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Abstract—Data sharing is vital to breaking data silos and maximizing information value. However, practical implementations often rely
on cloud servers, raising trust concerns that prevent Data Centers (DCs) from sharing sensitive data. Motivated by the need to ensure
both the quality and quantity of shared data, we proposed a reputation-driven, auditable data-sharing model that uses blockchain to
enable secure, distributed sharing. Our model faces two primary challenges: (1) ensuring data quality in distributed settings, where
existing cloud-based audit schemes requiring high computational resources are unsuitable, and (2) promoting active sharing of scarce
data, where current incentive mechanisms fail to encourage proactive participation. To address these, we introduce the Secure
Auditable Sharing Protocol (SASP) and the fair Reputation-driven Proactive Sharing Mechanism (RPSM). SASP enhances ElGamal
encryption and integrates efficient hashing techniques for privacy-preserving audits of ciphertext integrity and deduplication without
relying on costly bilinear mappings. RPSM tackles the challenge of selfish DCs by incorporating a committee mechanism and
consensus algorithm, ensuring fair incentives to encourage active participation. Our implementation and real-world case study
demonstrate that the proposed model effectively guarantees the quality and quantity of shared data, offering a novel solution to the
data silo problem in distributed architectures.

Index Terms—Data Sharing, Integrity and Deduplication Audits, Reputation-Based Mechanism, Permissioned Blockchain, IND-CPA
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1 INTRODUCTION

Cohort research is instrumental in uncovering the etiology
of diseases, forming the foundation for many advancements
in medical science [1]. Cohort data centers (DCs), such as
those hosted by hospitals and research institutions [2], play
a pivotal role in storing and managing such valuable data.
Facilitating cross-center data sharing is crucial to enhanc-
ing the utility of cohort data and maximizing its research
potential.

However, the highly sensitive, private, and scarce nature
of medical cohort data creates significant barriers to sharing.
DCs are often reluctant to share their data beyond internal
usage due to privacy and security concerns, resulting in
the so-called “data island” dilemma. In this scenario, data
remains siloed within individual DCs, preventing broader
collaboration and hindering scientific progress.
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Notably, since 2018, only a single institution has made its
cohort data publicly available [2], underscoring the severity
of this issue. Similar challenges exist in other domains, such
as finance and government, where high-value, sensitive data
faces comparable constraints [3]–[5]. This lack of sharing
exacerbates the trust deficit in these sectors and limits the
potential for large-scale, impactful research [6]–[9].

Motivation. Addressing the “data island” dilemma
requires a robust solution that simultaneously ensures the
quality and quantity of shared data. Current approaches
predominantly focus on one aspect while neglecting the
other, leading to notable deficiencies.

For one thing, ensuring the quality of shared data is
critical, yet distributed architectures lack effective solu-
tions for secure and efficient data auditing. While en-
cryption is widely adopted to protect sensitive data [10]–
[15], sharing ciphertext alone raises concerns about data
integrity and relevance [16]. Existing ciphertext auditing
schemes [14], [17]–[20] are often computationally intensive
and tailored to centralized cloud storage, rendering them
unsuitable for distributed environments. There is an urgent
need for lightweight and secure auditing mechanisms tai-
lored for distributed architectures.

For another, effective data sharing also requires a fair
and motivating incentive mechanism. Current reputation-
based schemes [21]–[23] encourage minimal compliance
rather than proactive sharing, as penalty mechanisms alone
fail to incentivize meaningful contributions [23], [24]. In-
novative mechanisms that reward active participation and
value creation are essential, particularly in scenarios involv-
ing high-value, scarce data.
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Proposed Approach. Considering the significant value
and privacy concerns of data in healthcare, finance, and
government, we present a comprehensive data-sharing
model that addresses both quality and quantity challenges
through cryptographic innovation and incentive mechanism
design. Our solution leverages Permissioned Blockchain
(PB) technology, harnessing its decentralization, immutabil-
ity, and auditability properties [25]–[29]. The PB architec-
ture—enhanced by certificate authentication and smart con-
tract capabilities—provides an ideal foundation for regu-
lated data sharing environments [30]. Our technical contri-
bution unfolds in two complementary dimensions:

First, we introduce the Secure Auditable Sharing Pro-
tocol (SASP), which replaces computationally expensive
bilinear mapping-based auditing with an enhanced ElGa-
mal cryptosystem [31] integrated with efficient hashing
and locality-sensitive hashing techniques [32]. SASP enables
ciphertext deduplication and integrity verification while
maintaining encrypted data storage locally—only tags and
signatures require blockchain storage, significantly reducing
DC overhead.

Second, we develop the Reputation-driven Proactive
Sharing Mechanism (RPSM), which establishes fair ac-
cess policies through dynamic reputation matching and
committee-based incentive structures. Drawing inspiration
from reputation mechanics [24], [33]–[35], RPSM incorpo-
rates a novel Proof-of-Reputation (PoR) consensus proto-
col—a Proof-of-Stake variant [36] where reputation values
replace monetary stakes in committee elections (formally
defined in Section 5.2.3).

The integration of SASP and RPSM within a PB frame-
work creates a complete reputation-backed auditable shar-
ing model that facilitates secure circulation of sensitive data
across healthcare, financial, and governmental domains.

Model Overview. Our architecture maintains sensitive
data in encrypted form at source DCs while storing verifi-
cation tags on-chain. Participants earn reputation through
successful data sharing activities, with access privileges
governed by reputation-based thresholds. Blockchain in-
frastructure ensures audit trail immutability and automates
smart contract-based verification of data deduplication and
integrity.

We validate our approach through both theoretical anal-
ysis and practical implementation: extensive security proofs
demonstrate formal guarantees, while real-world case stud-
ies confirm practical viability in resolving data quality and
quantity dilemmas in sharing scenarios. Our model has up
to 75.44% reduction in theoretical computation cost on-chain
compared to existing schemes. Our case study in real-world
demonstrates that our model can perform approximately
1000 audits in 2 seconds with about 25% computing power.

Contributions. Our contributions are as follows:
• For scenarios ensuring data residency within DCs, we

propose a fully controlled distributed data sharing model,
enabling proactive incentives and data quality auditing.

• To ensure the quality of data circulating within the model,
we propose a secure, auditable data sharing protocol
called SASP, which provides ciphertext deduplication and
integrity auditing capabilities for the model.

• To ensure the quantity of data circulating within the
model, we propose a fair reputation-driven proactive

TABLE 1
Comparison of our proposed model with existing works

Properties [11] [15] [12] [22] [13] [18] [14] [20] Ours
Decentralization store ✓ ✓ ✓ ✔

Data protection ✓ ✓ ✓ ✓ ✓ ✓ ✔

Data sharing ✓ ✓ ✓ ✓ ✓ ✔

Deduplication auditing ✓ ✓ ✔

Integrity auditing ✓ ✓ ✔

Restricted access ✓ ✓ ✔

Incentive sharing ✓ ✔

SC evaluation ✓ ✓ ✓ ✓ ✓ ✔

sharing mechanism called RPSM, which provides proac-
tive incentives for data sharing within the model.

• Our reputation-backed auditable sharing model has un-
dergone extensive security and performance analyses, in
particular a real-world case, which results validate its
effectiveness and feasibility.
Organizational Structure. This paper organizes its tech-

nical narrative through a logically structured progression:
• Section 2 establishes the foundational context of dis-

tributed sharing models and security threats that inform
our threat model design in Section 4

• Section 3 formalizes the mathematical assumptions and
cryptographic primitives that directly enable the security
proofs in Section 6

• Section 4 defines the system model and six formal se-
curity objectives that govern the design requirements
implemented in Section 5

• Section 5 details SASP and RPSM mechanisms with ex-
plicit technical dependencies on the cryptographic foun-
dations from Section 3

• Sections 6-7 provide formal proofs for all definitions in
Section 4 and computational validation of the implemen-
tations from Section 5

• Section 8 demonstrates real-world validation requiring
integration of the theoretical foundations and practical
implementations from preceding sections

• Sections 9-11 synthesize findings from all technical sec-
tions to discuss limitations and future directions

2 BACKGROUND AND RELATED WORK

This section reviews three critical foundations for our
model: distributed data-sharing models (Section 2.1),
blockchain fundamentals (Section 2.2), and security threats
(Section 2.3). These collectively establish the technical con-
text essential for comprehending the problem formulation
in Section 4 and the subsequent model design in Section 5.

2.1 Distributed Data-Sharing Models
Distributed data-sharing models address limitations of ce-
tralized architectures. Current research bifurcates based on
data ontology accessibility:
• Model-Parameter Sharing (e.g., Federated Learn-

ing) [37]: Prioritizes data sovereignty by sharing model
parameters instead of raw data, enabling collaborative
model training while maintaining data control. However,
compared to raw data sharing, it leads to suboptimal
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model performance and is inherently vulnerable to pri-
vacy leakage. Moreover, it lacks effective mechanisms for
auditing the quality of data used in local model updates.

• Data-Ontology Sharing (e.g., Decentralized Data Mar-
ketplaces) [38]: Focuses on enabling data confidentiality by
distributed infrastructures (e.g., cloud/edge nodes) [12],
[20], [21] to facilitate targeted data sharing and permit
controlled access to the data entities. However, it faces
critical challenges in incentivizing and privacy-preserving
for sensitive cohort data sharing.

2.2 Blockchain Foundations
Blockchain leverages decentralization [27], immutability [26],
and programmability [28] for secure sharing platforms [11],
[12], [15], [22]. The intrinsic cryptographic primitives fur-
ther reinforce data security guarantees. Existing research
focuses on enhancing data confidentiality through advanced
cryptographic methods such as: attribute-based encryp-
tion for fine-grained access control [10], [39], proxy re-
encryption to enable secure delegation of access [11], [12],
[40], and identity-based encryption for hierarchical access
structures [13], [14]. Despite their privacy-preserving effi-
cacy, these methods inadequately address ciphertext auditing,
secure deduplication, and computational efficiency [16]. Scal-
ability enhancements like sharding [41], zero-trust frame-
works [42], enhanced consensus [23], [24], [43] et. also
lack mechanisms for data integrity audit and collaboration
incentivization. Consequently, two critical research dimen-
sions emerge: Data-Oriented Security Protocols and User-
Oriented Incentive Mechanisms.

2.2.1 Data-Oriented Secure Sharing Protocols
Secure sharing protocols focus on protecting data confi-
dentiality and ensuring data integrity by various cryp-
tographic techniques. Attribute-based and proxy re-
encryption schemes enable secure data sharing but intro-
duce significant computational overheads [11], [12], [22].
Identity-based encryption facilitates scalable access control
but lacks provisions for deduplication [13]. Integrity audits
for cloud-stored data rely on bilinear mappings, which incur
high computational costs and fail to address deduplica-
tion of shared data [18]–[20], while [44] employs Merkle
tree to reduce auditing overhead, but this approach incurs
security compromises. Emerging solutions, such as lattice-
based Merkle tree constructions [45], address post-quantum
integrity proofs but overlook secure deduplication mech-
anisms. Notably, only Tian et al. [14] addressed blockchain-
stored data deduplication auditing — albeit with pairing op-
erations unsuitable for resource-constrained environments.
These gaps underscore the critical need for lightweight,
comprehensive protocols in high-value data sharing.

2.2.2 User-Oriented Incentive Mechanisms
Fair incentive mechanisms aim to address the reluctance of
participants to share sensitive data. Token-based schemes,
which face regulatory and legal uncertainties [46]. Penalty-
driven schemes, which discourage proactive sharing [47].
Reputation mechanisms, widely used in peer-to-peer and
blockchain networks to foster trust [33], [35], [48], and
have been integrated with blockchain systems to enhance

TABLE 2
Description of notations

Symbols Description
DC Data center for medical cohort data
RV,DV,SV Reputation value, Data volume, Shared data volume
BDC, SDC Big scale DC and small scale DC
PB,SC Permissioned blockchain and Smart contract
PoR Proof of reputation consensus
SASP Secure auditable share protocol
RPSM Reputation-driven proactive sharing mechanism
p, q, λ Large prime q of length λ and p = 2q + 1 be a safe prime
Z∗
p,Z∗

q The multiplicative groups of integers modulo p and q

G, g A multiplicative subgroup of Z∗
p with prime order q and its generator

H() Hash function mapping {0, 1}∗ to Z∗
q

Enc(), Dec() Encryption and decryption algorithms
Sig(), V er() Digital signature and verify algorithms
DCi, ski, PKi The DC uniquely identified by i and its public-private key pair
D,Dsk, DPK The cohort data D and its public-private key pair
Bi, Ci, Ti The i-th block of D, its ciphertext and its tag
{B}, {C}, {T} The set of Bi, Ci, Ti

ObjD, THD The generated ID of D ant its access threshold
Rt

id Reputation value of DCid at round t
Nt, nmt Number of current DCs and committee members at round t
THt

com Threshold for becoming a committee at round t
α, β, σ Penalty factor, decay factor and repetition rate
T agList Shared data tags set stored on-chain
Policy Access thresholds set stored on-chain
|D|,|G| Length of shared data D and element in G
H Evaluation of hash function
E Evaluation of exponent operation
P Evaluation of bilinear mapping operation

trustworthiness and incentivize data sharing [21]–[24]. Crit-
ically, none integrate data quality verification with incentive
allocation—essential for high-value cohort data.

2.3 Security Threats
Models confront two threat levels at the network and
architectural levels. Network-level Attacks compromise
system availability through Distributed Denial of Service
attacks [49], mitigated by rate limiting with request throt-
tling [35]; and Collusion attacks [50], addressed via incentive
mechanisms [24], [34], [43]. Blockchain-specific Attacks
threaten data integrity via Replay attacks [51], prevented
by timestamp-based nonce verification [14], [17]; and Sybil
attacks [52], countered through identity generation chal-
lenges [43]. Critically, existing defenses lack auditing capa-
bilities for shared data, allowing risks like duplicated/invalid
ciphertexts to persist undetected. Concurrently, incentive
mechanisms remain vulnerable to free-riding behaviors, fur-
ther discouraging high-value data sharing.

A comparative summary is in Table 1 Unlike cloud-
focused schemes, we address sensitive cohort data via dis-
tributed storage, restricted access, and incentives. Perfor-
mance analysis (Section 7) confirms acceptable overhead.

3 PRELIMINARIES
In this section, we briefly introduce the formal mathematical
assumptions and cryptographic foundations essential for
our model’s security guarantees (Section 6) and operational
mechanisms (Section 5). Table 2 standardizes notation.

3.1 Assumptions
3.1.1 Decisional Diffie-Hellman (DDH)
Let G be a multiplicative subgroup of Z∗

p with prime
order q and g be a generator of G. For any Probabilis-
tic Polynomial Time (PPT) adversary A, the DDH as-
sumption [53] is: given g, gx, gy, gz ∈ G where x, y, z ∈
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Z∗
q , |Pr [A(g, gx, gy, gz) = 1] − Pr [A(g, gx, gy, gxy) = 1]| ≤

negl(λ) is negligible in the security parameter λ. That is, the
tuples (g, gx, gy, gz) and (g, gx, gy, gxy) are computationally
indistinguishable.

3.1.2 IND-CPA Security under DDH

Building upon the DDH assumption, we define IND-CPA
security for our encryption scheme:

Security Game:

1) C runs Init()→ Para = (p, q, λ, g,H), sends to A
2) A chooses target DC∗

id

3) C computes (sk∗, PK∗)← DC− KeyGen(1λ, index∗)
4) A submits m0,m1 with |m0| = |m1|
5) C picks b $←− {0, 1}, computes C∗ ← Enc(PK∗,mb)
6) A makes adaptive oracle queries (excluding challenge

ciphertext)
7) A outputs b′, wins if b′ = b

Definition (IND-CPA Security): Our encryption scheme
is IND-CPA secure under the DDH assumption if for all PPT
adversaries A, ∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ)

3.1.3 Data Center Thirsty and Restrictive (DCTR)

Let {DCi} denote a set of data centers with heterogeneous
data volumes. For any DCi possessing data volume DVi ∈
Z, the DCTR assumption is that DCi desires to increase DVi,
potentially limit the increase of other DCs’ DVs, the fastest
way to increase DVi is to access other DCs’ shared data.

3.2 Locality-Sensitive Hashing

Given a distance metric d, e.g. Euclidean distance, a
Locality-Sensitive Hashing (LSH) function hashes close
items to the same hash value with higher probability than
the items that are far apart. We use the common p-stable
LSH function [32] to map the plaintext block to an integer,
described as LSH(·) → v ∈ Z∗

p, where, LSH(·) is (r, p)-
sensitive if any two points s, t satisfy:

• If d(s, t) ≤ r, then Pr[LSH(s) = LSH(t)] ≥ p
• If d(s, t) ≥ r, then Pr[LSH(s) = LSH(t)] ≤ p

where d(s, t) is the distance between the point s and t.

3.3 Bloom filter

A Bloom filter [54] is an m-bit array initialized with all bits
set to 0. Given a set S, the Bloom filter uses k independent
hash functions to insert the i-th element si ∈ S by setting
all corresponding hash positions in the array to 1. If all
queried positions are 1, the element s is considered to exist
in the filter with a false positive probability approximated

by PrFP ≈
(
1− e−

k|S|
m

)k
, where |S| denotes the cardinality

of set S. The filter provides an efficient membership test
operation Ins(·) → {0, 1}, where 1 indicates probabilistic
membership and 0 guarantees non-membership.

3.4 ElGamal Cryptosystem

The ElGamal scheme [31] is a discrete logarithm-based pub-
lic key cryptosystem and signature protocol. The algorithm
comprises the following components:
• KeyGen(1λ)→ (PK, sk). On input security parameter λ,

an element sk ∈ Z∗
q is randomly selected as the private

key and public key PK ≡ gsk are computed. Publish
PK.

• Enc(PK,m) → c. With the input of a message m and
PK, an element ρ ∈ Z∗

q is randomly selected, and calcu-
late y1 ≡ gρ, y2 ≡ m · PKρ, then output the ciphertext
c := (y1, y2).

• Dec(sk, c) → m. With the input of sk and ciphertext c ,
the message m is outputed by calculating the m′ ≡ y2 ·
y−sk
1 ≡ m · PKρ/gρ·sk.

• Sig(sk,m) → π. With the input of sk and m, an element
k ∈ Z∗

q is randomly selected, and calculate r ≡ gk, s ≡
k−1(H(m)− sk · r) mod q. Output π := (r, s).

• Ver(m,π) → 1/0. With the input of m and sign π, the
verification result “1” or “0” is outputed by calculating

whether gH(m) ?≡ PKr · rs.
Note that we will denote a ≡ b implies a ≡ b mod p to

omit the mod p operation to reduce clutter.

4 PROBLEM FORMULATION

Building upon the background from Section 2 and the cryp-
tographic foundations from Section 3, this section formally
establishes our problem formulation through presenting the
system model and design goals, defines adversarial capabil-
ities within our threat model, articulates six formal security
definitions that govern our security proofs in Section 6,
introduces the SASP and RPSM core components whose
detailed implementations are elaborated in Section 5.

4.1 Model Overview and Design Goals

4.1.1 Model Overview
As illustrated in Fig. 1, the model consists of four major
entities:
• Data Center (DC) is the centralized cohort data centre

and owns the cohort data, categorized into Big Volume
DCs (BDCs) and Small Volume DCs (SDCs) based on data
volume. DCs are evaluated by Reputation Values (RVs),
which determine their roles and access privileges.

• Permissioned Blockchain (PB) is a blockchain where any
DC needs permission to join. Participating DCs can com-
municate securely through “channels”, while the formed
P2P network can facilitate data transmission using the
gRPC1 protocol. The blockchain stores sharing tags and
policies, ensuring immutability and traceability.

• Committee is a dynamic group Com of high-RV DCs
selected via the Proof of Reputation (PoR) consensus in
each round. Committee members enjoy privileged access
to shared data, bypassing access policies, while Com
entry thresholds (THcom) limit participation.

• Smart Contract (SC) is the autonomous executables de-
ployed on the blockchain , with the Audit SC performing

1. https://github.com/grpc/grpc-go.git

https://github.com/grpc/grpc-go.git
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Fig. 1. Reputation-backed auditable cohort data sharing model via permissioned blockchain. This figure illustrates that Parts 1/2/4 demonstrate the
RPSM incentivizing DCs through dynamic reputation values, while Parts 3/5 implement the SASP via an enhanced ElGamal cryptographic scheme.

integrity and deduplication checks during data sharing
and access phases.

As shown in Fig. 1, the proposed model consists of five
parts. In Part-1, by the PoR consensus, all RVs are updated,
and committee members and a block generator are elected
based on RVs. In Part-2, DCs’ RVs are determined for this
round, reflecting contributions from previous rounds. Com-
mittee privilege can be accessed without policy restrictions,
while two-factor decay prevents dominance and promotes
equity of opportunity. In Part-3, SASP enables secure data
sharing through an improved ElGamal algorithm, combined
with tags {T} for deduplication and integrity auditing.
Upon successful auditing with the Audit SC, {T} and policy
are recorded on-chain, completing the sharing process and
rewarding the DC with increased RV. Part-4 dynamically
updates RVs based on contributions at the next round,
rewarding active DCs and maintaining system fairness. In
Part-5, committee members bypass policy checks if their
RV exceeds the access threshold THD , while non-committee
members must satisfy both the threshold and policy require-
ments. Upon validation, encrypted data {C} is shared via
an off-chain P2P network, Upon successful auditing with
the Audit SC indicates completion of data access.

4.1.2 Design Goals

Our model aims to achieve the following design goals:
G1: Active Sharing. [24] The model must guarantee that

the real-world participation motivation of Data Centers
(DCs) seamlessly aligns with our feasibility assump-
tions, fostering active engagement in the practice of
data sharing.

G2: Stability and Fairness. [34] The model must ensure a
consistent reputation evaluation system across all DCs,
and the reputation values stabilize to a constant after
multiple rounds.

G3: Repetition and Integrity Auditing. [20] The model
should guarantee the preservation of each shared
data’s uniqueness and the assurance of consistency in
the accessed data.

G4: Security and Privacy Protection. [22] The model
should ensure that shared data cannot be inferred
from published on-chain data and allow shared data
to be decrypted solely by eligible requesters through a
cryptographic signature scheme.

G5: Low Performance Overhead. [44] The model should
minimize the overhead of data-sharing procedures, in-
cluding data encryption and decryption, storage, and
communication between data owners and requesters.

G1 to G4 will be proven in detail in the Section 6 and 8,
while G5 will be proven in detail in the Section 7.

4.2 Threat Model and Adversarial Behavior

We define three adversarial roles within our permissioned
blockchain environment, where Data Centers exhibit vary-
ing trust levels:

• Fully Honest DCs : Adhere strictly to protocol specifi-
cations with no deviation from prescribed procedures.
These entities maintain complete data confidentiality
and execute all cryptographic operations correctly.

• Semi-Honest DCs (Passive Adversaries) : Adhere to pro-
tocols while attempting to infer private information
from public blockchian records.
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• Malicious DCs (Active Adversaries) : Engage in system-
atic adversarial behaviors across three attack surfaces
aimed at undermining the confidentiality, robustness or
fairness of the data sharing process:
– Data Layer Attacks: such as (a).Submit dupli-

cate/incomplete/falsified ciphertext to distort audit-
ing results. (b).Send incomplete decryption keys to
disrupt data access. (c).Conduct chosen-plaintext at-
tacks on shared data to breach data confidentiality.

– Network Layer Attacks: (a).Mount Distributed De-
nial of Service attacks [49] on critical protocol phases.
(b).Execute Collusion attacks [50] to manipulate rep-
utation scores. (c).Perform Replay attacks [51] on
consensus messages. (d).Launch Sybil attacks [52]
with forged identities.

– Model Honesty Attacks: Attempt to exploit the
reputation-driven proactive sharing mechanism by
launching the multiple attacks described above to
distort model honesty and, ultimately, compromise
model fairness and stability, thereby breaking the
DCs’ motivation to actively participate in sharing.

Our model incorporates mechanisms to address these
threats within the constraints of a permissioned blockchain
environment. We assume that PB’s CA authentication
and permissioned consensus inherently limit susceptibility.
While the current focus is on ensuring model security and
privacy, robustness, and fairness, further exploration into
susceptibility against advanced attacks is outlined as part of
our future work. Security analyses in Section 6 and practical
evaluations in Section 8 demonstrate the model’s resilience
against these identified threats in data-sharing scenarios.

4.3 Formal Security Definitions
To ensure our system meets the aforementioned design
goals (G1 to G4), we define five additional formal security
definitions (complementing the IND-CPA security defined
in Section 3), where adversaries’ capabilities align with the
threat model in Section 4.2 and their corresponding security
proofs are provided in Section 6.

4.3.1 Data Privacy
Adversarial Capabilities:

• Full access to {Ti}, π, policy, PK on-chain.
• Intercepts off-chain ciphertext {C}.
• Knows statistical patterns of data sharing.

Definition 2 (Data Privacy): The model satisfies data privacy if
for all PPT adversaries A and any shared data D,

Pr[A({T}, PK) = Bi] ≤ negl(λ) ∀i

and

|Pr[A(PK) = attr(DC)]− Pr[random]| ≤ negl(λ)

4.3.2 Reputation Stability
Definition 3 ((α, β)-Stability): Let Rt

i denote the reputation of
honest DCi at epoch t. The model is (α, β)-stable if

Rmin ≤ Rt
i ≤ Rmax where

Rmax =
DVmax

1− β
Rmin = 0

with DVmax as the maximum data volume per epoch.

4.3.3 Fairness
Definition 4 (δ-Fairness): The model satisfies δ-fairness if for
all honest DCs i, j:∣∣∣∣E[∆Ri]

Si
− E[∆Rj ]

Sj

∣∣∣∣ ≤ δ,

where ∆Ri is expected reputation change, and Si is the number
of sharing attempts (successful or failed) by DCi in the epoch.

4.3.4 Proactive Incentive
Definition 5 (γ-Proactive Incentive): The model provides
γ-proactive incentive if for all DC types:

E[∆R|Share]− E[∆R|NotShare] ≥ γ ·Rmax

where γ > 0 is the minimum reputation incentive ratio, and
∆R is the reputation change per round.

4.3.5 Honesty Incentive
Definition 6 (η-Honesty Advantage): The model provides
η-honesty advantage if:

lim
t→∞

E[Rhonest
t ]

E[Rdishonest
t ]

≥ 1 + η

for some η > 0, where Rt is the reputation at round t.

4.4 Model Core Components
To fulfill these security goals, we design two core compo-
nents: SASP and RPSM for our model.

4.4.1 Secure Auditable Sharing Protocol
Based on the cryptosystem building on the ElGamal algo-
rithm and Locality-Sensitive Hashing (LSH) function intro-
duced in Section 3, our security auditable sharing protocol
at the block level consists of the following seven functions
(Init, KeyGen, Enc, Dec, TagGen, Sig, Ver) and three inter-
active actions (Share,Audit, Access).
• Init() → Para: Returns system parameters Para =
(p, q, λ, g,H).

• KeyGen(1λ, index) → (sk, PK): With the input of a
security parameter λ, an element index ∈ Z∗

q returns the
key pair (sk, PK).
– DC-KeyGen(1λ, index) → (sk, PK): For data cen-

ter DCid characterized by index, compute: sk ←
H(index), PK ≡ gsk.

– B-KeyGen(1λ, index) → (sk, PK): For data D :=
B1||B2|| · · · ||Bn, the i-th data block Bi with indexi ←
LSH(Bi), compute: sk ← H(indexi), PK ≡ gsk.

– D-KeyGen(1λ, index) → (sk, PK): For full data D :=
B1 ∥ · · · ∥ Bn, compute: index ← H(index1 ∥ · · · ∥
indexn), sk ← H(index), PK ≡ gsk.

• Enc(PK,m)→ C : With the input of PK and a message
m and output the ciphertext C .

• Dec(sk, C)→ m: With the input of sk and the ciphertext
C and output the message m.

• TagGen(D,C) → {T}: With the input of the data D :=
B1||B2|| · · · ||Bn and corresponding ciphertext block C :=
C1||C2|| · · · ||Cn , output the tag set {Ti} where i ∈ [0, n].

• Sig(sk,m) → π: With the input of sk and a message m
and output the sign π.
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• Ver(m,π)→ 1/0: With the input of m and the sign π and
output the verification result 1/0.

• Share({T}, π, policy)→ Obj/0: With the input of tag set
{T} of data to be shared, corresponding signatures π and
an access policy policy by DCid, the PB returns shared
result Obj or 0 to DCid after determining audit results,
and updates the DCid’s RV based on the results.

• Audit({T}, n) → 1/0: With the input of tag set {T} and
the size n of the set, PB performs repetition or integrity
audits by SC and the on-chain records T agList and
returns audit results 1/0.
– VerfR({T}, n) → 1/0: Input ∀Ti ∈ {T} to audit

repeatability, considering the probabilistic error of the
Bloom filter, SC returns the 0 iff the number of times
that Ins(Ti) = 0 is over σ · n (σ is the repetition rate).

– VerfI(T ′
0, 1) → 1/0: Input the tag T ′

0 of the obtained
ciphertext to audit integrity, and SC returns the 1 iff
that T ′

0 == T0 ∈ T agList.
• Access(PK,Objid)→ {C}/0: With the input of PK and

the data ID Objid to be accessed, returns the correspond-
ing ciphertext set {C} iff it passes the policy and access
thresholds THid.

4.4.2 Reputation-driven Proactive Sharing Mechanism
Our reputation-driven proactive sharing mechanism works
in rounds, and the time interval for each round is fixed.
• Init RVs: At round t, let {DC}t := {DC 1, · · · ,DCN t}

denote the set of N t data centers in the channel. Each DC i

has a reputation value Rt
i maintained by the blockchain.

Newly joined DCs initialize with Rt
new := 0.

• Invoke RVs: When DC i successfully shares object Objid,
the access threshold THid is set as THid := ⌈Rt

i⌉, access
SC access() can be invoked iff DC j satisfies Rt

j ≥ TH id.
• Update RVs: The reputation value Rt

i of DCi will be
increased upon successfully sharing and being accessed,
but decreased upon failed sharing and access with the
penalty factor α, then fixed decay β at the start of each
round.

• Form Committee: Within a specific time period, part of
DCs over THt

com were selected to form the committee by
our PoR consensus. Note that we require the committee
to represent the vast majority; therefore, similar to [55],
the committee size in each round is to be no more than
nmt := ⌈log2 N t⌉.

• Record RVs: Finally, a block generator (selected via PoR)
writes the Rt, the THt+1

com, and nmt committee members
into the blockchain at the t-th round end. System state
satisfies: 1︸︷︷︸

generator

+(nmt − 1)︸ ︷︷ ︸
committee

+(N t − nmt)︸ ︷︷ ︸
normal DCs

≡ N t.

5 MODEL DESIGN

To fulfill these design goals (G1-G5) from Section 4.1.2, this
section details the technical realization of our integrated
model. Section 5.1 presents SASP’s three-phase workflow
derived from the five parts in Fig. 1 and illustrated in
Fig. 2: Initialization (cryptographic setup), Data sharing
(encryption/tag generation), and Data access (integrity ver-
ification). Section 5.2 designs RPSM’s reputation mechanics
with two-factor reputation updates, committee privileges,
and our PoR consensus.

5.1 Our secure auditable sharing protocol

5.1.1 Parameter Initialization - Init()→ Para

In Step a1 in Fig. 2, the Certificate Authority (CA) of PB
chooses a large prime q of length λ and the safe prime
p = 2q + 1, then generates a cyclic multiplicative subgroup
G ⊂ Z∗

p of q where g is a generator of G, and a hash function
H(), where H : {0, 1}∗ → Z∗

q . Public parameters Para =
(p, q, λ, g,H) are written to the blockchain. PB maintains
two immutable on-chain records T agList,Policy, which
are used to store shared data tags and corresponding access
thresholds, to support repetition and integrity auditing of
shared data to ensure the quality.

5.1.2 DC Initialization - KeyGen(1λ, index)→ (sk, PK)

In Steps a2-4, for new data center DCa, it is characterized by
CA in three aspects: its name name, located address addr
and its coding of the unified credit identifier code, CA com-
putes anti-Sybil index: index ≡ H(name ∥ addr ∥ code).
By randomly choosing rv ∈ Zq

∗, CA runs DC-KeyGen to
generate DCa’s key pair (ska, PKa), where ska ≡ index·rv
mod q, PKa ≡ gska , then to publish the PKa as the id of
DCa and to initialize reputation value Rt

a ← 0.

5.1.3 Data Sharing and Deduplication Filtering
In Steps b1-8, when a data center DCb wants to share the
plaintext data which divided as D := B1||B2|| · · · ||Bn, it
performs the following:
The Step b1 is a simple data quality validation before calling
the smart contract Share(·), that is, for each block Bi, the
corresponding index indexj := LSH(Bi) is satisfied as j ==
i, which avoids duplication of content in the shared data
itself for G3.
The Steps b2-3 generate the key pair.

• Block keys generated by B-KeyGen: skBi ≡ H(indexi),
PKBi ≡ gskBi .

• Data keys generated by D-KeyGen: skD ≡
H(index1|| · · · ||indexn), PKD ≡ gskD .

The step b4 has three actions. The first is to encrypt block-
level data for G4. For the i-th block Bi, according to the Enc
with the randomly choosing ri ∈ Zq

∗, the corresponding
ciphertext Ci is computed as follows:

Ci ≡ (gri || Bi · PKri
D), where i ∈ [1, n]. (1)

The second is to generate the set of shared data D’s tags
for G3. Considering the ciphertext storage overhead, we
map it first. By TagGen, with plaintext D and corresponding
ciphertexts {C}, we have{

Ti ≡ PKBi

T0 ≡ H(H(C1)|| · · · ||H(Cn))
, where i ∈ [1, n]. (2)

The final step signs the tags {T} of shared data D’s
for G4. In order to validate data faster and more securely,
and to ensure the validity of decryption, considering that
a signature uniquely corresponds to a piece of data, we use
the secret key skD of D and the secret key skb of DCb, which
first generate k := H(skD), and the signature π of {T} is
generated using Sig as follows:

π ≡
(
gk ,

(
H({T})− skb · gk

)
· k−1 mod q

)
. (3)
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𝐷𝐷𝐶𝐶𝑏𝑏

𝑅𝑅𝑏𝑏𝑡𝑡

𝑃𝑃𝑃𝑃

On-chain Records

𝐷𝐷𝐶𝐶𝑐𝑐

𝑅𝑅𝑐𝑐𝑡𝑡

a1. Initialize 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝒄𝒄
{𝑃𝑃𝐾𝐾𝒄𝒄, 𝑠𝑠𝑘𝑘𝒄𝒄}

𝑅𝑅𝒄𝒄𝑡𝑡

a2. Send unique identification 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝒃𝒃

a4. Initialize 𝑹𝑹𝒃𝒃𝒕𝒕

b1. Data 𝐷𝐷 ≔ 𝐵𝐵1||⋯ ||𝐵𝐵𝑛𝑛b2. Send all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 of block 𝐵𝐵𝑖𝑖
b3. Generate {𝑃𝑃𝐾𝐾𝐵𝐵𝑖𝑖 , 𝑠𝑠𝑘𝑘𝐵𝐵𝑖𝑖}, {𝑃𝑃𝐾𝐾𝐷𝐷 , 𝑠𝑠𝑘𝑘𝐷𝐷}

Increase 𝑹𝑹𝒃𝒃𝒕𝒕 ↑

b4. 𝐄𝐄𝐄𝐄𝐄𝐄 𝑠𝑠𝑘𝑘𝐷𝐷,𝐵𝐵𝑖𝑖 → 𝐶𝐶𝑖𝑖
𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝑃𝑃𝐾𝐾𝐵𝐵𝑖𝑖 ,𝐶𝐶𝑖𝑖 → {𝑻𝑻}

b5. Send sign 𝜋𝜋, tag set {𝑻𝑻} ,
access 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐒𝐒𝐒𝐒𝐒𝐒 𝑠𝑠𝑘𝑘𝒃𝒃, 𝑠𝑠𝑘𝑘𝐷𝐷, {𝑻𝑻} → 𝜋𝜋

→ {𝑝𝑝, 𝑞𝑞, 𝝀𝝀,𝑔𝑔,𝐻𝐻}

b6. Verify 𝜋𝜋, audit {𝑻𝑻}

𝐕𝐕𝐕𝐕𝐕𝐕𝐟𝐟𝑅𝑅 𝑻𝑻 → 𝟏𝟏
𝐕𝐕𝐕𝐕𝐕𝐕 𝑷𝑷𝑲𝑲𝒃𝒃 , 𝑻𝑻 ,𝝅𝝅 &

𝐕𝐕𝐕𝐕𝐕𝐕𝐟𝐟𝑅𝑅 𝑻𝑻 → 𝟎𝟎
𝐕𝐕𝐕𝐕𝐕𝐕 𝑷𝑷𝑲𝑲𝒃𝒃 , 𝑻𝑻 ,𝝅𝝅 &

Decrease 𝑹𝑹𝒃𝒃𝒕𝒕 ↓

b6. Verify 𝜋𝜋, audit {𝑻𝑻}

Close 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺

b8. Return 𝑹𝑹𝒃𝒃𝒕𝒕

c1. Send access request {𝑃𝑃𝐾𝐾𝒄𝒄,𝑂𝑂𝑂𝑂𝑗𝑗𝐷𝐷}
c2. Confirmation of access

𝑹𝑹𝒄𝒄𝒕𝒕 ≤ 𝑻𝑻𝑯𝑯𝑫𝑫
Close 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑺𝑺𝑺𝑺

c3. Send {𝑃𝑃𝐾𝐾𝒄𝒄,𝑂𝑂𝑂𝑂𝑗𝑗𝐷𝐷} tag set {𝑇𝑇}

c4. 𝐄𝐄𝐄𝐄𝐄𝐄 𝑃𝑃𝐾𝐾𝒄𝒄, 𝑠𝑠𝑘𝑘𝐷𝐷 → 𝐶𝐶0 c5. Send {𝑪𝑪}
c6. 𝐃𝐃e𝐜𝐜 𝑠𝑠𝑘𝑘𝒄𝒄,𝐶𝐶0 → 𝑠𝑠𝑘𝑘𝐷𝐷

c7. 𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊 1𝜆𝜆, 𝑠𝑠𝑘𝑘𝐷𝐷 → {𝑃𝑃𝐾𝐾𝐷𝐷′, 𝑠𝑠𝑘𝑘𝐷𝐷′} then send (𝑃𝑃𝐾𝐾𝐷𝐷′ , 𝐶𝐶 )
c8. Verify 𝑃𝑃𝐾𝐾𝐷𝐷′

𝐕𝐕𝐕𝐕𝐕𝐕 𝑷𝑷𝑲𝑲𝑫𝑫′,𝝅𝝅 &
c8. Verify 𝑃𝑃𝐾𝐾𝐷𝐷′

𝐕𝐕𝐕𝐕𝐕𝐕 𝑷𝑷𝑲𝑲𝑫𝑫′,𝝅𝝅 & 𝐕𝐕𝐕𝐕𝐕𝐕𝐟𝐟𝐼𝐼( 𝐶𝐶 ) → 𝟎𝟎
Decrease 𝑹𝑹𝒃𝒃𝒕𝒕 ↓𝐕𝐕𝐕𝐕𝐕𝐕𝐟𝐟𝐼𝐼( 𝐶𝐶 ) → 𝟏𝟏

c9. Send confirmation result
c10. 𝐃𝐃e𝐜𝐜 𝑠𝑠𝑘𝑘𝐷𝐷,𝐶𝐶𝑖𝑖 → 𝐵𝐵𝑖𝑖

b7. Set access threshold 
then On-chain

𝑶𝑶𝑶𝑶𝒋𝒋𝑫𝑫 ≔ 𝑻𝑻 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝||𝑇𝑇𝐻𝐻𝐷𝐷
𝑻𝑻𝑯𝑯𝑫𝑫 ≔ 𝑹𝑹𝒃𝒃𝒕𝒕

𝑹𝑹𝒄𝒄𝒕𝒕 ≥ 𝑻𝑻𝑯𝑯𝑫𝑫 & 𝑫𝑫𝑪𝑪𝒄𝒄 ∈ 𝑪𝑪𝑪𝑪𝑪𝑪
Or 𝑹𝑹𝒄𝒄𝒕𝒕 ≥ 𝑻𝑻𝑯𝑯𝑫𝑫 & 𝑫𝑫𝑪𝑪𝒄𝒄 ∉ 𝑪𝑪𝑪𝑪𝑪𝑪
& 𝑫𝑫𝑪𝑪𝒄𝒄 satisfied 𝑶𝑶𝑶𝑶𝒋𝒋𝑫𝑫.𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

c2. Confirmation of access

a3. 𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊 1𝜆𝜆, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝒃𝒃 → {𝑃𝑃𝐾𝐾𝒃𝒃, 𝑠𝑠𝑘𝑘𝒃𝒃}

Initialization
D

ata Sharing
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ata Access

The green is the Reputation Mechanism and the black is the Secure Auditable Sharing Protocol.
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Fig. 2. Three-phase workflow of SASP integrated with the RPSM mechanism in our model. This figure demonstrates three-phase interactions
(initialization, sharing, access) between DCb/DCc and PB: SASP ensures secure data transmission through cryptographic protection, while RPSM
collaborates with audit contracts to govern data quality control.

The Steps b5-6 are to call the smart contract Share(·) for
sharing. A policy is the core of realizing security cross-DCs
data access [56]. However, the design of the policy is not
crucial in guaranteeing data circulation. So, we default to the
policy that is valid. By Ver, CA verifies the correctness of the
signature π and tag set {T} using the following equation:

g(H({T}) ?≡ PKb
gk

· (gk)(H({T})−skb·gk)/k. (4)

If the above equation holds, CA executes VerfR({T}, n)
to complete the repetition audit. For plaintext blocks B,B′,
by Equations (1) and (2), different contents can get different
secret keys skB , sk′B in non-negligible probability by Ins, i.e.
different T, T ′. So the concrete repetition audit contract with
time complexity of O(n) is implemented as Algorithm 1,
which is for G5. Considering the probabilistic error of the
Ins, by setting a repetition factor σ ∈ (0, 1), the filtering

result 1 for deduplication is as follows:

Pr [Ins(Ti) = 0] ≤ σ, ∀i ∈ [0, n]. (5)

After passing the VerfR, the Steps b7-8 store the tag set
and access threshold. As the on-chain data is stored as
key : value, the set of these tags is stored as ObjD : {T}
which ObjD := π, T agList := {T} ∪ T agList. Then,
for G1 and G2, with the policy determined by DCb and
necessary access threshold THD , which is determined by
Rt

b. The access policy is stored as ObjD : {policy || THD},
and Policy := {policy || THD} ∪ Policy. It means that D
is shared successfully by DCb. For each success successful
share, current Rt

b increased as follows:

Rt
b ← Rt

b + 1. (6)

But if DCb does not pass the VerfR, sharing will not be al-
lowed again in this round to prevent possible DDoS attacks.
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Algorithm 1: AuditSC: SC for Repetition Audit.
Data: Ciphertext tag set {T}

1 {T agList} ← PB.ObjD.{T agList};
2 begin
3 // Repetition Audit at Data sharing phase
4 // DCb shares ObjD with tag {T}
5 if RA({T}) then // For Repetition
6 T agList← T agList ∪ObjD ; // On-chain
7 Rb

t ← Rb
t + 1; // Add the RV of DCb

8 else
9 Rb

t ← max(0, Rb
t −max(1, α ∗Rb

t));
10 // Reduce the RV of DCb

11 end
12 end
13 // RA: For Repetition Audit
14 function RA({T})
15 σ ← 0.2 ; // Initialize repetition rate
16 if T0 /∈ T agList then
17 count← 0 ; // Number of repeats
18 foreach Ti ∈ {T} where i ∈ [1, Nt] do
19 if Ti ∈ T agList then
20 count← count+ 1;
21 if count > σ ∗Nt then
22 return False
23 end
24 end
25 end
26 return True
27 else
28 return False
29 end

And for each failed sharing, the current Rt
b decreased with

a penalty factor α as follows:

Rb
t ← max{0, Rb

t −max
(
1, α ∗Rb

t)}. (7)

5.1.4 Data Access and Integrity Audit
As in Steps c1-10, when data center DCc finds the shared
data ObjD by DCb and wants to access it, to call the smart
contract Access(·) with its PKc for accessing in Step c1.
In Steps c2-3, after determining that DCc is accessing ObjD
for first-time and satisfies policy and Rt

c ≥ THD , for G5,
by the channel, PB sends the public key PKc of DCc and
ObjD to DCb, and return the tag set {T} to DCc. Note that
once DCc fails due to multiple accesses or an unsatisfied
threshold, it will not be able to access any other shared data
in this round to prevent possible DDoS attacks.
In Step c4, for G4 and G5, by Enc, with the randomly chosen
v ∈ Z∗

q the secret key skD of D is encrypted as C0 is as
follows:

C0 ≡ (gv || skD · PKv
c ). (8)

Then, in Step c5, DCb sends the ciphertext set {Ci} to DCc,
where i ∈ [0, n].
In Steps c6-10, for G3, G4 and G5, DCb sends cipher-
texts {Ci}ni=0 via P2P to DCc, then DCc calculates the
T ′
0 ≡ H(H(C ′

1)|| · · · ||H(C ′
n)) and sends T ′

0 to CA to execute
the VerfI(T ′

0, 1) for the result of integrity audit. Considering
the existence of malicious DCs deliberately submitting in-
consistent T ′

0, DCb will apply for a recalculation of T ′
0 by

the PB after the audit results to eliminate this situation. For
all the ciphertext in set {C}, by Equation (2), changing any
Ci ∈ {C} will result in a completely different tag T0, so the
concrete integrity audit contract with the time complexity of
O(n) is implemented as Algorithm 2. After passing the Verf,

Algorithm 2: AuditSC: SC for Integrity Audit.
Data: Ciphertext tag set {T}

1 {T agList} ← PB.ObjD.{T agList};
2 begin
3 /* Integrity Audit at Data sharing phase */
4 // Data auditor DCc has obtained the

ciphertext {C′} from data sharer DCb

5 T ′
0 ← null;

6 foreach Ci
′ ∈ {C′} do // i ∈ [1, n]

7 T ′
0 ← T ′

0 || C′
i;

8 end
9 T0

′ ← H(T ′
0) ; // Generate tag set

10 if IA(T0
′) then // For Integrity Audit

11 Rb
t ← Rb

t + 1; // Shared completion
12 else
13 Rb

t ← max(0, Rb
t −max(1, α ∗Rb

t))
14 end
15 end
16 /* IA: For Integrity Audit */
17 function IA(T ′

0)
18 if T ′

0 ∈ T agList then // Unique identification
19 if T ′

0 ̸= T0 then
20 return False
21 end
22 return True
23 else
24 return False
25 end

according to the Dec with skc and C0, the corresponding
data secret key skD is decrypted as follows.

skD ≡ (skD · PKv
c ) · (gv)−skc . (9)

Then for G4, the decrypted skD as the index is inputted
into the D-KeyGen to get a new key pair (sk′D, PK ′

D), where
sk′D ≡ H(skD) and PK ′

D ≡ gsk
′
D . Then PK ′

D is sent to CA,
compared with the π, the authenticity of the secret key skD
is verified as follows:

PK ′
D

?≡ gk. (10)

If the above equation holds, in Step c10, for each Ci ≡
(gri , ci), the ciphertext data is decrypted by verifying skD
as follows:

Bi ≡ ci · (gri)−skD , where i ∈ [1, n]. (11)

Finally the data D := B1||B2|| · · · ||Bn is successfully sent
from DCb to DCc while its privacy is always protected. Ac-
tually, if the execution result from CA is 0, the Rt

b decreased
via Equation (7).

5.2 Our reputation-driven proactive sharing mecha-
nism
Towards reputation-driven proactive sharing, the core is
to associate the data access threshold with the reputation
value for G1. There is an access threshold THi for any
shared data Obji, and any DC DCa with Rt

a ≤ THi have
no access to Obji. Meanwhile, DCa shares the data ObjD ,
which its THD := ⌈Rt

b⌉. In order to achieve this purpose,
we designed the protocol as follows:

5.2.1 Two-factor to ensure stability and viability
For G2, we designate α as a penalty factor, β as a decay
factor, where α, β ∈ (0, 1), to ensure the reputation mech-
anism is stable and available, where the reputation value
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is bounded up and down, and the reputation value can be
used as a suitable quantitative indicator. At the beginning
of each round, each DC’s reputation value Rid decays as
follows:

Rt+1
id ← Rt

id ∗ β. (12)

5.2.2 Committee to incentivize sharing
For G1, we designed a special committee Com whose mem-
bers can ignore the policy of shared data ObjD and only
need to satisfy that its Reputation Values (RVs) are greater
than THD for successful access, which realizes motivation
among DCs. We refer to this property as committee’s right. It
means that for DCa ∈ Com and DCb /∈ Com, for successful
accessing the ObjD, Rt

a, R
t
b ≥ THD and DCb needs to

additionally satisfy policy but DCa does not.

5.2.3 Consensus to achieve fairness
We propose a Proof-of-Reputation (PoR) consensus as a
novel variant of Proof-of-Stake [36], where reputation value
(RV) replaces stake value as the election weight. This design
achieves fair committee elections through three steps:
Step 1 - Committee member selection. For N t DCs, initial RVs
are derived from the (t−1)-th block in Equation (12). To han-
dle RV heterogeneity, we apply Z-Score normalization [57]:µ̂ := 1

Nt

∑Nt

i=1 Ri
t

σ̂ :=
(

1
Nt

∑Nt

i=1

(
Ri

t − µ̂
)2) 1

2
(13)

{
ZRt

i
:= (Rt

i − µ̂)/σ̂

ZTHt
com

:= (THt
com − µ̂)/σ̂

(14)

Candidates satisfy ZRt ≥ min(2, ZTHt
com

), with top-nmt

(nmt := ⌈log2 N t⌉) by ZRt becoming committee members.
Step 2 - Determine the block generator. Non-committee (N t −
nmt) DCs independently vote for generators among mem-
bers within a certain period of time to avoid the effect of
network delay. Similar to [58], the DC with the most votes
is the block generator. The rule for the block generator to be
selected from the nmt members is as follows:

argmax
j

(
V otej ·

ZRt
j∑nmt

k=1 ZRt
k

)
,∀j ∈ [1, nmt] (15)

where the V otej is the vote count for DCj . Similar to [43],
[59], by PoR, only members with higher RVs can become
generators with a higher probability, which is a positive way
to incentivize DCs to participate in data sharing.
Step 3 - Block finalization. The elected generator DCj sets the
next-round threshold THt+1

com := ⌈Rt
j⌉ and writes all RVs,

committee members, and THt+1
com into the block.

Our Proof-of-Reputation (PoR) consensus fundamentally
differs from existing reputation-based mechanisms in three
critical aspects: Unlike Proof-of-Authority (PoA)2, our Rep-
utation Value (RV) functions as a participation qualification
metric rather than a currency, specifically governing block
generator selection and threshold determination. Distinct
from [43] and [59], we intentionally disregard historical RV
through our decay factor β in Equation (12), which ex-
clusively incentivizes sustained data sharing participation.

2. https://github.com/paritytech/parity/wiki/
Proof-of-Authority-Chains

While sharing probabilistic election principles with Proof-
of-Stake [36], our consensus activates solely at round initial-
ization for block generation and explicitly binds generator
selection to current RV values.

6 SECURITY ANALYSIS

This Section provides formal proofs for all security def-
initions from Section 4.3 and analyzes attack mitigations
referencing threat model (Section 4.2).

6.1 Confidentiality and Privacy of the data sharing

The one-way Hash function H : {0, 1}∗ → Z∗
q we used is

proven to satisfy collision resistant [7].
We prove firstly that any data of the data centers

satisfy confidentiality protection, which means that for any
Probabilistic Polynomial Time (PPT), the encryption of two
arbitrary data cannot be distinguished in our model; that
is, indistinguishability under chosen-plaintext attack (IND-
CPA) is satisfied.

Theorem 1. Our model satisfies IND-CPA security (Defini-
tion.1) if the DDH assumption (Sec.3.1.1) holds.

Proof. Let A have advantage ϵ. Construct B against DDH:
1. B receives (g, ga, gb, Z) where Z = gab or random;
2. Simulate Init to send Para = (p, q, λ, g,H); 3. When
A chooses DC∗

id, simulate DC− KeyGen to set PK∗ ←
ga; 4. When A submits m0,m1, pick b

$←− {0, 1} then
compute C∗ ← (gb, Z · mb); 5. For A’s oracle queries,
DC− KeyGen(index): sk ← H(index), PK ← gsk, return
(sk, PK), or Enc(PK,m), pick r

$←− Zq , return (gr,m ·
PKr); 6. A outputs b′; B outputs 1 if b′ = b, else 0. If
Z = gab, C∗ = (gb, gab · mb) = (gb, (ga)b · mb), so Enc
with PK∗ = ga, r = b, A sees valid ciphertexts such as

Pr[B → 1] = Pr[b′ = b] =
1

2
+ ϵ

Else Z
$←− G, C∗ = (gb, R ·mb) is uniformly random, R ·mb

uniform in G, no mb information, then

Pr[B → 1] = Pr[b′ = b] =
1

2

Thus B’s DDH advantage is:∣∣∣∣(12 + ϵ)− 1

2

∣∣∣∣ = ϵ

Contradicts DDH assumption if ϵ non-negligible.

Then we prove that any data of the data centers satisfies
data privacy, which means that for any PPT adversary, it is
impossible to infer the corresponding real information from
the information published on-chain.

Theorem 2. Our model satisfies data privacy (Definition.2) if the
H() satisfies collision resistance.

Proof. Part 1: Plaintext from tag. By construction: Ti =
H(LSH(Bi)) Since LSH is locality-sensitive and H is
collision-resistant:

Pr[A(Ti) = Bi] ≤ Pr[collision] ≤ negl(λ)

https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
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Part 2: Identity from PK. PK = gH(index) where index
combines DCs’ attributes (name/addr/code) and random
nonce from registration. The DDH assumption implies:

Pr[A(gH(index), gr)] ≤ negl(λ) r
$←− Zq

Thus A cannot distinguish PK from random element.
Part 3: Attributes from access patterns. Access policy en-
forcement is reputation-based on Access(PK,Obj) → {C}
iff Rid ≥ TH . Since TH is set proportional to owner’s RV
and RVs are updated via public SC, access patterns leak only
reputation relations, not raw attributes.

6.2 Fairness and Stability of the data sharing
We first prove that for any data center DC, its reputa-
tion value RV maintains stable bounds under the effect of
penalty (α) and decay (β) factors, a property termed stability.

Theorem 3. Our model satisfies (α, β)-Stability (Definition 3).

Proof. Part 1: Upper bound (Rmax). For DCi sharing maxi-
mum data DVmax every epoch, reputation evolves as:

Rt = βRt−1 +DVmax

The closed-form solution and limit yield:

Rt = βtR0 +DVmax
1−βt

1−β

t→∞−−−→ DVmax

1−β = Rmax

Since β ∈ (0, 1), Rt < Rmax ∀t, establishing strict upper
bound.
Part 2: Lower bound (0). By Equations (7),

Rt
b ← max

{
0, Rt

b −max(1, αRt
b)
}
≥ 0

Bound 0 is reached when: (i) Rt < 1 (directly set to 0),
(ii) Rt ∈ [1, 1/α) (linear decrease to 0), or (iii) Rt ≥ 1/α
(multiplicative decrease then case ii).
Tightness: Rmax is asymptotically achieved under contin-
uous maximum sharing, while 0 is reached after consec-
utive failures. Bounds [0, Rmax] are strict for all DCs and
epochs.

In our context, fairness means that all operations and
decisions depend solely on the DC’s current reputation
value. We prove that the expectation of reputational change
from sharing is similar between different DCs.

Theorem 4. Under DCTR assumption (Sec.3.1.3), our model
satisfies δ-fairness (Definition 4) with δ = αRmax (Rmax =
DVmax

1−β ).

Proof. Part 1. Expectation. For DCi with Si attempts:

E[∆Ri] = psucc · Si︸ ︷︷ ︸
successes

− (1− psucc)E[Pi]︸ ︷︷ ︸
failures

where penalty Pi ≤ αRmax by Equations (7) and Theorem 3.
Part 2. Normalized yield. The expected yield per sharing
attempt:

E[∆Ri]

Si
= psucc − (1− psucc)

E[Pi]

Si

Part 3. Bounded difference. For any two honest DCs i, j:∣∣∣∣E[∆Ri]

Si
− E[∆Rj ]

Sj

∣∣∣∣ ≤ (1− psucc)αRmax ≤ αRmax

since Theorem 3 stability bounds.

6.3 Proactive and Honesty Incentives of the data shar-
ing
We prove firstly that our model can incentivize the DCs of
varying data volumes to proactively participate in sharing
if the DCTR assumption holds (Section 8.1 for case proofs).

Theorem 5 (Reputation-Based Proactive Incentive). Under
DCTR assumption (Sec.3.1.3), the model provides γ-proactive
incentive (Definition 5) with γ = min(γ1, γ2, γ3) for:

γ1 = β(1− α) (Committee Member)

γ2 = β

(
1− THcom

Rmax

)
(Large Non-Committee)

γ3 = β · DV accessed

DVi
(Small Non-Committee)

Proof. For Committee Member (Ri ≥ THcom):

E[∆R|Share] = β(1) (successful sharing)
E[∆R|NotShare] = β(−αRi) (decay + penalty)
∆incentive = β(1− (−αRi)) ≥ β(1− α) (since Ri ≤ Rmax)

For Large Non-Committee (Ri ≈ THcom):

E[∆R|Share] = β

1 +
Rmax −Ri

Rmax︸ ︷︷ ︸
committee access gain


E[∆R|NotShare] = β(−αRi)

∆incentive ≥ β

(
1 + 1− THcom

Rmax

)
> β

(
1− THcom

Rmax

)
For Small Non-Committee (Ri ≪ THcom):

E[∆R|Share] = β

1 +
DV accessed

DVi︸ ︷︷ ︸
DCTR efficiency


E[∆R|NotShare] = 0 (negligible penalty)

∆incentive = β

(
1 +

DV accessed

DVi

)
> β · DV accessed

DVi

Taking minimal γ across DC types ensures universal incen-
tive.

Then we prove that compared with honest DCs, the
potential benefits for dishonest DCs are significantly dimin-
ished by the associated risks. Real case proofs will be given
in Section 8.2.

Theorem 6. Under the reputation update rules with decay β
and penalty α > 0, with detection probability pd > 0, our model
provides η-honesty advantage (Definition 6):

lim
t→∞

E[Rhonest
t ]

E[Rdishonest
t ]

=
1

1− pd

(
1 +

βpdα

(1− β)(1− pd)

)
> 1

Proof. For Honest DC, reputation follows:

RH
t = β(RH

t−1 + 1)⇒ lim
t→∞

RH
t =

β

1− β

For Dishonest DC, reputation follows stochastic process:

E[RD
t ] = β

[
(1− pd)(E[RD

t−1] + 1) + pd(1− α)E[RD
t−1]

]
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At steady state (E[RD
t ] = E[RD

t−1] = RD
∞):

RD
∞ = β

[
(1− pd)(R

D
∞ + 1) + pd(1− α)RD

∞

]
Solving:

RD
∞ =

β(1− pd)

1− β(1− pdα)

So we can get the ratio:

RH
∞

RD
∞

=
β/(1− β)

β(1− pd)/(1− β(1− pdα))
=

1

1− pd
+

βpdα

(1− β)(1− pd)

Both terms > 0 when α > 0, pd > 0, so ratio > 1.

6.4 Defense Against Specific Attacks in the network
This section discusses our model’s defenses against known
attacks in the network.

DDoS attacks. In a P2P network, a DDoS attack can
consume a large amount of bandwidth and impede the
communication of normal DCs. Our model sets the DC to
only invoke Share and Access requests to the PB. If access
or sharing fails once, the DC will not be allowed to access or
share again in this round. This means that the frequency of
Share and Access between DC and PB is controllable. Thus
it is difficult for a malicious DC to initiate a large number
of malicious requests to consume bandwidth. So, our model
can defend against DDoS attacks.

Sybil attack. In blockchain, a Sybil attack can spoof
multiple virtual users to reach a consensus for malicious
message writing. Our model makes it more difficult to fake
a virtual DC by using multi-dimensional information at the
time of initialization. When reaching consensus, our PoR
consensus values its own RVs more than the number of DCs,
thus reducing the role of virtual DCs in the consensus. So
our model can defend against Sybil attacks.

Collusion Attack. In reputation-driven mechanisms, a
collusion attack can achieve rapid RV growth of internal
members by multiple DCs conspiring to form a malicious
organization. For a malicious DC with a low RV, the only
possible attack is to form a malicious group and increase the
RV of one of them to achieve access to high threshold data.
The increase of reputation value in our model is only real-
ized by successful sharing, and the audit contract ensures
the quality of shared data, the penalty and decay factors
again limit the rapid growth of the reputation value of
malicious nodes, which makes it robust against low RV DCs’
attacks. We consider the worst case as all the committee
members are malicious, the shared data cannot be used due
to policy restrictions. In our model, our PoR ensures that
only the DCs’ number N t over 375 can eliminate the fixing
of the committee nmt. Because ZRt approximates (0 − 1)
normal distribution and about 2.4% (2σ̂) can be candidates
by Equation (14). Therefore, just 2.4% ·N t ≥ ⌈log2 N t⌉ can
replace committee members with V otes, this undermines
the complicity of malicious groups.

Replay Attack. A Replay attack happens when a
malicious DC can share similar data multiple times to
increase its RV. Although our model allows sharing
plaintext and the corresponding tags, it uses LSH that
can map similar content to the same index with high
probability and eventually generate the same tags. Thus,

the presence of repetitive auditing SC makes the sharing of
similar data fail and leads to a decrease in the reputation
value. Therefore, considering that the cost of counterfeiting
is much higher than the increasing RV, which is successfully
shared, our model can defend against Replay attacks.

7 PERFORMANCE ANALYSIS

Since our blockchain-based reputation-backed auditable
model is dominated by SASP & RPSM, our model is most
influenced by SASP in terms of performance evaluation.
However, as analyzed in the previous section, the existing
repetitive auditing lacks a mature scheme oriented to dis-
tributed architectures, so the auditing schemes we compare
are still oriented to cloud storage using bilinear mapping
for implementation. In this section, we conduct a theoretical
comparison with existing auditing schemes [14], [18], [20]
along with a comprehensive performance test of SASP, and
verify the feasibility of the model driven by RPSM with a
real-world case study in Section 8.

For the sake of comparison, we assume that the cyclic
group G be a subgroup of Z∗

p with |G| = λ3. We also
ignore the multiple hash operation distinctions in existing
schemes and unify all hash operations (including LSH and
Ins in our model) as generic H computations. For clarity, we
define some necessary operating descriptions in Table ??,
which E denotes exponential computation, H denotes hash
computation, and P denotes bilinear mapping operation.
Other computations such as the mod p operation are
ignored due to their low overhead. Table 3 compares com-
putational/storage/communication costs between existing
schemes and our model, where our construction eliminates
pairing operations (P) through careful algebraic design and
storage overhead is reduced through tag aggregation.

7.1 Performance Evaluation
Via a peer node running Ubuntu 20.04 LTS on Intel Core
i7-11700 @2.50GHz, 4GB RAM, we conducted microbench-
marks using Go’s crypto and math libraries4 with the
following cryptographic primitives:

• Bilinear pairings: BN254 curve (196.41ns/op)
• Hash function: SHA-256 (13.92ns/4KB5)
• Modular exponentiation: 11.73ns/op (λ=1024-bit)

Note that bilinear mapping in the test takes about 31.064%
of the CPU, while all other operations have negligible CPU
usage. The results of a more intuitive performance compar-
ison based on the theoretical analysis in Table 3 are shown
in Table 4. We categorize the operations into local-based
and on-chain operations, and we can see that we achieves
75.44% lower on-chain overhead per block vs. [20], which
considers duplicity and integrity auditing in Table. 4, where
[14] and [18] only implement a portion of the data auditing.
In summary, we can both achieve faster ciphertext integrity
and repeatability auditing in a distributed architecture and
provide restricted access control and reputation incentives.

3. In practical pairing-based systems, G would not be implemented
over Z∗

p due to subgroup confinement requirements for pairing com-
patibility.

4. https://github.com/golang/go/tree/release-branch.go1.18
5. Following Ng et al.’s research [60], a block size of 4KB was utilized

in this study as it maximizes the space-saving efficiency of repetition.

https://github.com/golang/go/tree/release-branch.go1.18
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TABLE 3
Comprehensive theoretical analysis in computing, storage and communication costs.

Computation Costs
Schemes Initialization Encryption Sharing Verify Access Auditing

DC Data Data Tag Sig Ver DC Repetition Integrity
[14] - 1H+1E (2n+1)H nH 2nE 3nE+1P (n+1)H 1H -
[18] 1H+2E - - nH+2nE - 2H+1E+1P - - 2nH+(n+1)E+1P
[20] (n+2)H 2H+nE (2n+1)H nH+2nE 2nE nE+1P (2n+3)H+nE 9E+1P 4nH+4nE+1P

Ours 1H+1E (2n+1)H+(n+1)E 2nE (n+1)H 2H+1E 3E (n+1)H+(n+3)E nH (n+2)H+1E
Storage and Communication Costs

Storage costs Communication costs
Schemes Initialization Encryption Sharing Verify Access Auditing

DC Data Data Tag Sig Ver DC Repetition Integrity
[14] - 2|G| 1|D| (n+1)∗|G| n∗|G| - 1|D| + n∗|G| (2n+1)∗|G| (2n+2)∗|G|
[18] 2|G| - - 2n ∗ |G| - - - (3n+2)∗|G|+ |D| -
[20] (n+2)∗|G| (n+2)∗|G| 1|D| (n+3)∗|G| 2|G| - 1|D|+n∗|G| (n+5)∗|G| (n+3)∗|G|

Ours 2|G| 2|G| 2|D| (n+1)∗|G| 2|G| - 2|D|+2∗|G| (n+3)∗|G| (n+3)∗|G|
Note : n is the number of blocks of D, and no consideration of access policy overhead. |D| and |G| denote the length of shared data D and element in G.
H,E,P denote the evaluation of hash function, exponent operation, and bilinear mapping operation

TABLE 4
More intuitive performance comparison results based on the theoretical analysis in Table 3.

Computation Costs (ns).
Schemes Time consumption on DCs Time consumption on-chain

[14] (4n+3)H+(2n+1)E ≈ 79n+ 53 1H+3nE+1P ≈ 35n+ 210
[18] (n+1)H+(2n+2)E ≈ 37n+ 37 (2n+2)H+(n+2)E+2P ≈ 40n+ 444
[20] (6n+8)H+6nE ≈ 154n+ 111 4nH+(5n+9)E+3P ≈ 114n+ 695

Ours (4n+5)H+(4n+6)E ≈ 103n+ 140 (2n+2)H+4E ≈ 28n+75
Storage Costs.
Schemes Storage overhead on DCs Storage overhead on-chain

[14] 2|G|+1|D| ≈ n∗4KB+128B (2n+1)∗|G| ≈ n∗256B+128B
[18] 2|G| ≈ 256B (3n+2)∗|G|+ |D| ≈ n∗(4KB+384B)+256B
[20] (2n+4)|G|+1|D| ≈ n∗(4KB+256B)+512B (n+5)∗|G| ≈ n∗128B+640B

Ours 4|G|+2|D| ≈ n∗8KB+512B (n+3)∗|G| ≈ n∗128B+384B
Communication Costs.
Schemes Communication overhead on DCs Communication overhead on-chain

[14] n|G|+1|D| ≈ n∗ (4KB+128B) (2n+2)∗|G| ≈ n∗256B+256B
[18] - - - -
[20] n|G|+1|D| ≈ n∗(4KB+128B) (n+3)∗|G| ≈ n∗128B+384B

Ours 2|G|+2|D| ≈ n∗8KB+256B (n+3)∗|G| ≈ n∗128B+384B
Note : the size of each Block=4KB, |G|=1024bit, the time consumption of 1H≈23.93ns, 1E≈11.73ns, 1P≈194.41ns.
[14] only has duplicate audit for ciphertext, [18] only has plaintext integrity audit, [20] and Ours have integrity and duplicity audit with ciphertext.

7.1.1 Computational Complexity
For data D partitioned into n× 4KB blocks:
In Sharing Phase, the cost in our model is
n(3H+ 3E)︸ ︷︷ ︸
Block processing

+ 4H+ 3E︸ ︷︷ ︸
Data-level ops

;

In Access Phase, the cost in our model is
n(H+ E)︸ ︷︷ ︸
Decryption

+ 3E+ H︸ ︷︷ ︸
Key verification

;

In On-chain Auditing, the cost in our model is
nH︸︷︷︸

Repetition check

+ E+ (n+ 2)H︸ ︷︷ ︸
Integrity verification

.

7.1.2 Storage & Communication Costs
In Storage Overhead, the cost in our model is
n× 8KB + 4|G|︸ ︷︷ ︸

DC

+(n+ 3)|G|︸ ︷︷ ︸
PB

;

In Communication Cost, the cost in our model is
(n+ 3)|G|︸ ︷︷ ︸

Metadata

+n× 8KB + 2|G|︸ ︷︷ ︸
Ciphertexts

.

7.2 Experimental Results
On DCs, the data initialization part is divided into loading
and chunking of data (Load), generation of corresponding
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Fig. 3. Time consumption for operations with different data sizes.

keys (PKsk), encryption of data and corresponding decryp-
tion (EncDec), generation of tag set (GenTag) and finally
signature and verification (SigVer).

Fig. 3 presents the time consumption for various op-
erations with different data sizes. The time consumed for
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operations other than signature verification increases lin-
early with the number of blocks, indicating that the ex-
perimental results align with the theoretical analysis. On
average, the most expensive encryption and decryption
take about “2.84ms±0.174” per block with the Elgamal.
Interestingly, in practice, due to data reads and repetitive
auditing, tag generation using a hash function takes up to
“0.997ms±0.136” per block. As a result, the elapsed time of
the other operations remains largely stable across the differ-
ent data sharing operations and is acceptable in terms of the
overall elapsed time of the model itself. The experimental
results indicate that operations completed within “1min”
are acceptable when the data is within 64MB in terms of
time consumption.
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Fig. 4. Comprehensive performance testing of access and audit SC.

While involving the on-chain operations, in order to
better evaluate the on-chain performance of our model,
Hyperledger Fabric V2.26 is used to develop Access and
Audit SC based on Go 1.18.8 and test based on Caliper7. We
test 1000 times by caliper to call the Access SC and Audit
SC within 60s, the results are shown in Fig. 4. The results
show that the Access SC has higher resource consumption
(CPU, Memory) than the Audit SC, while the Audit SC has
higher time consumption due to the addition of repetitive
auditing, but its throughput is higher than the Access SC
due to the concurrency mechanism. We will further show
in Section 8 that the experiment-based performance of our
SASP is sufficient in the real world.

8 A CASE STUDY

In this section, we demonstrate the feasibility of our model
in real-world scenarios through a practical case study. We
showcase the changes in each round using three metrics: DV,
SV, and RV. DV represents the current cohort data owned by
the DC; SV represents the cohort data shared by the DC in
each round; and RV represents the initial reputation value
of the DC in each round. Each cohort data size is 16KB, and
the DV of each DC increases by 10% per round. To highlight
the details, we abstract the data itself and represent changes
using the data volume, which is a reasonable simplification.

6. https://github.com/hyperledger/fabric.git
7. https://github.com/hyperledger/caliper.git

In this case study, there are six hospitals8 as DCs to val-
idate that controlled flow of cohort data between hospitals
can be achieved based on our model. These DCs are di-
vided into BDC (initially owning 200 cohort data) and SDC
(initially owning 2 cohort data) based on the actual number
of cohorts they can provide. Each successful data sharing
updates the DC’s RV via Equation (6). We set the penalty
factor α = 0.1, decay factor β = 0.9 and update it for each
round by Equation (12). The number of committee members
is set to 3 according to ⌈log2 N t⌉. The block generator is
determined by Equation (15).

8.1 First Phase

In the first phase, each cohort data provided is unique
and complete. Given the scarcity of cohort data in medical
scenarios, we implement restricted sharing, meaning that
the shared data must meet certain access policies to be
successfully accessed. This background leads to a question:
What happens if a selfish DC sets an access policy that is
never satisfied? We designate BDC3 as this selfish DC, while
other DCs share data openly.

Under the existing schemes [21], [23], [35], other DCs
fall into a passive state as they cannot access BDC3’s shared
data. Despite the presence of a decay coefficient, other DCs
counteract the decay by sharing a fixed amount of data each
round to protest the “unfairness”. As shown in Fig. 5(a),
there is a clear stagnation, where SDC only reaches 200
cohort data (BDC level) by the 33rd round.

To address this, we introduce the committee mechanism.
Even with the selfish BDC3, committee members ignore
access policies, forcing BDC3 to improve its RV to raise
the access threshold for its shared data. The absence of
committee members motivates other DCs to actively par-
ticipate in sharing, ultimately benefiting all DCs. With
BDC’s SVs at 1% of their DV each round, the final DVs for
SDCs reached “890”, and BDC3’s DVs reached “2,245” in
Fig. 5(b).1, substantially surpassing the BDC’s DVs achieved
in normal scene that reached “862” in Fig. 5(a).1.

As analyzed in Section 6.2, the committee mechanism
and access thresholds achieve proactive incentives. There-
fore, we demonstrate in the first phase that our RPSM
can break down the data silos and promote the DCs to
participate in data sharing proactively.

8.2 Second Phase

In the second phase, we introduce scenarios with duplicate
or incomplete cohort data. We conduct experiments in three
scenarios (perfect, normal, and malicious) to evaluate the
effectiveness and accuracy of the Audit SC. The first phase,
with perfect data quality, is referred to as the perfect sce-
nario. In the normal and malicious scenarios, the selfish
BDC3 unintentionally or maliciously shares some duplicate
or incorrect data (with a probability of 10%). The duplication
rate is set to σ = 20%.

In the normal scenario, BDC3 shares abnormal data with
a 10% probability each round. The Audit SC reduces BDC3’s

8. There are 3 DCs in Beijing (with 200+, 1000+ and 2000+ beds), 1 in
Tianjin (with 2000+ beds), 1 in Shenyang (with 300+ beds), 1 in Jinan
(with 4000+ beds)

https://github.com/hyperledger/fabric.git
https://github.com/hyperledger/caliper.git
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Fig. 6. Changes in reputation values and data volume in three scenes.
(a) is the perfect scene. (b) is the normal scene with a 10% probability
of inadvertent error. (c) is the malicious scene with 1 malicious behavior
after 9 normal.

RV when duplicate or incomplete data is detected through
Equation (7). The changes in DCs’ RV and DV are illustrated
in Fig. 6(b). Compared to the perfect scene in Fig. 6(a),
BDC3’s audit results do not affect other DCs.

In the malicious scene, BDC3 actively shares anomalous
data after every 9 normal data shares (equal 10% proba-
bility). The audited changes in RV and DV are displayed
in Fig. 6(c). Compared with Fig. 6(b).2, the DV of BDCs
decreases because of the increasing proportion of useless
data being shared. However, when compared with the
perfect scene, the DV of BDC1-2 is higher. In the perfect
scene, the selfish BDC3 is always the committee member,

restricting BDC1-2 from accessing its shared data. However,
in a malicious scene, each BDC3 shares malicious data, its
RV decreases with the execution of Audit SC, and the data
shared by BDC3 contributes to the increase of other BDCs’
DVs.

Therefore, comparing the three scenes, it can be seen
that in perfect and normal scenes, the sharing of each DC
will not be affected. BDCs with malicious behavior will be
maximally restrained by the Audit SC to reduce the impact
on other DCs. For the malicious DC, the only way to increase
its RV after being unable to bypass the Audit SC to achieve
the malicious behavior is to create the perfect scene through
increased SVs. In conclusion, our Audit SC guarantees the
flow of data.
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Fig. 7. Performance of Audit SC in three scenes. (a) is the total per-
formance of Audit SC. (b) is the average CPU consumption. (c) is
transaction throughput. (d) is the transaction latency of Audit SC.

In the second phase, due to the fact that our Audit
SC is invoked in each round, independent of whether the
scenario is normal or malicious, and maintains stability
in terms of throughput and other aspects, it exhibits no
significant fluctuations. As depicted in Fig. 7(a), our model
can achieve approximately “1000” audits of data sharing in
“2s” with a CPU usage of “25.42%”. It demonstrates that our
model is effective when auditing in terms of quality, stabil-
ity, and efficiency in terms of computational performance.
In specific scenes, it can be observed that the resource
consumption of BDC3 fluctuates more than that of other
DCs, as shown in Fig. 7(b, c, d). Meanwhile, unintentional
errors in orange exhibit lower fluctuations than malicious
operations in green. This is understandable, as the Audit
SC needs to make more records on BDC3 in the malicious
scenario. Interestingly, when comparing the perfect scenes,
implementing repetition and integrity auditing based on the
Audit SC does not significantly degrade performance, such
as throughput, which actually increases due to BDC3 con-
tinuously sharing data and calling the contract to increase
its chances of becoming a committee member. However,
other factors increase accordingly. By comparing Fig. 7(b, d),
we observe consistent characterization results, indicating a
strong correlation between the SC’s time consumption and
CPU usage, which aligns with the algorithmic description.
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9 DISCUSSION

This section delves into a discussion of the proposed model.
Initially, the nature of cohort data requires certain supervi-
sion in data flow. This limitation restricts its usability for
large-scale use in public chain scenarios and, consequently,
prevents an in-depth analysis of scalability and robustness
involving multiple nodes.

Moreover, our approach involves multiple hashing op-
erations to achieve efficient and secure data protection.
This design choice avoids resource-intensive encryption and
decryption operations, such as re-encryption. However, it
poses challenges in finding suitable references for a com-
prehensive comparison, as existing mature algorithms are
utilized without a thorough exploration of more advanced
alternatives like bilinear maps.

In terms of the reputation mechanism, our case in Sec-
tion 8 demonstrates that our RPSM is probabilistic and thus
not entirely precise. However, the core focus of RPSM is
incentivization rather than reputation evaluation. Therefore,
our concern is the effectiveness of data-sharing incentives
rather than the accuracy of reputation scoring. The case
study also proves that our reputation-based incentive mech-
anism achieves the desired outcomes.

Finally, in data encryption, efficient symmetric encryp-
tion schemes (e.g., AES) hinder the direct mapping of ci-
phertext information to plaintext, making it difficult to dis-
tinguish the generated ciphertext from its repetitive coun-
terpart, and existing research has addressed this problem
through bilinear maps [14], [15], [19], [20] while simi-
larly imposing a high performance overhead. Therefore, we
adopt an asymmetric encryption scheme to construct the
shared model.

While our work demonstrates notable advancements,
certain shortcomings persist. Accurate auditing of the repe-
tition of shared data remains challenging, and a more secure
approach to authenticity verification of data private keys
is yet to be discovered. While we have provided formal
security proofs for all key properties (Theorems 1-6), the
probabilistic nature of reputation updates (as shown in
Fig. 6) introduces O(1/

√
N) variance in fairness metrics.

Future work will explore deterministic reputation mecha-
nisms with similar incentive properties. Additionally, this
study does not extensively evaluate network-layer robust-
ness against attacks, as this focus lies outside the scope of
the data-sharing layer. However, we recognize its impor-
tance and outline it as a potential direction for future work.

10 FUTURE WORK

In the forthcoming research, our primary objective is to
identify auditing algorithms that efficiently reconcile rep-
etition and integrity auditing while preserving the privacy
of plaintext data. This entails seeking a delicate balance that
ensures the robustness of our model without compromising
the confidentiality of sensitive information. Another crucial
aspect of our future investigations involves delving into the
realm of secure proof mechanisms, particularly the applica-
tion of advanced methods like the zero-knowledge proof.
Our aim is to leverage these mechanisms to enhance the
correctness verification process for transmitted file private
keys. This avenue promises to provide a higher level of

assurance and reliability in data security. Equally important
is an in-depth study of game theory to model the behavior
of DCs and derive the change in value gains among DCs
under incentive mechanisms through Nash equilibrium or
Markov decision processes.

11 CONCLUSION

In conclusion, our work presents a novel reputation-backed
auditable cohort data-sharing model effectively addresses
the challenges of data silos. In the integrated model, RPSM,
incentivizes DCs to engage in active data sharing, and SASP
ensures efficient and secure data flow with a focus on pre-
serving data privacy. The integration is facilitated through
smart contracts, and a comprehensive evaluation involving
security and performance analysis substantiates the model’s
effectiveness. Case studies of real-world scenarios show that
the model can be applied to a wide range of high-value,
high-privacy data sharing scenarios and can provide novel
solutions to the data quality and data quantity dilemmas in
sharing.
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