
Formal Verification of the Burn-to-Claim
Blockchain Interoperable Protocol

Babu Pillai1,2, Zhé Hóu1, Kamanashis Biswas1,3, and Vallipuram
Muthukkumarasamy1

1 Griffith University, Gold Coast, Australia
2 Southern Cross University

3 Australian Catholic University, Brisbane, Australia
babu.pillai@outlook.com

Abstract. This paper introduces an abstract blockchain model that
employs the Burn-to-Claim cross-blockchain protocol [1]. This multi-
level simulator models a virtual environment of nodes running on the
Ethereum Virtual Machine (EVM). Developed using the CSP# lan-
guage [2], it has undergone formal verification with the model checker
PAT . Focusing on inter-network operations, our model4 examines the
properties of correctness, security, and atomicity using PAT . Surpris-
ingly, atomicity, assumed to be inherent in the time-lock mechanism of
the Burn-to-Claim protocol, does not always hold. We establish its valid-
ity under specific assumptions while confirming the protocol’s correctness
and security under the added assumptions.

Keywords: Burn-to-Claim · blockchain · interoperability · formal verification

1 Introduction

Despite the recent surge in the number of proposed interoperable protocols,
there is a lack of formal guarantees for the properties of those protocols. This is
also a common issue in the field of (cyber)security, where much of the protocol
design is proved by hand, which is error-prone. Commercial developments of such
cyber and network systems are often validated by extensive software testing,
but testing can only show the presence of bugs, not their absence. In recent
years, formal verification has been used for verifying highly sensitive systems
and protocols.

In this paper, we employ a tool named Process Analysis Toolkit (PAT) [3],
which supports modelling, simulation and verification of many forms of systems.
The supported modelling languages include Hoare’s Communicating Sequential
Processes [4] extended with C# (CSP#), timed automata, real-time systems,
probabilistic systems and hierarchical systems.

The main contributions of this paper include:

4 https://github.com/b-pillai/Burn-to-Claim-formal-verification

2 Pillai et al.

– Modelling: We build a formal model for the Burn-to-Claim blockchain inter-
operable protocol [1] using CSP# that focused on inter-network operations
within a network.

– Verification: Using the developed models, we specify several correctness and
security properties using LTL and reachability and verify them using the
PAT system.

– Findings: We discuss the verification results. In particular, the atomicity
property, which contrary to the common understanding of the adopted time-
lock technique, does not hold in general. However, it holds under certain
assumptions.

2 An overview of the Burn-to-Claim protocol

At the highest level, our objective is to construct a model encompassing a sce-
nario wherein a user intends to transfer an asset from one blockchain network to
another. The Burn-to-Claim protocol [1, 5] facilitates this transfer, ensuring that
the asset is destroyed (or removed) from the originating blockchain network and
subsequently re-created on the destination network. Within this process, the net-
works from which the asset is removed are termed source networks, while those
to which the asset is transferred are labelled destination networks. This trans-
fer procedure is twofold: initially, the source network produces a self-verifiable
transfer-proof, and subsequently, upon verifying this proof, the destination net-
work reconstitutes the asset.

Workflow Upon initiating the exitTransaction in the source network, nodes
within this network validate the transaction request. The primary objective is
to generate a proof, which allows verification of the specific transaction without
needing to reference the entire history of the associated asset. After this transac-
tion is committed in the source chain, the transfer-proof triggers an entryTrans-
action in the destination network, paving the way for the asset’s recreation in
the recipient network. Nodes within the destination network then validate the
transfer-proof and proceed to recreate the asset. We model the above system for
formal verification in different modules described below.

Module 1 — exitTransaction This transaction triggers a transfer request on the
source network, creating an exit point for an asset on the sender’s blockchain
through network consensus. The system’s generation of a transfer-proof ensures
security. Once the network agrees on the transaction’s authenticity, a transfer-
proof log is added to the next block, and the asset is locked to prevent further
extensions.

Module 2 — entryTransaction This transaction aims to replicate the asset in the
destination network. Executing the entryTransaction and transfer-proof func-
tions from the source chain, the network validates the transfer-proof and repro-
duces the asset.

Formal Verification of the Burn-to-Claim Blockchain Interoperable Protocol 3

Let us assume the exitTransaction log and timestamp on the sender network
created of t1 time will be delivered to the recipient network through a gateway
node with a time latency of t2.

Module 3 — reclaimTransaction If the recipient does not claim the asset within
the time-lock period t2, the sender can use reclaimTransaction to retrieve it.
The function verifies the signature and time-lock before returning the asset to
the sender.

3 Specifications of the protocol

In order to perform verification and show that the system model satisfies a set
of desired requirements, we define a set of four scenarios to check the functional
security of the system. 1) A sender sends a transaction and the correct recipient
makes the claim. 2) A sender sends a transaction and after the time lock period
reclaims the asset. 3) A sender sends a transaction and a malicious recipient
tries to make the claim. 4) A malicious sender sends a transaction and tries to
reclaim it within the time-lock period. Based on the above four cases, we have
defined a set of properties that should hold in the Burn-to-Claim protocol [5, 1].

Property 1 (Burn-Before-Claim). An asset that is transferred from the source
network must be burned on the source network before the recipient can claim it
on the recipient network.

Property 2 (No-Double-Spend). Double spending is not permitted in the Burn-
to-Claim protocol.

Property 3 (Correctness). The Burn-to-Claim protocol only transfers an asset
to the correct recipient.

Property 4 (Strong-Atomicity). The transfer operation should only obtain one of
the following outcomes: either the transfer succeeds, and the asset is transferred
to the recipient, or it fails, and the asset returns to the sender.

Property 5 (Weak-Atomicity). Under the assumption that either the recipient or
the sender is guaranteed to make the (re)claim, a transfer operation should only
have one of the following outcomes: either the transfer succeeds, and the asset
is transferred to the recipient, or it fails, and the asset returns to the sender.

4 The model for cross-blockchain interactions

In this model, we focus on the inter-network events, and we only consider high
level operations of transaction and mining, and leave the detailed intra-network
operations to a different model that will be discussed in the next section.

The two networks are defined as constants N1 and N2 representing the source
network as N1 and destination network as N2. A set of variables defined are

4 Pillai et al.

TxItems to hold the number of items in a transaction, MaxTx set the maximum
number of transactions,MaxMiners set the number of miners, TxAmount to hold
defaults value to transfer, InitAmount to hold initial wallet balance, MaxUsers
number of users and ChannelBufferSize for channel buffer size.

The structure of blockchain is not critical in this model; therefore, for sim-
plicity, we view blockchain data structure as a list of transactions as in tx[0], as
transactions in N1, tx[1] as transactions in N2.

Users. There are four types of users in the model: User1, User2, Sender and Re-
cipient. User1 and User2 are network specific participants. That is, User1 exists
only in N1 and is able to send transactions within the same network. Similarly,
User2 exists and operates only within N2. We model the transaction as a tuple
of six items in the order of sender’s network, senders address, recipient network,
recipient address, beta, value, gamma, miner address. In reference to the transac-
tion Tx defined in the Burn-to-Claim paper [1], we omitted previous transaction
Tx† as it is not important in this model. Based on the role and requirement, the
network participants send separate transactions. The Sender and Recipient are
participants that can send cross network transactions to another network. The
sender and recipient use separate channels to broadcast the transaction.

Miners. We model two types of miners Miner1 and Miner2. Miner1 is a miner
on the network N1, listening to the channels of [trans1, exit and rec]. This miner
execute a relevant function based on the channel the message is coming from.
The Miner2 is mining on N2, listening to the channels of [trans2 and entry] and
executes a relevant function based on the channel the message is coming from.

The mining process. There are five processes defined which will be executed
by the miner based on the input request. The minerVerify1 process facilitates
value transfers within N1. It first verifies conditions like transfer networks and
user limits before executing the transfer. minerVerify2 serves a similar purpose
for N2. When exitTransaction is invoked, miners ensure the user has sufficient
funds. The exportVerifier process, in this model, is simplified, excluding signa-
ture verification. If conditions are met, tokens are transferred to a burn-address.
For the entryTransaction, miners validate time-lock, burn-address status, and
the provided security code. If verified, the recipient’s wallet increases. For the
reclaimTransaction, similar checks are made, and upon validation, the sender’s
wallet is refunded.

Process execution. We model the execution of cross-blockchain transfer in a
blockchain as a CrossBlockchains() process. The process is structured such that
the mining, user, and BurnToClaim() processes run concurrently. The mining
process begins with miners mining on both N1 and N2. Meanwhile, users process
their transactions on their respective chains. The BurnToClaim() process then
executes the defined scenarios based on the user’s selection.

Formal Verification of the Burn-to-Claim Blockchain Interoperable Protocol 5

5 System verification

In this section, we cover the model’s targeted assertions and properties, outline
the verification procedures and present results. An assertion examines system
behaviours. For a given process, it checks if a state meets a specific condition.
When process p runs, if e is true, then f remains true.

To verify Property 1 (Burn-Before-Claim), we define an assertion in PAT
as below. This assertion verifies that an asset is burned before the recipient’s
claim using [(pClaimed − > [](!pBurned))]. Results confirm the asset must be
burned prior to a claim. In our model, the sender commits the transfer to a burn
address, and once the network accepts it, the decision is deemed final.

#assert CrossChains |= [] (pClaimed −> [] (! pBurned)) ;

We define the three assertions given below to check Property 2, double spend-
ing. The initial assertion examines if an asset, once claimed by the recipient,
cannot be reclaimed by the sender using [(pClaimed− >)]. The next asser-
tion observes whether the recipient’s wallet increases, while the sender remains
unchanged using [(recipientClaimed & senderReclaimed)]. Lastly, an assertion
confirms against double spending scenarios, ensuring that both recipient claims
and sender reclaims cannot coexist, as evidenced by [(pReclaimed− >)]. Ver-
ification results from these three assertions confirm the impossibility of double
spending in this model’s configuration.

#assert CrossChains |= [] (pClaimed −> [] (! pReclaimed)) ;
#assert CrossChains |= [] ! (rClaimed && sReclaimed) ;
#assert CrossChains |= [] (pReclaimed −> [] (! pClaimed)) ;

To check the Property 3 (correctness), we define the assertion given below.
This assertion examines if a burned asset remains in the burn address, is claimed
by the recipient, or is reclaimed by the sender, represented by [(pBurned − >
[](burnValueExists || pClaimed || pReclaimed))]. Verification confirms that a
burned asset consistently stays in its burn address throughout the process.

#assert CrossChains |=
[] (pBurned −> [] (burnValueExists | | pClaimed | | pReclaimed)) ;

We define below two assertions to check strong atomicity (Property 4) and
week atomicity (Property 5) atomicity:

#assert CrossChains |= [] (rClaimed | | senderReclaimed)) ;
#assert CrossChains |= [] (protocolCompleted −>

(rClaimed | | senderReclaimed)) ;

The first assertion checks strong atomicity using (recipientClaimed || sender-
Reclaimed). The verification of Property 4 fails as PAT found a counterexample
event sequence, which we analyse the explain below.

6 Pillai et al.

5.1 Discussion

Why general atomicity not hold? Strong atomicity requires all related opera-
tions to succeed. In cross-blockchain contexts, this means assets are burned by
the sender and claimed by the recipient. However, distributed environments face
potential network partitions or system crashes, preventing participants from en-
gaging. Apart from technical issues, intentional recipient inaction or incorrect
asset burns by the sender can also compromise strong atomicity.

Cross-blockchain operators facilitate transactions for multiple self-interested
parties. A single party’s actions can have intricate impacts on others. Given
the potential for malicious or irrational behaviour, the assumption is that both
sender and recipient act in mutual interest. The sender burns the asset, and
the recipient mints an equivalent asset. To validate weak atomicity, we use the
second assertion (Property 5).

Property 5 (weak atomicity) assumes that if the sender burns the asset, the
recipient must mint it. This is expressed using the second assertion (protocol-
Completed − > (RecipientClaimed || senderReclaimed)). We introduce protocol-
Completed to address network and node failures. This property holds.

6 Conclusion and future works

The current model focuses on verifying burn-before-claim (Property 1), double-
spending (Property 2), correctness (Property 3), and both strong (Property 4)
and weak atomicity (Property 5). While detailed transaction and block data
structures are not considered, we model transaction verification’s essential op-
erations. Detailed transaction verification will be addressed in future work that
incorporates a merge mining process.

References

1. B. Pillai, K. Biswas, Z. Hóu, and V. Muthukkumarasamy, “Burn-to-claim: An asset
transfer protocol for blockchain interoperability,” Computer Networks, vol. 200, p.
108495, 2021.

2. J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating specification and programs for
system modeling and verification,” in 2009 Third IEEE International Symposium
on Theoretical Aspects of Software Engineering. IEEE, 2009, pp. 127–135.

3. J. Sun, Y. Liu, J. Dong, and J. Pang, “Towards flexible verification under fairness,”
in CAV ‘09: 21th International Conference on Computer Aided Verification, 2009.

4. C. A. R. Hoare, “Communicating sequential processes,” Communications of the
ACM, vol. 21, no. 8, pp. 666–677, 1978.

5. B. Pillai, K. Biswas, Z. Hóu, and V. Muthukkumarasamy, “The burn-to-claim cross-
blockchain asset transfer protocol,” in 2020 25th International Conference on En-
gineering of Complex Computer Systems (ICECCS). IEEE, 2020, pp. 119–124.

