ( 𝑗 = 1, . . . , 𝑀) to modify the values of the post-variables, the modified values
are assigned to state variables, leading to a new post-state.

The use of NDM requires a slight change on Algorithm 1, i.e., the Update function is adapted to
use the NDM template to repair faulty operations. The following example of autonomous vehicle
control model will demonstrate the use of NDM. The model describes how to control a bus in a
city. Fig. 7 visualises a city map, which has a set Location containing five bus stations, i.e., S0, S1,
S2, S3 and S4, and five other locations, i.e., C0, C1, C2, C3 and C4. The locations are linked by a set
Street containing bidirectional edges. The model has a variable “loc” recording the location of the
bus. The value of loc is changed using the following “𝑚𝑜𝑣𝑒” operation.

< Original𝑚𝑜𝑣𝑒 Operation >
move(x,y) = PRE loc = x & (x,y) : Street THEN loc := y END

Suppose that the bus station S4 is temporarily unavailable. The following invariant is used to
specify the constraint.

< Invariant on S4 > not(loc = S4)

The invariant is violated because the𝑚𝑜𝑣𝑒 operation can change the value of loc from S3, C3 and
C4 to S4. Corresponding faulty state transitions and feasible modifications (indicated by “↩→”) are
listed below.

< Faulty State Transitions and Modifications >
loc = S3

𝑚𝑜𝑣𝑒−−−−→ loc = S4 ↩→ loc = S2
loc = C3

𝑚𝑜𝑣𝑒−−−−→ loc = S4 ↩→ loc = C4
loc = C4

𝑚𝑜𝑣𝑒−−−−→ loc = S4 ↩→ loc = C3

The meaning of the modifications is that if the bus is scheduled to move from S3, C3 or C4 to S4,
the bus will be rescheduled to move from S3 to S2, from C3 to C4 or from C4 to C3, respectively.
They are applied to the𝑚𝑜𝑣𝑒 operation using the NDM operator, leading to the following repaired
operation.

< Repaired𝑚𝑜𝑣𝑒 Operation >
move(x,y) =
PRE loc = x & (x,y) : Street
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THEN
VAR loc_pre, loc_post IN
loc_pre := loc ;
loc := y ;
loc_post := loc ;
IF loc_pre = S3 & loc_post = S4 THEN loc_post := S2 END ;
IF loc_pre = C3 & loc_post = S4 THEN loc_post := C4 END ;
IF loc_pre = C4 & loc_post = S4 THEN loc_post := C3 END ;
loc := loc_post

END
END

The above example demonstrates that even though multiple state transitions can share a common
post-state that triggers an invariant violation, the NDM can repair each state transition separately.
This is because the conditions of NDM can ensure that each repair acts on one and only one state
transition.

6.2 Limitations
As discussed in Section 2.2, the repair evaluators cannot deal with unseen elements in infinite sets.
When training the repair evaluators, unseen elements are avoided by reducing infinite sets into
finite sets that contain all elements occurred in a state space. For example, if a state space only
includes integers 0, 1, 2 and 4, then the finite set {0, 1, 2, 4} is used to generate one-hot encodings,
e.g., {1, 4} is encoded as [0, 1, 0, 1]. However, unseen elements such as 3 and 5 are not preserved
in one-hot encodings, e.g., {1, 3, 4, 5} is treated as {1, 4} and encoded as [0, 1, 0, 1]. Consequently,
the repair evaluators cannot distinguish between {1, 4} and {1, 3, 4, 5}. Besides, to avoid unseen
elements, AMBM can control the constraint solver to find modifications that only contain elements
occurring in a given state space, but such a restriction may disable a few required modifications.
For example, suppose that a faulty operation Inc attempts to increase a set of integers by 1, the
operation yields correct state transitions such as {0} 𝐼𝑛𝑐−−→ {1}, {1} 𝐼𝑛𝑐−−→ {2} and {0, 1} 𝐼𝑛𝑐−−→ {1, 2},
and faulty state transitions such as {2} 𝐼𝑛𝑐−−→ {} and {1, 2} 𝐼𝑛𝑐−−→ {2}. The faulty state transitions
should be repaired as {2} 𝐼𝑛𝑐−−→ {3} and {1, 2} 𝐼𝑛𝑐−−→ {2, 3} respectively. Unfortunately, AMBM cannot
suggest the required repairs because 3 does not occur in the given state transitions. A possible
approach to solve this problem is model repair based on inductive programming [33]. Given a
component library containing essential symbols such as 0, 1, +, -, * and =, inductive programming
can synthesise the function 𝑥 ′ = 𝑥 + 1, where 𝑥 and 𝑥 ′ are integers, to generalise the correct state
transitions of Inc. When 𝑥 = 2, a new element 𝑥 ′ = 3 can be inferred by the function, so that
the required modifications can be constructed. The above discussion indicates that a merger of
inductive programming and AMBM can be a way to solve the restrictions of infinite sets.

The repair of higher-order sets, e.g., sets of sets, is another limitation to the applicability of AMBM.
The number of candidate modifications with higher-order sets can be huge due to combinatorial
explosions. For example, if a set of sets is constructed by integers 1, 2, . . . , 𝑛, then its value
will be a member of P2 ({1, 2, . . . , 𝑛}), where P represents the power set. As the cardinality
of P2 ({1, 2, . . . , 𝑛}) is 22𝑛 , it is unrealistic to enumerate the members when 𝑛 is large. Instead
of enumeration, AMBM only uses components that occurred in a given state space to generate
modifications. As a result, a required modification will be missing if it includes a component not in
the state space. For example, suppose that a faulty operation Inc_Send attempts to increase sets of
integers by 1 and transfer the sets from a sender to a receiver, with two sets of sets [𝑆𝑒𝑛𝑑𝑒𝑟, 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ]
to represent states, the operation yields correct state transitions such as:

Form. Asp. Comput., Vol. X, No. X, Article 111. Publication date: December 2022.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

111:30 Cai and Sun, et al.

0Element

Set

Set of Sets

1 2 3

{0, 1} {1, 2} {2, 3}{0} {1} {2} {3}

{{0}, {1}, {0, 1}} {{1}} {{1}, {2}, {1, 2}} {{2}, {3}, {2, 3}}

Fig. 8. Graph Representations of Member Relationships in Sets of Sets.

• [{{0}, {1}, {0, 1}}, {}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{{1}, {0, 1}}, {{1}}]
• [{{1}, {0, 1}}, {{1}}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{{0, 1}}, {{1}, {2}}]
• [{{0, 1}}, {{1}, {2}}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{}, {{1}, {2}, {1, 2}}]
• [{{1}, {2}, {1, 2}}, {}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{{2}, {1, 2}}, {{2}}]

and faulty state transitions such as:

• [{{2}, {1, 2}}, {{2}}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{{1, 2}}, {{2}, {}}]
• [{{1, 2}}, {{2}, {}}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{}, {{2}, {}}]

The faulty state transitions should be repaired as follows:

• [{{2}, {1, 2}}, {{2}}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{{1, 2}}, {{2}, {3}}]
• [{{1, 2}}, {{2}, {3}}] 𝐼𝑛𝑐_𝑆𝑒𝑛𝑑−−−−−−−→ [{}, {{2}, {3}, {2, 3}}]

Unfortunately, AMBM cannot suggest the required repairs because {3} and {2, 3} are unseen in
the given state space. To suggest repairs with such unseen components, inductive programming
is probably feasible because it can construct functions to infer unseen components, as discussed
above.
Besides, as the repair evaluators treat sets in sets as string elements, any unseen sets in sets

cannot be encoded appropriately. To encode such unseen components, a feasible method is to
introduce repair evaluators based on graphs. Fig. 8 shows an example of the conversion from sets
of sets (or higher-order sets) to a graph. Compared to the string representation, the advantage of
graph representation is that graphs can link two components at multiple levels so that unseen
components can be represented by linking with their sub-components. For example, both {{1}, {2},
{1, 2}} and {{2}, {3}, {2, 3}} have a direct link from the set {2} and two indirect links from the element
2. Even though {{2}, {3}, {2, 3}} is unseen in the state space, its encoding can still be partially inferred
from the encoding of {{1}, {2}, {1, 2}} using graph learning models [36]. As there are a large number
of graph learning models available, their application to B model repair can be considered future
work.

6.3 Comparisons to Related Work
Automated B model repair originates from two studies [32, 33]. In order to eliminate faults in
abstract machines, they have proposed four methods, including the strengthening of pre-conditions,
the relaxation of pre-conditions, the relaxation of invariants and the synthesis of new operations.
When relaxing pre-conditions and invariants and synthesising new operations, users are required
to manually produce positive and negative I/O examples for program synthesis. The difference
between their work and our work is that we focus on repairing substitutions, while they focus on
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repairing pre-conditions. Moreover, our AMBM algorithm uses repair evaluators and constraint
solving to automatically synthesise repairs, while their methods require users to manually produce
I/O examples for repair synthesis.
AMBM is an improved implementation of our previous work, B-repair [10]. When revising

faulty abstract machines, B-repair uses a constraint solver to generate candidate repairs and uses
learnt quality estimation functions to rank repairs. As B-repair eliminates one and only one fault
during each loop of repair, it takes considerably longer to repair models with a large number of
faults. In this work, as multiple faults are eliminated using fewer compound repairs during each
loop of repair, AMBM is significantly more efficient than the previous B-repair, and the resulting
corrections are simpler in terms of the predicate structure.

With regard to the previous work on automatic imperative program repair such as RSRepair [28],
GenProg [21], CASC [37] and SearchRepair [17], automated B model repair is conceptually different,
because B is a design modelling language for constructing formal specifications at the abstract
design level, while imperative programs are at the concrete implementation level [2]. Functions
in B design models are usually represented as operations with pre-conditions and substitutions
(which play the role of post-conditions) that declare the facts between the before and after values
(states) of the variables used in the system. Consequently, operation executions are decided by
the current states of variables but not decided by the control flows of the program. Thus, repair
evaluators can separately analyse each operation, and repairs can be applied to faulty operations
asynchronously without considering the execution orders of operations. In automatic imperative
program repair, however, execution orders that are decided by control flows are important factors
to be considered.

There are a number of similarities between the repair of B models and imperative program repair.
Firstly, both of them have fault localisation functions to reduce the search space of the repair. B
model repair can rely on a model checker to detect faulty operations, while imperative program
repair can rely on Spectrum-based Fault Localisation (SFL) [1] functions that find suspicious code
blocks by counting successful and failed paths of program executions. Secondly, the concept of
inductive programming can be used to synthesise patches of imperative programs [18] and refactor
atomic modifications to compound modifications (this work). Thirdly, conditional statements are
often used to avoid the side effects of repair. For example, Staged Program Repair (SPR) [24] can
use a number of instances to generate conditions that distinguish between correct and failed
executions, so that side effects to the correct executions can be minimised. Similarly, our AMBM
uses conditional substitutions to avoid the side effects of modifications. Finally, as repairs are not
definitive, evaluation functions seem to be inevitable in order to estimate the appropriateness of
candidate repairs and select the best repairs. For example, GenProg [21] evaluates candidate repairs
by observing successful and failed executions related to the repairs, while AMBM uses classification
models and repair scores to select repairs. The above similarities between imperative program
repair and B model repair indicate that the technologies in the two fields may be used by each
other in the future.

7 CONCLUSION
We have extended B-repair by implementing abstract machine batch modification, which is an
automated method for repairing erroneous B formal models during the correct-by-construction
development processes. We have demonstrated that the state spaces of abstract machines can
be accurately learnt using classic classifiers such as random forests. The learnt classifiers can
be used to select atomic modifications produced by solving invariant constraints. Moreover,
atomic modifications can be merged as compound modifications using predicate refactoring. The
explainable and verifiable classifier has yielded high modification accuracies and improved the
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generality of compound modifications. Consequently, we suggest that automated abstract machine
modification has the potential to increase the efficiency and productivity of software development.

In the future, AMBM may be improved as described below:

• It is possible to develop repair evaluators based on unsupervised machine learning
algorithms, where the generation of negative training examples is no longer needed because
the characteristics of state spaces can be directly learnt using the unsupervised methods.
We may develop new unsupervised methods similar to random forests and appropriate
decision functions to achieve relatively high modification accuracies.
• It is possible to extend AMBM using refinement checking techniques. Firstly, a model

checker is used to find faulty state transitions that violate refinement conditions. Next, pre-
and post-conditions of a refined abstract machine are rewritten as constraints, so that a set
of candidate modifications can be generated by solving the constraints. After that, a repair
evaluator is used to select the best modification to repair each faulty state transition. Finally,
the original model is updated using the modifications and checked against the refinement
conditions.
• It is possible to design an algorithm that can eliminate invariant violations by either
weakening invariants or modifying existing state transitions. The problem is how to make a
choice between the above two options. A possible solution is to use an evaluator to decide
whether a faulty state transition should be kept or removed, i.e., if the state transition gains a
relatively high score, then the state transition will be kept, and the corresponding invariant
will be weakened. If the state transition does not gain a high score, then the state transition
will be modified using atomic modifications, and the corresponding invariant will not be
changed.
• In order to use AMBM in industry, we may try to improve the scalability of AMBM by
integrating it with more development tools and speeding up the refactoring process using
probabilistic techniques.
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