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Abstract

Precise event spotting (PES) aims to recognize fine-grained
events at exact moments and has become a key component
of sports analytics. This task is particularly challenging due
to rapid succession, motion blur, and subtle visual differ-
ences. Consequently, most existing methods rely on domain-
specific, end-to-end training with large labeled datasets and
often struggle in few-shot conditions due to their depen-
dence on pixel- or pose-based inputs alone. However, ob-
taining large labeled datasets is practically hard. We pro-
pose a Unified Multi-Entity Graph Network (UMEG-Net) for
few-shot PES. UMEG-Net integrates human skeletons and
sport-specific object keypoints into a unified graph and fea-
tures an efficient spatio-temporal extraction module based
on advanced GCN and multi-scale temporal shift. To further
enhance performance, we employ multimodal distillation to
transfer knowledge from keypoint-based graphs to visual rep-
resentations. Our approach achieves robust performance with
limited labeled data and significantly outperforms baseline
models in few-shot settings, providing a scalable and effec-
tive solution for few-shot PES. Code is publicly available at
https://github.com/LZYAndy/UMEG-Net.

Introduction

Precise Event Spotting (PES) is a trending problem that
aims to identify events and their class from long, untrimmed
videos, particularly in sports (Hong et al. 2022; Xarles et al.
2024; Xu et al. 2025). The main objective is to accurately
detect sequences of fine-grained, rapidly occurring sports
events, such as a hitting event in racket sports, within a
tight tolerance window (1-2 frames). This capability is es-
sential for sports analytics applications such as match fore-
casting (Wang et al. 2022; Liu and Su 2025), strategic
and tactical analysis (Dong et al. 2023; Liu et al. 2023,
2024a,b,c, 2025b), and player performance evaluation (De-
croos et al. 2019; Pappalardo et al. 2019). Most existing
PES methods are trained end-to-end using raw RGB im-
ages as input (Hong et al. 2022; Xarles et al. 2024; Liu
et al. 2025¢). One main challenge with these approaches is
that they rely on large-scale datasets with dense, frame-level
annotations (Shao et al. 2020; Xu et al. 2022; Wang et al.
2023b; Liu et al. 2025c¢), which leads to substantial label-
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Figure 1: Precise event spotting in sports videos, with event
timestamps highlighted in red. Each scene can be repre-
sented by a unified graph including human poses and sport-
related entity keypoints (e.g., ball, court corners).

ing costs and significantly limits their scalability to new do-
mains (Xu et al. 2025).

These limitations underscore the significance of few-shot
learning for PES, an area that remains under-explored in ex-
isting research. Traditional few-shot methods, such as con-
trastive (Chen et al. 2020) and meta-learning (Wanyan et al.
2025) approaches, typically excel at coarse-grained, action-
level recognition but do not directly address the frame-level
accuracy required by PES. Recent advancements in human
pose estimation (Sun et al. 2019) and sports object track-
ing (Huang et al. 2019; Jiang et al. 2020, 2023; Chen and
Wang 2023; Jiang et al. 2024) have facilitated transform-
ing raw RGB videos into compact, keypoint-based repre-
sentations suitable for few-shot scenarios. Although numer-
ous studies leverage human pose data for action recogni-
tion (Duan et al. 2022; Zhou et al. 2024; Liu et al. 2025a),
these methods usually neglect critical contextual cues from
objects (e.g., the ball) and the environment (e.g., the court),
resulting in substantial information loss and compromised
event detection performance. Some works have attempted to
include additional context (Ibh et al. 2023; Li et al. 2024),
yet they predominantly focus on coarse-grained recognition
tasks and thus lack the fine-grained temporal precision es-
sential for PES, making direct comparisons difficult. Addi-
tionally, keypoint-based approaches depend on accurate de-



tections, which are often unreliable in fast-moving sports
due to motion blur and occlusion. Thus, relying solely on
keypoints is suboptimal for robust PES.

To address these limitations, we propose a graph-based
method for precise event spotting that flexibly incorporates
human skeletons and object-level keypoints (e.g, ball posi-
tions and court corners). We first use pose estimation and
object detection to extract keypoints from all relevant en-
tities. These keypoints are integrated into a unified multi-
entity graph (see Figure 1), capturing interactions among
multiple players, objects, and contextual landmarks, thus
overcoming the limitations of standard skeleton-only rep-
resentations. To efficiently encode spatial-temporal relation-
ships, we introduce the Unified Multi-Entity Graph Network
(UMEG-Net), a novel graph-based module explicitly de-
signed for few-shot PES. UMEG-Net employs an advanced
Graph Convolutional Network (GCN) backbone for spatial
modeling, replacing traditional temporal convolutions with a
parameter-free multi-scale temporal shift mechanism. This
temporal shift operation effectively captures temporal dy-
namics without introducing extra parameters, ensuring com-
putational efficiency and robust few-shot performance. Fur-
thermore, to mitigate inaccuracies from keypoint detection,
we utilize multimodal knowledge distillation, transferring
learned features from the graph-based teacher model to an
RGB-based student network (denoted as UMEG-Net ggin)-
By leveraging abundant unlabeled videos from the target
domain, the student network learns complementary visual
representations, enhancing robustness and generalization in
few-shot PES scenarios.

UMEG-Net improves few-shot PES across diverse sports
domains. We validate its effectiveness on five sports video
datasets with fine-grained event types and precise times-
tamps: F3Set (Liu et al. 2025c), ShuttleSet (Wang et al.
2023b), FineGym (Shao et al. 2020), Figure Skating (Hong
et al. 2021), and SoccerNet Ball Action Spotting (Cioppa
et al. 2024). Under few-shot conditions, UMEG-Net consis-
tently outperforms baseline methods, improving F1 scores
by 1.3% to 5.5% and edit scores by 1.3% to 16.4%.. Ad-
ditionally, incorporating multimodal distillation, our visual-
based student model UMEG-Netg;;in achieves an additional
average gain of 5.8% in F1 score and 6.7% in edit score,
highlighting the robustness gained from complementary
RGB features. The key contributions are as follows:

* We introduce and investigate the few-shot precise event
spotting (PES) task, targeting frame-level event recogni-
tion with limited labeled data.

* We designed a unified multi-entity graph that incorpo-
rates human skeletons, objects (e.g., ball), and contextual
landmarks (e.g., court corners) to represent sports events.

* We propose UMEG-Net, a new graph-based framework
for few PES. It combines spatial graph convolution with
a parameter-free multi-scale temporal shift mechanism,
and enhances robustness through multimodal distillation.

* We conduct extensive experiments and ablation stud-
ies across five sports datasets, demonstrating that
UMEG-Net achieves state-of-the-art performance in both
few-shot and fully supervised settings.

Related Work
Precise Event Spotting

Precise event spotting in sports video analysis, initially in-
troduced by (Einfalt et al. 2019) for athletics (long and triple
jumps), involves identifying exact timestamps of specific ac-
tions within strict frame-level tolerances. Subsequently, the
SoccerNet dataset (Giancola et al. 2018) expanded this re-
search by providing extensive soccer video annotations for
temporal action localization. Recent advances (Hong et al.
2022; Xarles et al. 2024) have broadened the applicability of
PES across various sports. E2E-Spot (Hong et al. 2022), em-
ploying a CNN backbone with Gated Shift Modules (Sud-
hakaran, Escalera, and Lanz 2020) and GRUs (Dey and
Salem 2017) for temporal modeling, performed effectively
in tennis and figure skating scenarios but struggled with
the complex temporal dynamics of SoccerNet V2 (Cioppa
et al. 2024). Addressing these limitations, T-DEED (Xar-
les et al. 2024) improved temporal precision for fast-paced
sports, achieving state-of-the-art accuracy on Figure Skating
and Fine Diving benchmarks. More recently, Liu et. al. in-
troduced a large-scale dataset spanning multiple sports and
their proposed F3ED further improved PES performance
through efficient visual encoding and contextual sequence
refinement (Liu et al. 2025c). Despite these advances, PES
methods often suffer from limited supervision due to the
high cost of fine-grained annotation. Our method addresses
these limitations, demonstrating superior event spotting ac-
curacy, particularly in few-shot scenarios.

Skeleton-Based Action Understanding

Skeleton-based human pose representations have been ex-
tensively utilized in sports analytics due to their efficiency,
reduced complexity, and robustness in fine-grained action
recognition, especially under few-shot conditions. Recent
methods leveraging skeleton data have demonstrated ef-
fectiveness on single-athlete sports datasets, such as gym-
nastics (FineGym), achieving strong performance through
dedicated skeleton-based frameworks (Duan et al. 2022;
Liu et al. 2025a). Hong et al. (Hong et al. 2021) fur-
ther highlighted the potential of pose features by distill-
ing pose knowledge into RGB-based networks, illustrating
how pose alignment can enhance recognition accuracy, yet
they still focus primarily on single-athlete scenarios and
remain reliant on accurate pose detection. In team sports
such as volleyball and basketball, skeleton-based methods
have explored group activity recognition through model-
ing multi-person interactions (Perez, Liu, and Kot 2022;
Zhou et al. 2022). Recent studies have additionally inte-
grated non-human entities, such as the shuttlecock trajectory
and court locations in badminton (Liu and Wang 2022; Ibh
et al. 2023), to enrich contextual information. Liu et al. (Li
et al. 2024) improved upon these efforts by constructing
panoramic graphs that integrate multiple players and objects
but overlooked critical spatial relationships involving court
locations. Furthermore, these approaches typically address
action recognition tasks without considering precise tempo-
ral localization in PES. Additionally, our graph-based mod-
ule efficiently supports precise temporal spotting and few-



shot learning. By further incorporating distillation from raw
RGB inputs, our framework remains robust against inaccu-
racies in pose and object detection, significantly outperform-
ing previous approaches under strict temporal localization
constraints and limited data settings.

Proposed Method

This section presents our method in detail, starting with the
problem statement and then presenting the modules.

Problem Statement

We define the few-shot PES task as follows: Given the in-
put video clip X € RT*XHXWX3 consisting of T frames
of RGB image size H x W with channel size of 3, our
goal is to detect a sequence of M event-timestamp pairs
((E1,t1), ..., (Eur,tar)). Here, E; denotes the event type
with C' possible classes, and ¢; is the corresponding times-
tamp for ¢ € {1,..., M}. We consider a target dataset D
composed of | D| video clips, each containing a certain num-
ber of events. Let Dy,e; C D denote the subset of D that
contains labels, and let D001 C D be the unlabeled subset,
such that D = Dizpe; U Dynlabel- The number of clips in each
subset is | Dnyavel|. We specifically address the few-shot
scenario, where the number of labeled samples & = | Digpel|
is small, referred to as the “k-clip” setting.

Our Proposed Framework

To tackle the problem described above, we propose
UMEG-Net, a unified multi-entity graph network explic-
itly designed for few-shot PES. The overall architecture is
depicted in Figure 2. A unified panoramic graph is first
constructed by integrating keypoints representing human
skeletons and sport-related entities (e.g., ball, court). This
graph is then processed by a series of UMEG Blocks, each
combining advanced spatial graph convolutional networks
(GCNs) with a parameter-free multi-scale temporal shift
mechanism for efficient spatio-temporal feature extraction.
Finally, the feature maps are forwarded to the event localizer
and classifier for precise event spotting. To further enhance
model robustness and generalization, we introduce a mul-
timodal distillation approach, transferring knowledge from
the graph-based model to an RGB-based student network
through weak-supervision even on large amounts of unla-
beled videos.

Unified Multi-Entity Graph Construction Given a
sports video, we first convert each frame into a structured
graph of interacting entities. Specifically, for each frame
t, we define a graph G; = (V, &), where V; is the set
of nodes that includes all detected human joints and key-
points of sports-related entities and &; is the set of edges.
V including all detected human joints and keypoints of
sports-related entities, denoted V;, = {V,!, V!, V'}, where
V) = {P!li=1,..., N} is the set of N persons each P} =
(jf1,- -+, Ji ) represented by joints K, Vi’ are ball key-
points and V! are court keypoints. The number of nodes is
denoted as |V;| = N x K + |V{f| + |V|. The edge set &

captures both intra-entity structures and cross-entity interac-
tions. It contains four components:

& = &y gy ghe oy g

where £i" encodes skeletal connections within each player
(intra-person edges follow standard human-joint topology);
&¢~¢ connects 4 court corners as a rectangle to model the

field boundary; &7  connects human joints to the ball object
(for racket sports the wrist joints connect to the ball, while
for soccer the ankle and shoulder joints connect to the ball to
approximate lower- and upper-body ball control); £ links
human foot joints to court corners (positional context). All
edges are undirected. See full connection rules in our code.
Our proposed Unified Multi-Entity Graph flexibly inte-
grates multiple players with objects and environmental cues.
Compared to conventional skeleton-only graphs that ignore
objects and context (resulting in loss of critical event infor-
mation), our unified graph provides a richer and more holis-
tic representation of the scene. By explicitly including these
elements as nodes and edges, UMEG-Net can represent fine-
grained event cues that would otherwise be overlooked.

Graph-based Spatio-Temporal Encoding Given a se-
quence of unified multi-entity graphs G = {G;}I, €
RT*IVIX2 gver a video clip of T frames, we extract discrim-
inative features via a specially designed spatio-temporal en-
coder, named UMEG Block, tailored for precise event spot-
ting under few-shot conditions. The UMEG Block consists
of a spatial graph convolution network that operates on the
unified graph topology, combined with a novel, parameter-
free temporal multi-scale shift module that enables effi-
cient and effective temporal feature extraction. In the follow-
ing, we describe the spatial GCN module and the temporal
multi-scale shift mechanism.

(1) Spatial GCN. This spatial GCN layer updates node
features by aggregating information from their neighbors in
the graph. In matrix form, the output of one GCN layer is:

HUAD = ReLU(AOHOW @), (1)

where A(¢) € RIVI*IVI is the adjacency matrix employed
for spatial aggregation, H(®) € RIVIXTxd symbolizes the
hidden representation, and W) € R?*9 is the weight ma-
trix utilized for feature projection. Here, |V|, T, and d denote
the number of nodes, frames, and hidden feature dimension,
respectively. ReLU(+) is the ReLU activation function, and
the superscript ¢ indicates the layer number.

Unlike traditional GCNs in skeleton-based action recog-
nition (Duan et al. 2022; Zhou et al. 2024; Liu et al. 2025a)
that process each individual independently, our approach
performs graph convolutions over the entire multi-entity
graph. This allows for joint modeling of both human—human
and human-—entity interactions, capturing intra- and inter-
entity relationships simultaneously. Therefore, it can exploit
richer contextual cues essential for precise event spotting.

(2) Temporal Multi-Scale Shift. To model temporal
correlations, most skeleton-based action recognition mod-
els (Yan, Xiong, and Lin 2018; Shi et al. 2020; Chen et al.
2021; Duan et al. 2022; Zhou et al. 2024; Liu et al. 2025a)
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Figure 2: The framework of our proposed method, including UMEG-Net and multimodal distillation. Each frame is converted
to a unified multi-entity graph and processed by stacked UMEG Blocks to produce features for precise event spotting. A
transformer-based RGB student is trained via knowledge distillation from the frozen graph-based teacher.

apply multi-scale temporal convolution modules after each
spatial GCN to capture frame-to-frame dynamics. How-
ever, in few-shot settings, such modules increase the num-
ber of trainable parameters, making training more difficult
and prone to overfitting. To address this, we draw inspira-
tion from TSM (Lin, Gan, and Han 2019) and introduce
a Temporal Multi-Scale Shift Module that efficiently cap-
tures temporal dynamics by shifting feature vectors along
the temporal axis at multiple scales, without adding addi-

tional trainable parameters. Let ’H,Eé) € RIVI*4 pe the input
features at frame ¢ and layer £. We split channels into static,
forward-shift, and backward-shift parts with fraction o (we
use o = 1/8)

[ t statlc H H:E fwd || Ht bwd] (2)

where Ht static € le (1= Q(X)d and Ht fwd> /Hg,ellwd €
RIVIxed || is the notation for (channel-wise) concatenation.
For temporal offsets A € {1, 2,4}, define the bidirectional
shift operator

ALY = (1Y

t,static

M =

¢ ¢
I HO 5w | A B

with boundary handling by zero padding. Each shifted

stream is then passed to the spatial GCN to update the node

embeddings with temporal context

7% = ReLU(AO H M w®), A € {1,2,4},
“

where A is the adjacency matrix, W is the weight for spa-
tial GCN, and Zt(e’A) € RVIXd We then fuse multi-scale

contexts by

E,A))

Ut = : )

where F; is a linear projection to down-scale the channel
size to RIVI*L4/IA1 The output is

#D = By (ReLUU) + H (6)

where Fs is a linear projection to scale the channel size to

RVI¥d, and 7" is added via a residual connection. This
multi-scale temporal shift mechanism preserves frame-level
resolution, expands the temporal receptive field across short,
mid, and long ranges (via A € {1,2,4}), and introduces no
additional trainable parameters.

Multimodal Knowledge Distillation While the graph-
based model excels at leveraging structured keypoint infor-
mation, its performance can degrade if the pose or object
detections are unreliable (e.g. due to motion blur or occlu-
sions). To enhance robustness, we propose a multimodal dis-
tillation framework where knowledge is transferred from the
graph domain to the raw visual domain. We introduce a stu-
dent network that operates directly on the RGB video frames
and learn it under the guidance of the trained graph-based
teacher (our UMEG-Net).

Let the frozen graph-based teacher encoder €., map the
unified graph sequence G = {G,}1; to per-frame em-
beddings Fioy = een(G) € RT*9, The RGB student en-
coder ey, maps the video X € RTXHXWX3 o B, =
esu(X) € RT*4, ¢y, consists of a visual feature extractor
followed by a bidirectional GRU to capture long-term de-
pendencies and project the extracted features into the same

= HA€{1,2,4} Fl(Zt(



dimensional space d as the teacher encoder. On all unlabeled
clips Dynlabel, W& minimize a feature-matching L2 loss

1 L 2
Liw = 70 [Fi@ — F&, @

t=1

The teacher encoder, initialized from the pretrained weights
in the previous stage, remains frozen during distillation,
while the student networks are trainable. A few-shot adap-
tion is adopted to fine-tune the event localizer and classifier
on Dj4pe;- Atinference time, the student alone performs PES
directly from RGB, inheriting robustness from the teacher’s
structured graph supervision.

Implementation Details

In UMEG-Net, we employ the unit GCN from (Zhou et al.
2024) as the spatial GCN layer for its strong performance
and efficiency. The multi-scale temporal shift module ap-
plies shifts of A € {1,2,4} frames. For distillation,
we use VideoMAEv2 (Wang et al. 2023a), an advanced
transformer-based visual encoder, as the backbone for fea-
ture extraction (smaller variants also show consistent gains).
Event localization and classification are performed by lin-
ear layers that output event probabilities and event types,
respectively. The training protocol processes 96-frame se-
quences with a stride of 2. RGB frames are resized to 224
pixels in height, then randomly cropped to 224 x 224 to pre-
serve essential visual information. Standard data augmenta-
tion (cropping, color jittering) enhances data diversity and
model robustness during training but is omitted in testing.
Models are optimized with AdamW (initial learning rate
0.001 for UMEG-Net, 0.0001 for VideoMAEvV2 in distilla-
tion), using three linear warm-up steps followed by cosine
annealing. Training is conducted on an RTX 4090 GPU. Fur-
ther implementation details are provided in the Appendix.

Experimental Results

This section presents evaluation details and ablation studies.

Datasets

To evaluate the effectiveness of our method, we con-
duct experiments on several PES datasets, including racket
sports F3Set-Tennis (Liu et al. 2025¢) and ShuttleSet (Wang
et al. 2023b), individual sports FineGym (Shao et al. 2020)
and Figure Skating (Hong et al. 2021), and team sports
SoccerNet-BAS (Cioppa et al. 2024). Detailed descriptions
of these datasets are provided in the supplementary material.

We extract 2D poses using off-the-shelf pose estima-
tors. For 2D pose estimation, we use HRNet (Sun et al.
2019) to detect athletes’ poses through top-down estima-
tion. For sports-specific object detection and tracking, we
fine-tune the pretrained YOLOvV8 (Jocher, Chaurasia, and
Qiu 2023) model on corresponding public datasets from
Roboflow (Dwyer et al. 2025) to detect and track target
players and sports balls in F3Set-Tennis, ShuttleSet, and
SoccerNet-BAS. For two racket sports datasets, we also em-
ploy deployed models for court detection to identify the four
corners. Please refer to Appendix for more details.

Evaluation Metrics

Following Liu et al. (Liu et al. 2025c), we evaluate our
method using two metrics that assess temporal precision and
classification accuracy: Edit score and mean F1 with tem-
poral tolerance. (1) Edit Score (Lea et al. 2017) measures
the structural similarity between predicted and ground-truth
event sequences using Levenshtein distance, accounting for
missing, redundant, and misordered predictions. It is suit-
able for tasks requiring accurate event ordering and com-
pleteness. (2) Mean F1 Score with Temporal Tolerance eval-
uates both event classification and localization accuracy. A
prediction is correct if it matches the event class and occurs
within a temporal window of ¢ frames around the ground-
truth timestamp. We report the average F1 across all event
types, denoted as Fley. Unless otherwise specified, we use a
strict tolerance of § = 1 frame; for SoccerNet-BAS, we fol-
low prior work (Cioppa et al. 2024) and use 6 = 1 second.

Baselines

We compare our approach with SOTA PES methods that op-
erate on RGB inputs and support end-to-end training, includ-
ing E2E-Spot (Hong et al. 2022) and T-DEED (Xarles et al.
2024), each evaluated with RegNet-Y (Radosavovic et al.
2020) 200MF and 800MF backbones, as well as F3ED (Liu
et al. 2025c¢). Furthermore, we construct skeleton-based
PES variants of these baselines by replacing their visual
encoders with existing skeleton-based GCN architectures.
These variants take 2D human poses as input and employ
F3ED’s head module for event spotting. Specifically, we
adopt graph-based models including MSG3D (Liu et al.
2020), AAGCN (Shi et al. 2020), CTRGCN (Chen et al.
2021), STGCN++ (Duan et al. 2022), BlockGCN (Zhou
etal. 2024), and ProtoGCN (Liu et al. 2025a). Per-frame rep-
resentations are computed by aggregating individual skele-
ton features via averaging across all detected persons.

Few-Shot Setting

We define the few-shot scenario as training with a limited
number of annotated clips (k-clip), following (Hong et al.
2021). In F3Set-Tennis and ShuttleSet, each clip represents
arally spanning several seconds and comprising a sequence
of shots. In FineGym-BB and Figure Skating, each clip cor-
responds to a routine with a series of technical and artistic
movements. In SoccerNet-BAS, each clip captures a phase
of play featuring actions such as pass, drive, and shoot.
Unlike the traditional k-shot approach, which segments
videos into independent samples containing single events
with backgrounds (Yang et al. 2020; Nag, Zhu, and Xi-
ang 2021), our k-clip strategy offers a more practical and
domain-adapted setting. First, due to the large number of
event types in sports, many of which are rare, sampling & in-
stances per type is often impractical; annotating a small set
of clips per sport domain is more efficient and scalable. Sec-
ond, sports actions are typically brief (1-2 frames) and occur
rapidly in succession, thus isolated events lack essential tem-
poral context. Third, consecutive events frequently exhibit
strong dependencies (Hong et al. 2022; Liu et al. 2025c);
therefore, training on k-clips rather than k-shots enables the
model to better capture long-term event relationships.



Table 1: Experimental results and ablation studies for fine-grained sports event detection across five datasets using 100-clip
training data are reported with evaluation metrics Fl¢, and edit score. “Params (M)” refers to the number of model parame-
ters. Top-performing results are bolded, while the best within each method category are underlined. Our method UMEG-Net

outperforms all the assessed state-of-the-art (SOTA) methods.

F3Set-Tennis

ShuttleSet

FineGym-BB

Figure Skating

SoccerNet-BAS

Params (M)
Flew  Edit Flew Edit  Flew Edit  Flew Edit  Flew Edit
(a) SOTA PES methods
E2E-Spot 20omr (Hong et al. 2022) 26 11.1 356 503 40.1 50.8  29.9 348 153 354 4.5
E2E-Spot goomr (Hong et al. 2022) 3.1 13.3 427 546 447 53.1 359 427 221 43.1 12.6
T-DEED »pomr (Xarles et al. 2024) 1.0 42 338 41.7 44.1 484  36.6 33.5 4.7 8.8 16.4
T-DEED soomr (Xarles et al. 2024) 1.5 6.4 307 38.6 436 483 379 40.6 6.7 14.3 46.2
F3ED (Liu et al. 2025¢) 39 153 441 551 438 52.1  36.1 344 227 34.5 4.7
(b) Skeleton-based PES variants
MSG3D (Liu et al. 2020) 52 154 397 563 458 50.1  18.1 328 223 39.5 4.6
AAGCN (Shi et al. 2020) 49 154 447 556 428 478 248 40.0 22.1 43.1 54
CTRGCN (Chen et al. 2021) 55 169 403 551 46.6 50.7 28.2 444 223 424 3.1
STGCN++ (Duan et al. 2022) 64 180 450 577 446 50.0 29.5 468 174 42.7 3.0
ProtoGCN (Liu et al. 2025a) 6.6 181 468 583 414 51.1 253 437 178 41.0 5.6
BlockGCN (Zhou et al. 2024) 69 183 47.1 594 445 49.1 29.8 482 199 43.3 2.5
(¢) Our approach
UMEG-Net 94 317 492 640 49.2 544 39.2 49.6 27.0 44.8 2.2
UMEG-Net giginn 125 407 591 690 584 612 459 56.2 27.1 50.8 67.8
Ablation studies
(d) pose x N 56 239 474 615 492 544 392 49.6 20.7 39.6 -
pose x N + court 6.6 261 46.7 615 - - - - - -
pose * N + ball 8.6 302 48.1 625 - - - - 270 44.8 -
pose * N + ball + court 94 317 492 64.0 - - - - - - -
(e) A e {1} 8.8 304 465 612 390 503 262 36.8 21.1 38.9 -
A e {1,2} 9.6 332 474 616 429 49.8 321 453  23.1 40.1 -
A e{1,2,4} 94 317 492 640 492 544 392 49.6 27.0 44.8 -
(f) Self-supervise (Chen et al. 2020) 30 291 502 624 545 56.8 34.6 41.3  26.0 429 -
UMEG-Net giin 125  40.7 59.1 69.0 584 612 459 56.2 27.1 50.8 -
(g) E2E-Spot (full supervision) 46 711 712 761 729 73.0 58.0 63.9 46.2 729 -
UMEG-Net (full supervision) 475 712 714 76.1 59.8 64.8 61.8 71.8  36.1 55.7 -

Result Analysis with Few-Shot Supervision

We evaluate performance in the few-shot setting across all
datasets. For a fair comparison, all methods are trained on
the same k-clip samples, with five random splits per dataset,
and the results are averaged. We test k € {15,25,50,100}
across SOTA PES methods, skeleton-based PES variants,
and our methods. Table 1 presents the results for the 100-clip
setting. From the table, we observe that UMEG-Net consis-
tently achieves strong performance across all datasets.

(1) Comparison with SOTA PES methods. UMEG-Net
achieves substantial improvements over these methods as
shown in Table 1(a). Specifically, it improves F1.,, by 1.3%
to 5.5% and Edit score by 1.3% to 16.4% over the best-
performing PES baselines across five datasets, respectively.
Despite strong performance on large-scale labeled data,
these PES methods generally struggle in few-shot settings,
highlighting the limitation of relying solely on RGB inputs.

(2) Compare with skeleton-based PES variants.
UMEG-Net shows noticeable advantages over skeleton-

based variants in Table 1(b), especially on datasets contain-
ing fine-grained events such as F3Set-Tennis and Shuttle-
Set. For instance, it outperforms the best-performing vari-
ant BlockGCN by +2.5% F1.,, and +13.4% Edit on F3Set-
Tennis, and +2.1% F1., and +4.6% Edit on ShuttleSet. This
advantage stems from UMEG-Net’s incorporation of object
and environmental cues, as well as its compact architecture,
with the fewest parameters (2.2M) among all baselines.

(3) Multimodal distillation. UMEG-Net 4 further en-
hances performance and robustness as shown in Table 1(c).
Compared to UMEG-Net, it improves on average 5.8% in
Flevt and 6.7% in Edit score. These improvements demon-
strate the effectiveness of multimodal distillation in captur-
ing complementary visual representations from RGB inputs.

(4) Various k-clip settings. Figure 3 illustrates per-
formance trends for representative PES baselines and our
proposed models across various k-clip samples. The fig-
ure clearly indicates that UMEG-Net consistently outper-
forms existing methods under all supervision levels, and
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Figure 3: Fl,,, and Edit scores under few-shot (k-clip) training. Percentages indicate the fraction of the full training set.

UMEG-Netgisin provided further improvement. These re-
sults confirm the robustness and effectiveness of our ap-
proach across diverse few-shot scenarios.

Ablation Studies

We conduct ablation studies to evaluate the effectiveness of
our proposed framework in few-shot settings, primarily fo-
cusing on the 100-clip setup unless otherwise specified.

Effect of Graph Entities To assess the impact of different
entity types, we analyze graph structures incorporating var-
ious object configurations, as shown in Table 1(d). Specifi-
cally, “pose x N, “ball”, and “court” represent N x K hu-
man joint keypoints, a single keypoint for the ball, and four
keypoints for court corners, respectively. The results indicate
that incorporating ball or court information improves perfor-
mance over using pose keypoints alone, while combining all
entity types yields the best performance.

Temporal Module Configuration We examine the choice
of A in UMEG-Net to see how it affects overall perfor-
mance. We evaluate the effectiveness of different scales in
temporal module by shifting A € {1}, A € {1,2}, and
compare with our default setting of A € {1,2,4}. As pre-
sented in Table 1(e), the performance drops with less tempo-
ral shift scales. However, further increasing the scales does
not necessarily increase the performance.

Self-Supervise vs. UMEG-Net gissin ~ To validate the effec-
tiveness of our multimodal distillation from UMEG-Net to
visual encoders, we compare it with a visual-based self-
supervise alternative approach, where the visual models
is pretrained on unlabeled domain data using contrastive
learning (Chen et al. 2020) and fine-tuned on k-clip la-
beled samples. As shown in Table 1(f), although the con-

trastive learning approach show notable improvement com-
pared to visual-based method trained only on labeled data,
our UMEG-Net 451 Substantially outperforms it.

Full Supervision Performance We also compare our
UMEG-Net with existing RGB-based PES methods (E2E-
Spot) under full supervision, where all of labeled clips in
the training set are available. As shown in Table 1(g), our
model is competitive even in the high-data regime. It shows
better performance in 3 out of 5 datasets. This shows that
UMEG-Net is not limited to few-shot regimes.

Conclusion

In this paper, we introduced the task of few-shot Precise
Event Spotting (PES), addressing the critical challenge of
frame-accurate event detection in sports videos with limited
labeled data. To tackle this, we proposed a unified multi-
entity graph representation that flexibly integrates human
skeletons, sport-specific object keypoints, and contextual
landmarks, enabling richer modeling of complex interac-
tions within diverse sports scenes. Leveraging this represen-
tation, we developed UMEG-Net, a lightweight yet power-
ful graph-based architecture utilizing spatial graph convolu-
tions combined with a parameter-free multi-scale temporal
shift mechanism, enhanced further by multimodal knowl-
edge distillation. Extensive experiments across five fine-
grained sports event datasets demonstrated that our approach
significantly outperforms existing methods in few-shot sce-
narios. These results confirm the effectiveness of structured
graph representations and multimodal learning strategies in
addressing annotation scarcity and generalization challenges
in precise event spotting. Future work can extend our ap-
proach to handle events with weak or non-entity cues, im-
proving robustness beyond entity-driven scenarios.
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Appendix

Implementation Details

Architecture For RGB feature extraction, we employ
VideoMAEv2 (Wang et al. 2023a) as the backbone, cho-
sen for its superior classification performance. The encoder
is pretrained on Kinetics-710 (Kay et al. 2017) and sub-
sequently finetuned on the target sports datasets. Video-
MAEV2 divides long video clips into slices and processes
each slice independently, with a default slice length of 16
frames. However, in precise event spotting (PES), frame-
level granularity is essential due to the short duration of
sports events. Therefore, we set the slice length to 2 frames.
Each slice, shaped H x W x 2 (H = 224, W = 224),
is first passed through a 3D convolutional layer, resulting
in 16 x 16 feature patches per slice. Each patch encodes
the spatial features of its corresponding region. The se-
quence of patches is then concatenated and processed by
a transformer-based network, which models relationships
among spatial regions within the slice. The temporal features
of the video are further modeled using the spatial features
from all slices. After spatial modeling, we obtain features of
shape T'/2 x 196 x d”’, which are temporally upsampled by a
factor of 2 to T' x 196 x d”’. These features are subsequently
fed into a temporal block to capture long-term dependencies
and are used by the event localizer and classifier to predict
frame-wise events.

Training For UMEG-Net, we conduct dense, per-frame
classification to detect event types and precise timestamps.
Due to severe class imbalance—event frames account for
less than 3% of the data—the loss for foreground classes is
increased fivefold to mitigate this disparity. The models are
optimized using AdamW with a cosine annealing learning
rate schedule, and training is performed on an RTX 4090
GPU. UMEG-Net is trained end-to-end on the limited la-
beled data for 50 epochs (30 epochs for ShuttleSet due to its
smaller size), with an initial learning rate of 0.001 and three
linear warm-up steps before cosine decay. Model selection
is based on the best validation performance.

For the multimodal distillation stage, the trained
UMEG-Net serves as the teacher to “distill” knowledge to
the video encoder using a large set of unlabeled clips un-
der weak supervision. UMEG-Netg;q is trained on both la-
beled and unlabeled data for 50 epochs (30 for ShuttleSet)
with an initial learning rate of 0.0001. Following distillation,
the video encoder parameters are frozen, and only the tem-
poral block, event localizer, and classifier are finetuned on
the labeled data to adapt to the PES task. This finetuning is
conducted for 10 epochs with a learning rate of 0.001.

Dataset Details

This section provides additional information on the datasets
used in our experiments, as well as details on the extraction
of relevant keypoints.

F3Set-Tennis is a large-scale PES dataset proposed by Liu
et. al. (Liu et al. 2025¢). It consists of 11,584 clips from
114 professional tennis matches, with each clip containing
1 to 34 shots. Each shot is annotated with the exact frame

of racket-ball contact and its corresponding event type. We
focus on all 8 sub-classes and 1,108 event types. Detailed
statistics are shown in Table?2.

For this dataset, we extract keypoint information compris-
ing players’ 2D poses, ball positions, and court corners. The
near-side player is identified using a detect-and-track algo-
rithm (Girdhar et al. 2018), selecting the trajectory closest
to the bottom of the video frame. To distinguish the far-
side player from line judges, we apply YOLOvV8 (Jocher,
Chaurasia, and Qiu 2023) to detect individuals above the
net and assign as the far-side player the lowest detected per-
son within three meters of the court boundary. Both players’
2D poses and bounding boxes are estimated with YOLOVS.
To account for camera motion, we detect court lines using
the method of Jiang et al. (Jiang et al. 2023) and compute a
homography to map the image plane to the court’s ground
plane. Assuming the player’s feet are on the ground, we lo-
calize each player by projecting the bottom center of their
bounding box onto the court. Ball positions in each frame
are detected via (Jiang et al. 2024).

ShuttleSet is a publicly available badminton singles
dataset featuring stroke-level annotations (Wang et al.
2023b). It comprises 104 sets, 3,685 rallies, and 36,492
strokes across 44 matches played between 2018 and 2021 by
27 top-ranking men’s and women’s singles players. While
originally intended for tactical analysis, the dataset also pro-
vides detailed stroke types, precise stroke timestamps, and
corresponding videos, making it suitable for the PES task.
For our study, we construct the ShuttleSet dataset, which in-
cludes 3,685 clips (rallies), with an average clip length of
10.9 seconds and 10.5 shots per rally. Each shot is annotated
with the exact racket—shuttle contact frame and its event type
(36 categories). Detailed statistics are shown in Table3.

We extract keypoint information in ShuttleSet similar to
F3Set-Tennis, including players’ 2D poses, shuttlecock po-
sitions, and court corners. Court corners are detected using
the approach described in (Liu and Wang 2022), and shut-
tlecock tracking is performed with TrackNetV3 (Chen and
Wang 2023). For player tracking, we use YOLOvV8 (Jocher,
Chaurasia, and Qiu 2023) for human detection, filtering out
any detected players whose feet are not within the court, and
distinguish near and far players based on their distance to
the camera. The 2D poses of detected players are estimated
using a pre-trained HRNet (Sun et al. 2019).

FineGym is a gymnastics dataset designed for fine-
grained action understanding (Shao et al. 2020). The orig-
inal annotations specify the start and end times of each ac-
tion, which we treat as discrete events (e.g., “balance beam
dismount start” and “balance beam dismount end”) in line
with (Hong et al. 2022). Our study focuses on the balance
beam subset, referred to as FineGym-BB, which consists of
1,112 routines from 142 matches, with an average clip du-
ration of 92 seconds and 24.8 events per clip. Event distri-
butions are detailed in Table 4. For FineGym-BB, we ex-
tract 2D human poses of the single gymnastic athlete in each
video clip using (Sun et al. 2019).



Table 2: Distribution of elements across sub-classes in the
F3Set-Tennis.

Sub-Class Element Count  Proportion (%)
near 21,467 50.1%
e far 21,362 49.9%
deuce 14,474 33.8%
SCo ad 16,310 38.1%
middle 12,045 28.1%
forehand 27,802 64.9%
5¢s backhand 15,027 35.1%
serve 11,584 27.0%
Sscy return 8,216 19.2%
stroke 23,029 53.8%
T 4,428 10.3%
Body 2,241 5.2%
Wide 4,915 11.5%
cross-court 11,933 27.9%
5Cs down the line 3,521 8.2%
down the middle 11,040 25.8%
inside-in 608 1.4%
inside-out 4,143 9.7%
ground stroke 38,287 89.4%
slice 3,358 7.8%
sc volley 497 1.2%
6 lob 334 0.8%
drop 236 0.5%
smash 117 0.3%
approach 964 2.3%
ser non-approach 41,865 97.7%
in-bound 31,245 73.0%
sc winner 3,734 8.7%
8 forced error 2,808 6.5%
unforced error 5,042 11.8%

Figure Skating includes 11 videos covering 371 short
program performances. Following (Hong et al. 2022), the
dataset defines 20 event types corresponding to the take-off
and landing frames of 10 jump and flying spin classes (e.g.,
“axel take-off,” “flip landing”). Each program lasts 170.7
seconds on average, containing approximately 10 events per
performance. Event distributions are detailed in Table 5.
Similarly, we only extract 2D human poses of the single fig-
ure skating athlete in each video clip using (Sun et al. 2019).

SoccerNet Ball Action Spotting (BAS) focuses on identi-
fying both the timing and type of ball-related actions across
12 classes (Cioppa et al. 2024), with each action anno-
tated by a single timestamp. The classes include Pass, Drive,
Header, High Pass, Out, Cross, Throw In, Shot, Ball Player
Block, Player Successful Tackle, Free Kick, and Goal.
The original dataset consists of seven untrimmed broadcast
videos of full English Football League matches, which con-
tain many irrelevant scenes beyond key ball action events. To

Table 3: Distribution of event types in ShuttleSet.

Event type Count
far-end player back-court-drive 169
far-end player clear 905
far-end player cross-court-net-shot 479
far-end player defensive-return-drive 99
far-end player defensive-return-lob 82
far-end player drive 233
far-end player driven-flight 18
far-end player drop 711
far-end player lob 1,710
far-end player long-service 159
far-end player net-shot 2,157
far-end player passive-drop 455
far-end player push 1,014
far-end player return-net 1,180
far-end player rush 190
far-end player short-service 946
far-end player smash 937
far-end player wrist-smash 586
near-end player back-court-drive 153
near-end player clear 925
near-end player cross-court-net-shot 467
near-end player defensive-return-drive 173
near-end player defensive-return-lob 102
near-end player drive 251
near-end player driven-flight 19
near-end player drop 681
near-end player lob 1,860
near-end player long-service 201
near-end player net-shot 2,091
near-end player passive-drop 434
near-end player push 990
near-end player return-net 1,277
near-end player rush 133
near-end player short-service 978
near-end player smash 773
near-end player wrist-smash 534
Total 24,072

address this, we segment the videos to retain only segments
containing ball action events.

For the resulting SoccerNet BAS clips, we extract 2D hu-
man poses and soccer ball positions. Soccer ball detection is
performed using a YOLOV8 model pre-trained on an anno-
tated Roboflow dataset (Roboflow 2024), while human 2D
poses are estimated in a top-down manner using HRNet (Sun
et al. 2019).

Baseline Methods

This section provides additional implementation details for
the baseline methods discussed in Experimental Results.

E2E-Spot (Hong et al. 2021) E2E-Spot is an end-to-end
deep learning framework for temporally precise spotting of
fine-grained events in video, defined as predicting the ex-



Table 4: Distribution of event types in FineGym-BB.

Event type Count
BB-dismounts start 1,112
BB-dismounts end 1,112
BB-flight-handspring start 2,714
BB-flight-handspring end 2,714
BB-flight-salto start 4,123
BB-flight-salto end 4,123
BB-leap-jump-hop start 4,602
BB-leap-jump-hop end 4,602
BB-turns start 1,265
BB-turns end 1,265
Total 27,632

Table 5: Distribution of event types in Figure Skating.

Event type Count
axel takeoff 371
axel landing 371
flip takeoff 184
flip landing 184
flying-camel takeoff 216
flying-camel landing 216
flying-sit takeoff 151
flying-sit landing 151
flying-upright takeoff 6
flying-upright landing 6
loop takeoff 94
loop landing 94
lutz takeoff 248
lutz landing 248
salchow takeoff 61
salchow landing 61
toe-loop takeoff 504
toe-loop landing 504
Total 3,670

Table 6: Distribution of event types in Figure Skating.

Event type Count
Pass 4,955
Drive 4,274
Head 707
High Pass 756
Out 550
Cross 260
Throw In 359
Shot 168
Ball Player Block 222
Player Successful Tackle 74
Free Kick 19
Goal 13
Total 12,357

act frame (within 1-2 frames tolerance) when an event oc-
curs. It integrates a per-frame CNN (e.g. RegNet-Y (Ra-
dosavovic et al. 2020) with GSM (Sudhakaran, Escalera, and
Lanz 2020)) to efficiently process hundreds of consecutive
frames and a lightweight bidirectional GRU (Dey and Salem
2017) to model long-term temporal context. Unlike prior
two-stage methods (feature extraction followed by separate
head training), E2E-Spot jointly learns spatial-temporal rep-
resentations directly from raw pixels under end-to-end su-
pervision, enabling both fine-grained motion sensitivity and
global temporal reasoning.

TDEED (Xarles et al. 2024) is a PES model that im-
proves upon baseline methods (i.e., E2E-Spot) by explicitly
enhancing frame-level discriminability and preserving high
temporal resolution across multiple scales. The architecture
integrates a feature extractor (e.g., RegNet-Y with local tem-
poral modules) to produce per-frame tokens, followed by
a temporal encoder-decoder that downsamples and then re-
stores the original temporal resolution via skip-connections.
Within this module, Scalable-Granularity Perception (SGP)
layers, and in particular the SGP-Mixer variants, boost to-
ken discriminability by reducing similarity among adja-
cent frames. The combined architecture allows T-DEED to
model both local and global temporal context while retain-
ing precision.

F3ED (Liu et al. 2025¢) is an end-to-end deep learning
framework devised to detect and timestamp sequences of
fast, frequent, fine-grained (F%) events, particularly suited
to sports domains such as tennis, where events are brief,
rapidly occurring, and highly detailed. The model begins
by encoding consecutive video frames with a visual back-
bone, yielding dense per-frame features. A contextual re-
finement module then processes this sequence, producing
precise temporal predictions for event sequences while pre-
serving positional accuracy at the frame level.

MSG3D (Liu et al. 2020) extends STGCN (Yan, Xiong,
and Lin 2018) by introducing multi-scale graph convolu-
tions, enabling hierarchical feature extraction across dif-
ferent joint neighborhoods. It learns both local and global
skeletal dependencies by applying multiple graph convolu-
tions at varying scales. MSG3D enhances pose-based action
recognition by capturing complex motion structures across
multiple granularities.

AAGCN (Shi et al. 2020) incorporates adaptive adjacency
learning to dynamically refine graph connections based on
input features. Unlike STGCN, which uses a predefined
skeleton topology, AAGCN learns data-driven spatial de-
pendencies, allowing more flexible representation of human
motion. This improves robustness to variations in pose esti-
mation noise and enhances action recognition performance.

CTRGCN (Chen et al. 2021) introduces channel-wise
topology refinement by modeling multi-channel dependen-
cies within the graph structure. Instead of treating each
joint’s features independently, CTRGCN applies cross-
channel interactions to capture co-occurring motion pat-



terns. This improves feature expressiveness and enables bet-
ter generalization in skeleton-based action detection.

STGCN++ (Duan et al. 2022) is an optimized version of
STGCN that enhances efficiency and representation capac-
ity. It refines spatial-temporal graph convolutions by intro-
ducing lightweight architectural modifications, improving
performance while maintaining a compact parameter size.
STGCN++ is chosen as our primary skeleton-based feature
extractor due to its efficiency and strong baseline perfor-
mance.

BlockGCN (Zhou et al. 2024) addresses two key limi-
tations of standard GCNs in skeleton-based action recog-
nition: (1) the decay of bone connectivity information
when adjacency matrices are jointly optimized with network
weights, and (2) the inefficiency in multi-relational model-
ing using ensemble or attention-based convolutions. To mit-
igate topology forgetting, BlockGCN incorporates a static
topological encoding based on graph distances (e.g. short-
est path distances between joint pairs) and a dynamic topo-
logical encoding via persistent homology analysis to capture
action-specific skeletal dynamics. Additionally, it introduces
BlockGCN, a refined graph convolution module that parti-
tions feature channels into groups and applies spatial aggre-
gation and projection within each group via block-diagonal
weight matrices.

ProtoGCN (Liu et al. 2025a) introduces a novel GCN-
based approach for skeleton-based action recognition that
explicitly enhances the model’s capacity to distinguish ac-
tions with subtly different joint dynamics. At its core is
the Prototype Reconstruction Network (PRN), which learns
a set of motion prototypes encoding prototypical joint-
relationship patterns. Input skeleton representations are re-
constructed as a weighted combination of these prototypes,
thereby emphasizing fine-grained motion cues relevant for
differentiating similar actions. ProtoGCN further incorpo-
rates a Motion Topology Enhancement (MTE) module that
refines the graph representation via self-attention across
joints and pairwise comparisons, enhancing feature rich-
ness. A class-specific contrastive learning objective encour-
ages separation between prototype responses across action
classes, reinforcing discriminative representation learning.
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