
Highlights

LTL-Based Runtime Verification Framework For Cyber-Attack Anomaly
Prediction In Cyber-Physical Systems.

Ayodeji James Akande, Zhe Hou, Ernest Foo, Qinyi Li

• We introduce a cybersecurity framework that leverages runtime veri-
fication, integrating data analytics and Linear Temporal Logic (LTL)
formula acquisition, to predict anomalies effectively.

• Our approach entails processing historical data, performing clustering
or classification to extract anomaly-indicative patterns, and forming
data sequences that represent the trend of these patterns.

• A key feature of the framework is its ability to predict anomalies
based on temporary patterns observed in data, whether originating
from faults or malicious attacks, before their actual manifestation.

• The framework’s approach involves extracting LTL formulas from his-
torical data through clustering to identify anomaly-indicative patterns,
forming data sequences to represent these patterns, and using an LTL
learning algorithm to generate an LTL formula for the detected pattern.

LTL-Based Runtime Verification Framework For

Cyber-Attack Anomaly Prediction In Cyber-Physical

Systems.

Ayodeji James Akande, Zhe Hou, Ernest Foo, Qinyi Li

aSchool of Information and Communication Technology, Griffith University, Australia,

Abstract

An anomaly is any unexpected or abnormal behaviour, event, or data
pattern within a network of physical and computational components caused
by data errors, cyber-attacks, hardware failures, or other unforeseen events.
Anomaly detection analyses events after they occur, while anomaly pre-
diction forecasts them before they manifest. The increasing complexity of
Cyber-Physical Systems (CPS) presents challenges in fault management and
vulnerability to advanced attacks, highlighting the need for early interven-
tion through anomaly prediction. Existing anomaly prediction methods often
fail due to a lack of formal guarantees required for safety-critical applica-
tions. In this paper, we introduce our anomaly prediction framework which
merges the advantages of data analytics and the derivation of Linear Tem-
poral Logic (LTL) formulas. LTL-based runtime monitoring and checking
is a well-established technique efficient for tackling challenges in real-time
and promptly. The framework processes historical data, clusters them to
extract predictive patterns, and forms data sequences that represent these
trends. These sequences are fed into an LTL learning algorithm to produce
a formula that represents the pattern. This formula functions as a security
property programmed into a runtime checker to verify system correctness
and predict the possibility of anomalies. We evaluated our framework using
three datasets collected from a cyber-physical system testbed and the ex-
perimental findings demonstrate a minimum accuracy of 90% in predicting
anomalies.

Keywords: Runtime verification, Linear temporal logic, Cyber-physical
systems, Cybersecurity, Critical Infrastructure.

Preprint submitted to Computers & Security April 6, 2025

1. Introduction

In modern systems, critical infrastructure is managed digitally by utilis-
ing cyber-physical systems (CPS), the metaverse, satellite communication
systems, and the Internet of Things (IoT), all of which hold substantial
importance in industrial operations and human existence. Although these
technologies have significantly improved the management of critical infras-
tructure, the incidence of cyber-attacks has been steadily increasing and
may continue to increase [5, 32, 33]. This trend can be attributed to the
growing adoption of digital technologies. Incidents targeting critical infras-
tructure, encompassing domains such as industrial automation, smart grids,
smart cities, autonomous vehicles, and agricultural precision, can potentially
produce devastating outcomes for individuals and assets. This paper fo-
cuses on Cyber-physical systems (CPS). CPS is a generation of systems that
combine computational and physical capabilities, enabling interaction with
humans through various new modalities [6]. The physical and software com-
ponents are closely connected, capable of operating on different spatial and
temporal scales, demonstrating diverse behavioural modes, and interacting
with each other in context-dependent ways [23].

Shown in Figure 1 is a typical structure of a CPS. In cyber-physical
systems (CPS), engineering data (numerical data) typically originate from
sensors, actuators, and various devices embedded in physical components.
These sensors collect real-world information, and the data is then processed
and utilized in the digital realm to enable control and monitoring of the
physical system.

1.1. Motivation

Anomalies in CPS can manifest in various ways, such as increased vari-
ability and outliers, often indicating deviations from normal operational be-
haviour. If sensor or actuator data are not reliable, it can cause a system
failure. For example, cyber attacks on smart power include GPS spoofing,
load redistribution, automatic generation control (AGC) manipulation, line-
outage masking, Stuxnet-like attacks targeting sensor measurements, denial
of service (DoS), and Byzantine attacks, while attacks targeting actuator
commands include Aurora and pricing attacks [47]. Data manipulation is
one of the common cyber-attacks that involves altering or modifying en-
gineering data to achieve a specific goal, which can range from extracting
valuable information to cause disruption or deception, changing data values,

2

Figure 1: Typical example of Cyber-Physical System

modifying data structures, or tampering with data at various stages of its
lifecycle thereby deviating from the expected normal values. This can be
termed a data anomaly, also known as an outlier [1]. Bashendy et al. [8]
stated that “CPS are typically mission-critical systems, they are intolerant
to errors or delays, which can cause catastrophic human, economic, and fi-
nancial loss if no proper detection and response mitigation mechanisms are
applied”. Safeguarding cyber-physical systems has become critical, and this
necessitates that anomalies be predicted in real-time to maintain minimal
impact on its operation.

Yin et al. [46] described anomaly monitoring in time series as a com-
mon example of data stream applications and can be categorized into two
main types: detecting anomalies in current or historical data and predict-

3

ing potential future anomalies. The paper further explained that detecting
only current or past anomalies comes with practical limitations, which can
be overcome by incorporating anomaly prediction. Anomaly prediction is
a process of identifying and anticipating unusual or unexpected patterns in
data that deviate significantly from typical behaviour. Unlike anomaly detec-
tion, which identifies unusual patterns after they occur, anomaly prediction
seeks to detect anomalies before they happen. According to Yin et al. [46],
anomaly detection through forecasting is considered a method to predict an
unusual point or single instance within a dataset that stands out due to its
attributes. Predicting anomalies on time before their impact prevents poten-
tial accidents and economic losses [12], and can protect the CPS from costly
downtime and disruptions [25].

Despite extensive research in Cyber-Physical Systems (CPS), real-time
anomaly prediction for cybersecurity has received less attention due to vari-
ous challenges. “It is widely held that debugging CPS is challenging; many
strongly held beliefs exist regarding how CPS is currently debugged and
tested and the suitability of various techniques” [48]. A major challenge in
CPS is the limited physical access for personnel to monitor critical assets,
which weakens cybersecurity, especially in cyberspace. To proffer solutions
to these challenges, prediction based on data analytics can be introduced.
Furthermore, in safety-critical applications like aerospace, avionics, and rail-
ways, the use of formal methods is crucial for both requirements specification
and design validation [13]. In this paper, we introduce a framework founded
on runtime verification, which amalgamates the advantages of data analyt-
ics and the acquisition of Linear Temporal Logic (LTL) formulas, a formal
method for specification and validation. We propose a runtime verification
framework based on LTL that predicts anomalies with minimal computa-
tional overhead and incorporates a special alert state for rapid mitigation.
Data anomalies in time series refer to values that deviate from the anticipated
values at specific time points [35]. Our focus is to collate system historical
data to analyse and identify predictive patterns leading to an anomaly.

1.2. Literature gap

Machine learning algorithms like Isolation Forest, Decision Trees, Recur-
rent Neural Networks (RNN), and Long Short-Term Memory (LSTM) are
commonly employed for detecting anomalies in time series data. However,
they encounter challenges when directly applied to real-time anomaly predic-
tion. Models using RNN and LSTM often encounter challenges, such as high

4

memory requirements for training [37], deep learning models often require
significant computational resources which can lead to high costs when they
are used for real-time predictions [11]. Most importantly, machine learn-
ing algorithms can classify data to predict anomalies but cannot generate
alerts or provide timely responses to anomalies in real-time. To address
this challenge, studies [25, 27, 40, 46] have proposed anomaly prediction ap-
proaches. However, these approaches are limited by the absence of formal
guarantees needed for safety-critical applications. We propose a framework
that utilises system-specific derived LTL to predict the anomalies. By us-
ing LTL, we designed a framework that is explainable, as LTL specifications
are human-readable, deterministic, and effectively capture temporal relation-
ships, making it a preferred choice over existing frameworks. Our framework
seamlessly integrates data analytics with the learning of Linear Temporal
Logic (LTL) formulas. With runtime verification, the framework checks the
system behaviour in real-time to verify that it conforms to defined LTL prop-
erties. It helps predict and respond to violations, enhancing the reliability
and safety of CPS by continuously checking the desired system properties
during operation. Although our framework combines Linear Temporal Logic
(LTL) with machine learning, it overcomes the issues associated with using
machine learning by deploying the algorithm offline to learn the LTL formula,
rather than implementing it in real-time as existing frameworks do.

1.3. Our Framework

Yin et al. [46] explained that time series-based anomaly monitoring can
be divided into detecting current or historical anomalies and predicting fu-
ture ones. While detecting current or past anomalies has its limitations,
predicting anomalies in advance can help address the challenges. Predicting
anomalous behaviour in industrial assets based on sensor reading represents
a key focus in modern business practice and prediction techniques are used
to estimate the likelihood that future data will be abnormal [25]. While
various studies have explored anomaly prediction methods using machine
learning, we go beyond merely applying these methods. Our anomaly predic-
tion framework adopts linear temporal logic as the predictor. This approach
not only predicts anomalies but also includes a built-in alert function that
aids in anomaly mitigation. Leveraging historical data, the process involves
dataset pre-processing and partitioning into training and testing sets. Using
the framework, temporal patterns for anomaly prediction are learned from

5

the training dataset, and the effectiveness of the prediction is then evaluated
using the testing dataset.

The framework targets time series data which is composed of individual
data points. A key aspect of the framework’s process is identifying different
patterns within the time series, such as normal, predictive, and anomalous
patterns. Normal patterns represent the expected behaviour of a dataset
over time. The pattern serves as the crucial baseline data that predictive
models rely on to generate accurate forecasts. Any shifts in normal behaviour
necessitate updates to the predictive patterns. Data points that fall within
the expected range are labelled as “normal data points.” Predictive patterns
are identified trends or signals in the data that suggest future behaviour or
outcomes. These are those sequences of data that could lead to anomalies and
are labelled as the “precursor data points”. Predictive patterns use normal
patterns to anticipate and identify deviations, thereby detecting anomalies.
In the real world, there may be patterns that are close to the normal data
distribution but are small in size, which can lead to anomalous patterns.
We describe these patterns as predictive, as they contribute to deviations
from the normal pattern. Anomaly patterns signify unusual behaviour that
deviates significantly from normal patterns. These patterns can indicate
potential issues, faults, or unexpected events. Anomalies are characterized
by values that fall outside the expected range established by normal patterns,
often appearing as spikes, drops, or outliers. Data points that are identified
as anomalous based on their deviation from normal behaviour are labelled
as “abnormal data points”, usually referred to as outliers.

In supervised learning, data labelling assigns each data point a classifi-
cation. Labelled data is used to train the predictive model so it can learn
the difference between normal and abnormal behaviour. In unsupervised
learning, where labels are not provided, the model identifies deviations from
normal patterns without pre-classified data. Our objective is to derive pre-
dictive patterns that contribute to the emergence of anomalies, which are
used for predicting the anomalies. To analyse the training dataset, we se-
lect data clustering or classification techniques based on the characteristics
of the dataset. This is to identify various data labelling in the dataset and
with the aid of domain expert analysis, we group the various data points
into three data labelling as normal data points, precursor data points and
abnormal data points. Correctly labelling precursor data points is essential
for enhancing the effectiveness of our anomaly prediction framework. It leads
to improved accuracy, early detection, and a better understanding of anoma-

6

lies, ultimately enabling more effective responses to potential anomalies and
optimising their operations.

Once the patterns are identified, the next phase involves converting them
into Linear Temporal Logic (LTL) formula representations, which are used
as security properties in the runtime checker to implement anomaly miti-
gation strategies. Utilizing “precursor data points” as states, we selectively
extract the sequence of states as traces and label them as “positive traces”.
Simultaneously, ”abnormal data points” labelled as “negative traces,” are
also captured. Both traces (positive and negative traces) are converted into
a binary representation, combined into an input file, and then processed by
the LTL learning algorithm to produce an LTL formula. The formula is
created by combining the identified temporal patterns and temporal logic
expressions. The LTL formula generator uses temporal logic operators to
express relationships and conditions over time. The LTL formula algorithm
learns the formula from only positive traces, focusing on the behaviour in-
dicative of potential anomalies in the system.

We evaluate the generated LTL by applying it to the testing data to
make predictions based on the temporal patterns encoded in the formula. In
runtime verification, the LTL formula is implemented as a system security
property to determine whether the data violates specific properties. Each
data point in the testing data is treated as a state, while a trace is a se-
quence of states. In runtime verification, a trace is a sequence or ordered set
of events/states that represents the observed behaviour of a system over a
period of time [7]. With LTL-based runtime verification, real-time monitor-
ing of system operations is achieved while enforcing compliance with security
properties defined using LTL to forecast and prevent such events.

The paper offers a dual contribution: firstly, it introduces a step-by-step
process for generating system-specific LTL formulas through machine learn-
ing and applies them in the development of a runtime verification cyberse-
curity framework for cyber-physical systems. The second contribution lies in
its ability to predict anomalies and trigger alarms using the system-specific
LTL formula generated as a security property. This framework is applica-
ble for tackling engineering/network data-related anomalies where temporal
patterns can be identified within time series. Performance metrics, such
as response time and throughput, are commonly used to evaluate runtime
efficiency in CPS. This paper excludes the evaluation of runtime monitor-
ing efficiency due to the unavailability of real-time data; instead, simulated
datasets were utilized for experimental assessment.

7

The remainder of the paper is structured as follows; Section 2 reviews
related research works, Section 3 is the preliminaries of LTL runtime verifi-
cation, and Section 4 discusses our proposed LTL-based runtime verification
framework and its systematic approach. In Section 5, we present our exper-
imental evaluation through three case studies, while Section 6 discusses the
experimental results from these case studies and provides a comparison with
other related models. Finally, the conclusion and future research prospects
are outlined in Section 7.

2. Related Work

This section explores the advancements in prediction-based anomaly de-
tection and anomaly prediction. Additionally, it highlights the research gap
in this domain and discusses how our framework addresses it.

2.1. Prediction Based Anomaly Detection

Anomaly detection focuses on identifying instances or patterns in data
that deviate significantly from the norm or expected behaviour. This has
been investigated for several decades, and one of the anomaly detection meth-
ods is based on prediction. The method involves training the predictor to
learn the normal behaviour of a time series and using the prediction errors
to identify anomalies in test sequences.

Malhotra et al. [28] presented a prediction-based anomaly detection method
employing stacked long-short-term memory (LSTM) networks for anomaly
and fault detection in time series data. The process involves training a net-
work on non-anomalous data and using it as a predictor over multiple time
steps. The resulting prediction errors are modelled as a multivariate Gaus-
sian distribution to assess the likelihood of abnormal behaviour. However, Li
et al. [27] identified a weakness in using only LSTM for prediction, noting that
many predictors struggle to accurately predict values around abrupt changes
in time series, which can result in false detection or missed detection.

Li et al. [27] presented anomaly scoring for prediction-based anomaly
detection in time series. The paper attempted to address the issue of predic-
tors failing to predict values around abrupt changes in time series accurately
and proposed a framework using anomaly scoring for prediction-based detec-
tion. This framework employs Long Short-Term Memory (LSTM) networks
for prediction and dynamic thresholding for anomaly detection from predic-
tion errors. A clustering algorithm learns false positive (FPS) patterns from

8

training data, and test anomalies are scored based on their distance from
these FPS patterns. The method is designed for anomaly detection but is
not suitable for predicting anomalies.

Detecting only current or historical anomalies poses practical limita-
tions [46], as the negative impact of an anomaly cannot be prevented once
it has already occurred. While a predictor was employed in previous stud-
ies [28, 27], it was primarily used as a baseline for detecting anomalies rather
than for forecasting them. Predicting the anomaly in advance can prevent
its negative impact on cyber-physical systems. Anomaly prediction involves
identifying and forecasting irregular patterns in data that deviate from nor-
mal behaviour. Early prediction of such anomalies aids in preventing poten-
tial issues or failures before they materialize.

2.2. Anomaly Prediction

Gu and Wang [18] presented a stream-based mining algorithm for online
anomaly prediction to raise early alerts for impending system anomalies and
suggest possible anomaly causes. The algorithm integrated Markov models
with Bayesian classification methods for prediction, implemented within the
IBM System S distributed stream processing cluster. Bayesian classification
captured various anomaly symptoms to infer causes, while Markov models
tracked changing patterns in different measurement metrics. The algorithm
was claimed to predict and diagnose several bottleneck anomalies with high
accuracy while imposing low overhead on the cluster system. However, the
approach proposed by Gu and Wang [18] may not be suitable for predict-
ing anomalies in Cyber-Physical Systems (CPS) at runtime. CPS consists
of tightly integrated physical processes, such as temperature control, robotic
movement, power distribution, chemical reactions, traffic flow in smart trans-
portation systems, fluid dynamics, and structural health monitoring, along-
side computational elements like sensors, control systems, actuators, data
processing units, communication networks, software algorithms, and user
interfaces. The integration of Markov models with Bayesian classification
methods may not be directly applicable to CPS due to their complexity, real-
time requirements, and large-scale, dynamic nature. Furthermore, CPS often
involve noisy or incomplete sensor data, which can compromise the accuracy
of these methods. Addressing the unique challenges of CPS requires spe-
cialized models that effectively account for the interactions between physical
processes and computational elements, extending beyond traditional predic-
tion approaches like Markov and Bayesian models.

9

In another work, Tan et al. [40] introduced ALERT, an adaptive runtime
anomaly prediction system designed to improve prediction accuracy in dy-
namic hosting infrastructures such as IBM System S stream processing clus-
ters and PlanetLab. ALERT uses a self-evolving learning algorithm to adapt
to these environments, employing a triple-state multivariate stream classifi-
cation scheme that includes an alert state, in addition to normal and anomaly
states. This alert state represents measurements preceding an anomaly, en-
abling the model to capture pre-anomaly symptoms. For runtime anomaly
prediction, monitoring sensors are deployed on all hosts within the infras-
tructure to continuously track metrics such as CPU consumption, memory
usage, input/output data rate, and buffer queue length for each host and ap-
plication component. However, the method proposed by Tan et al. [40] faces
similar limitations as Gu and Wang [18]’s approach, making it unsuitable for
predicting anomalies in Cyber-Physical Systems (CPS) at runtime.

In a related study, Langone et al. [25] identified model interpretability
and explainability as key challenges for data-driven algorithms in industrial
settings and proposed the Interpretable Anomaly Prediction (IAP) method
for Industry 4.0. The methodology presented in the paper predicts anomalies
by assessing whether future behaviour is anomalous. This is achieved by
providing a probability, referred to as the anomaly score, which indicates
the likelihood of future data being abnormal. The method consists of three
steps: (i) data preparation, (ii) learning, and (iii) model refinement. This
involves cleaning, transforming, and selecting features to standardize data
and address the class imbalance, with regularized logistic regression at its
core for interpretability.

El-Hadad et al. [16] proposed predicting abnormal electricity consumption
using the isolation forest algorithm to classify smart meter readings as nor-
mal or abnormal. Based on these labels, Random Forest and Decision Tree
algorithms forecast anomalies. Experiments revealed both methods could
detect and predict anomalies 30 minutes in advance with comparable per-
formance. While effective for handling dynamic power consumption data
through auto-labelling, further research is needed to adapt this method for
improved accuracy and robustness in diverse engineering environments.

To address the research gap in anomaly prediction for CPS, we present
a framework that predicts anomalies using LTL-based runtime verification
monitoring. Our framework integrates LTL-based runtime verification with
data analysis to enable real-time monitoring, timely anomaly prediction, and
computational efficiency. The primary advantage of our proposed framework

10

is its ability to provide formal guarantees, which are crucial for safety-critical
applications. By utilizing Linear Temporal Logic (LTL) as a formal method,
the framework ensures these guarantees while maintaining low computational
requirements. Additionally, it facilitates the ability to respond effectively
to anomaly predictions. Historical data is split into training and testing
sets, with the training data used to identify temporal patterns leading to
anomalies. These patterns are formalized into LTL formulas by combining
indicative variables with temporal logic expressions that capture conditions
and relationships over time. The generated formulas are then applied to test
data to predict anomalies, even in cases with abrupt time-series changes.

According to Zheng et al. [49], runtime verification is an effective method
for detecting subtle errors that may be difficult to identify due to scalabil-
ity challenges, such as state explosion or unexpected interactions with the
physical environment. Our framework leverages this advantage to detect er-
rors that traditional methods might fail to recognise in CPS. Furthermore,
as noted by Bernstein and Harter Jr [10], temporal logic has long been used
to specify concurrent and real-time programs, serving as the foundation for
the framework’s correctness properties. To enhance predictive accuracy and
adaptability, machine learning algorithms are selected through experimenta-
tion with specific datasets.

3. Preliminaries

The anomaly prediction framework is designed to anticipate anomalies
before they occur. It leverages LTL as the foundational and most prevalent
variant of temporal logic—a key family of specification languages in run-
time verification [30]. This framework is built upon LTL formulas derived
from historical CPS data, which are defined as system properties for run-
time verification, which requires that correctness properties be articulated in
a formal specification language. Runtime verification dynamically analyses
and monitors a system’s behaviour during execution to ensure compliance
with specified properties or requirements [17]. As elucidated by Havelund
and Peled [20], runtime verification can occur either online, as the system
executes, or offline, by processing log files generated by the system. In online
processing, runtime verification gathers real-time execution data and must
promptly deliver a verdict, even without access to the complete sequence [20].
The real-time execution data are represented as time series and inputted as
traces.

11

In this section, we present data formalization in Section 3.1 which is
implemented in Section 4.3 and introduces LTL, the specification language
for runtime verification, as detailed in Section 4.4 and runtime verification
specification used in Section 4.5.

3.1. Data Formalization

This section formalizes key aspects of the data representation, including
time series data, the relationship between time series, data points, states,
traces, and the labelling process.

3.1.1. Time Series Data

A data point di represents an observation or measurement recorded at a
specific time step ti. In a dataset stored as a CSV file, each row corresponds
to a data point, with columns representing the m attributes or features of
the observation. In mathematical notation, di ∈ Rm, where m is the number
of attributes or features associated with each data point at each time step.
A time series is a sequence of time steps T = {t1, t2, . . . , tn}, where ti
denotes the i-th time step. At each ti, the corresponding data point di is
observed, forming a time series D = {d1, d2, . . . , dn}. In a CSV file, the first
column typically represents the time steps T , while the remaining columns
contain the features of each di. The time series can be expressed as:

D = {(t1, d1), (t2, d2), . . . , (tn, dn)}.

A state si represents the condition of the system at a specific time step ti.
The state is derived from the data point di using a function f , such that:

si = f(di).

A trace τ is a sequence of states over time, capturing the evolution of the
system through different conditions. Formally, a trace is defined as:

τ = {s1, s2, . . . , sn},

where each state si corresponds to the time step ti in the time series.
To illustrate the relationship between time series, data points, states, and

12

traces, consider the following structure of a CSV file:

Time ti Temperature Pressure Humidity

00 : 00 25.3 1012.5 60

01 : 00 24.8 1012.8 62

02 : 00 24.5 1013.0 63

For this dataset, the trace τ would be a sequence of states corresponding to
the system’s evolution over time.

• At t1 = 00 : 00, the data point d1 = [25.3, 1012.5, 60] gives the state s1.

• At t2 = 01 : 00, the data point d2 = [24.8, 1012.8, 62] gives the state s2.

• At t3 = 02 : 00, the data point d3 = [24.5, 1013.0, 63] gives the state s3.

The trace τ is thus:

τ = {s1, s2, s3} = {[25.3, 1012.5, 60], [24.8, 1012.8, 62], [24.5, 1013.0, 63]}

This trace represents the system’s evolution over time, capturing the states
at each time step in the sequence.

3.1.2. Labelling Process

Let L = {l1, l2, ..., ln} represent the labels associated with each data point
di in the time series D. Each label li ∈ {Normal,Predictive,Anomalous}
indicates the classification of the corresponding data point di.

The labelling process involves assigning a label li to each data point di
based on whether:

• li = Normal: The data point di corresponds to expected or typical
behaviour of the system.

• li = Predictive: The data point di serves as a precursor to an anomaly
and indicates a potential future deviation.

• li = Anomalous: The data point di represents a significant deviation
from normal behaviour, indicating an anomaly.

13

The set of labels L forms the labelled time series dataset:

DL = {(t1, d1, l1), (t2, d2, l2), ..., (tn, dn, ln)}

This process extracts predictive patterns in Phase III (Section 4.3).

3.2. Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL), as a type of temporal logic formula, serves
as a specification language for finite and infinite sequences of states referred
to as traces. LTL operates from a linear-time perspective, where each point
in time has a unique successor [30, 31]. LTL is widely used in various fields,
including program verification, robotic motion planning, process mining, and
more. It enables the specification of properties such as safety, fairness, and
liveness.

Definition 3.1 (Syntax of LTL). The syntax of LTL is given in the Backus–Naur
form (BNF) below.

F ::= ⊤ | p | ¬F | F ∧ F | F ∨ F | X F | F U F

In the above syntax, ‘p’ represents atomic proposition and there are two
temporal modalities presented: X is written prefix and means next, and
U is written infix and means until. The other modalities like F (future),
G (globally), R (release) in LTL can be defined in terms of X and U .
Specifically Gψ ≡ ⊥Rψ ≡ ¬F¬ψ; Fψ ≡ ⊤ U ψ and ϕRψ ≡ ¬(¬ϕ U ¬ψ).
In formal logic and temporal logic, ψ (psi) and ϕ (phi) are commonly used as
placeholders for specific propositions, conditions, or properties to analyse in
a system. They are general symbols that represent logical statements about
the system’s state or behaviour, allowing for the construction of complex
expressions to describe how a system should behave over time.

The formal semantics of LTL are often defined using a Kripke model M ,
which is a tuple M = (S, I, R, L) where S is a finite set of states, I ⊆ S is a
set of initial states, R ⊆ S × S is the transition relation between states and
L : S → 2AP is a labelling function that maps a state to a subset of atomic
propositions. Here, AP is the set of all atomic propositions.

A (possibly infinite) sequence of states is called a path, which is denoted
by w. Assuming that the indexing starts with 0, we write w[i] for the (i+1)th
state in w, and we write wi for the sub-path starting from the (i+1)th state.

14

Definition 3.2 (Semantics of LTL). The Kripke-style semantics of LTL
is defined via a forcing relation |= as follow:

M,w |= ⊤ if and only if it is always true; M,w |= p if and only if
p ∈ L(w[0]); M,w |= ¬A if and only if M,w ̸|= A; M,w |= A ∧ B if and
only if M,w |= A and M,w |= B; M,w |= X A if and only if M,w1 |= A;
M,w |= A U B if and only if there exists i ≥ 0 such that M,wi |= B, and
for all 0 ≤ j ≤ i, M,wj |= A.

We say that the pair (M,w) of a model M and a path w force an atomic
proposition p, written as M,w |= p when p belongs to the subset of atomic
propositions in first state in w. The classical logic connectives are interpreted
in the usual way. M,w force X A if and only if M and the path w1 starting
from the next state force A. In other words, A is true in the next state. M,w
force A U B if B is true in the future, and before that, A must be true.

To derive the Linear Temporal Logic (LTL) formula, the ‘samples2LTL‘
algorithm [29], an off-the-shelf tool, is employed as the LTL formula gener-
ator. Neider and Gavran [29] presents two algorithms to learn formulas in
linear temporal logic (LTL) from examples. The first algorithm reduces the
learning task to satisfiability problems in propositional Boolean logic and
generates the smallest LTL formula consistent with the given data. The
second algorithm combines the SAT-based learning approach with classical
decision tree learning algorithms, allowing scalability to real-world scenar-
ios with many examples but without guaranteeing minimal consistent LTL
formulas. Neider and Gavran [29] provides a detailed explanation of an
algorithm.

3.3. Runtime Verification Specification

Runtime verification specifications use formal methods to define system
properties. A common approach is to use logical formalisms, such as tempo-
ral logic, to specify the desired properties of a system. An important aspect
of formal specifications in runtime verification is using theorems to ensure
that these specifications are correctly defined and can be effectively moni-
tored [26]. For our framework, we implement the theorem: correctness of
monitor synthesis.

Definition 3.3 (Correctness of Monitor Synthesis). Given a formal spec-
ification φ defined in a temporal logic, there exists an automaton Aφ that can
be synthesized to monitor the execution traces of a system. The automaton
Aφ correctly identifies whether the system’s execution satisfies or violates φ.

15

The theorem ensures that the monitors synthesized from formal specifi-
cations can reliably detect violations of the specified properties during the
system’s execution, providing confidence in the correctness of the monitored
system. For our runtime verification, we use the Process Analysis Toolkit
(Process Analysis Toolkit (PAT)) as a model checker, designed to incorpo-
rate advanced techniques for analysing event-based compositional system
models [38]. PAT is an off-the-shelf tool [45] supporting various model-
checking capabilities, such as checking for deadlock freedom, divergence free-
dom, reachability, LTL properties with fairness assumptions, refinement, and
probabilistic models.

In this paper, we leverage the Communicating Sequential Processes (CSP#)
module, an extension of CSP tailored for runtime verification. CSP is a for-
mal language used to describe interaction patterns in concurrent systems,
making it suitable for modelling event sequences (traces) within PAT. Pro-
cesses and their interactions are modelled as a series of events, enabling
analysts to evaluate system correctness by observing allowed or disallowed
traces.

Using CSP# in PAT, we define systems and verify temporal properties
through the following steps:

• Specification: Define properties using LTL. For example, the formula

φ = G(A → F B)

states, ”Globally, if A occurs, B must eventually follow.”

• Monitor Synthesis: Construct an automaton Aφ from the LTL spec-
ification.

• Correctness: Prove that Aφ is sound and complete.

This approach integrates formal specifications with automaton-based cor-
rectness checks, ensuring precise runtime verification. By formalizing and
proving the correctness of monitor synthesis, runtime verification can pro-
vide strong guarantees about the system’s adherence to specified properties.
For our framework, we generated LTL formula from the historical data and
defined it as a system property φ for runtime verification in runtime checker
using PAT language. We construct the automaton from a dataset that in-
volves creating a formal model representing the patterns or sequences ob-

16

served in the data. During runtime, the monitor observes states/events and
transitions between states.

4. The Proposed Framework

This section presents an anomaly prediction framework for cyber-physical
systems. The proposed framework integrates data analysis, runtime verifi-
cation, and LTL formula learning to predict anomalies at runtime. It learns
an LTL formula from the system’s historical data, uses it for real-time veri-
fication, and predicts anomalies with predefined responses for the system to
act upon. The process is shown in Figure 2 and is divided into five phases;
Phase I Data (Pre-preprocessing), Phase II (Pattern Discovery), Phase III
(Featuring Engineering), Phase IV (LTL Property Learning) and Phase V
(Runtime Monitoring). All processes preceding phase V are completed before
the execution of the phase.

Figure 2: The proposed LTL based runtime verification framework for time series pattern
detection.

Before delving into the various phases of our framework, we will consider
the parameters for tuning in the phases.

17

Parameters

• Data Split: In Phase I (Section 4.1), we split our dataset into 70%
training and 30% testing. The training set is used for model training,
while the test set is held back for model evaluation and performance
benchmarking.

• Data Extraction: In Phase III (Section 4.3), we extract a sequence
of ‘n’ precursor data points, forming the predictive pattern P in time
series. Additionally, a separate sequence of ‘m‘ anomaly data points
are extracted to represent anomaly patterns and the extracted sequence
excludes ‘n’. These sequences of ‘m’ and ‘n’ data are stored in a trace
file, separated by a delimiter, and used as input for the LTL algorithm
to generate the formula of the sequence of ‘n’ precursor data points.

• Trace: In Phase V (Section 4.5), a sequence of data is chunked at inter-
vals from the test data and fed into the runtime checker for verification.
This chunk is represented by ‘s ’. During the runtime verification phase,
the test data is divided into ‘s ’ number of data, which are then fed into
the runtime checker along with the LTL formula as the conformity
property.

While we tuned our data to 70/30 data split, all other parameters tuning
(‘m‘, ‘n’ and ‘s ‘) are dataset-specific for each case study. The choice of sizes
“m” and “n” depends on the dataset and the characteristics of the attack
event. We determined the optimal values through experimentation, testing
various combinations and selecting the one that yielded the best results.

4.1. Phase I: Dataset Pre-processing

Dataset pre-processing is a critical phase in the data analysis and machine
learning lifecycle. The primary goal of dataset pre-processing is to ensure
that the data are accurate, complete, and relevant to the specific task at
hand. The pre-processing of data includes data collection, data cleaning
and transformation such as feature scaling, encoding categorical data, and
data normalization. Other data processing based on data size includes data
reduction (Dimensionality Reduction and Sampling).

In Phase I as indicated in Figure 2, our framework begins with data pre-
processing. The dataset is expected to be numerical and time series variables
with no missing values. Therefore, we begin the process with data collection,

18

followed by data cleaning and transformation. A dataset may contain var-
ious attributes like nominal, ordinal, binary, numeric, discrete, and contin-
uous types. These attributes are pre-processed into a numerical format for
compatibility with our technique. Depending on the dataset’s characteristics
and size, data feature selection, reduction, or encoding may be necessary. For
our case studies, feature selection is used to reduce processing time and ex-
tract relevant features from large datasets. Systematic data reduction can be
achieved through algorithms such as the Shapley value or Recursive Feature
Elimination (RFE).

Also, during the data pre-processing, we perform data normalization, a
process to scale numerical features within a dataset to a standard range to
ensure that different variables in the dataset contribute equally to analyses.
Another important step in data preprocessing is data binarization, which
involves converting numerical variables into a binary format. Representing
data variables in binary is essential for efficient computation and analysis.
Additionally, the LTL algorithm requires input data to be in binary format.

We split the historical dataset into training and test data. The training
data is processed to generate the LTL formula which serves as the property
for runtime verification. The test data is used to evaluate the performance
of the runtime verification.

4.2. Phase II: Pattern Discovery

The subsequent phase of our framework is pattern discovery, represented
in Figure 2. This process involves identifying regularities or typical be-
haviours in data and recognizing deviations from these patterns as anoma-
lies using a suitable machine learning algorithm that is determined through
experimentation and evaluation on specific datasets. This process aims to
achieve anomaly detection as its expected result.

The choice of algorithm depends on the task, the characteristics of the
data, and the desired outcomes. During this stage, the machine learning
algorithm is used in learning patterns or instances in data that deviate sig-
nificantly from the norm. Machine learning has been applied in many fields
to detect patterns useful for cybersecurity analysis [3, 4, 9, 43]. The approach
may be either unsupervised learning or supervised learning (if labelled data
is available).

In unsupervised learning, unlabelled data is given to a machine learning
algorithm as input to find patterns, structures, or relationships within the
dataset. Clustering is a common task in unsupervised learning. A clustering

19

algorithm is an artificial intelligence process that ‘learns’, that is, leverages
data for improvement of performance on some set of tasks [14, 24]. Exam-
ples of clustering algorithms include K-means clustering, spectral clustering,
agglomerative clustering, mean shift, OPTICS, hierarchical clustering, and
DBSCAN (Density-Based Spatial Clustering of Applications with Noise).
Clusters are formed in such a way that data points within the same cluster
are similar, and data points in different clusters are dissimilar.

In contrast, supervised learning relies on labelled data to identify patterns
to predict outcomes in new unseen data. The dataset includes input features
paired with correct output labels, serving as the training set for algorithms
like K-Nearest Neighbors (KNN), Random Forest, Support Vector Machines
(SVM), Linear Discriminant Analysis (LDA), and Neural Networks.

In both supervised and unsupervised learning, inaccurate results can lead
to suboptimal system performance, a failure to achieve the intended objec-
tives, and overall effectiveness can be compromised. Data misclassification
can lead to misinformed decision-making and can pose security risks. Fail-
ing to identify malicious activities may compromise the security of systems
and sensitive data. Determining the ideal number of clusters or classes in
clustering or classification is a crucial factor that contributes significantly
to achieving precise results. Techniques such as the elbow method [42], sil-
houette score [36], or cross-validation [34] can be employed to determine
the optimal number of clusters or classes. To determine the best outcome,
classification algorithms are evaluated using metrics like accuracy, precision,
recall, and F1-score, while clustering algorithms are assessed with the Silhou-
ette Score. Aside from using the systematic approach, domain expert analysis
can be used in the selection of data classification for security analysis.

4.3. Phase III: Feature Engineering

The subsequent stage in our framework is feature engineering, as illus-
trated in Figure 2, which involves domain knowledge expert analysis. Feature
engineering is the process of using domain knowledge to select, modify, or
create new features (variables) from raw data that can improve the perfor-
mance of machine learning models. In this phase, the expected result is to
predict anomalies by identifying and extracting patterns that contribute to
the occurrence of anomalies identified in phase II (section 4.2). Integrating
domain-specific knowledge is crucial for identifying significant features and
clusters in cyber security analysis, reflecting anomalies. This phase comprises
two stages: first, selecting a group or cluster that represents each category

20

of data point, and lastly, an extraction process of traces that are “precursor
data points” and “abnormal data points”.

4.3.1. Group selection

While machine learning identifies patterns in historical data by grouping
similar points, domain-knowledge expert analysis helps to pinpoint which
group or cluster represents a “normal data point”, “precursor data point”
and “abnormal data point”.
A “normal data point” refers to a data observation that conforms to the
expected or typical behaviour within a dataset. In data analysis, normal
data points are those that do not exhibit unusual patterns, deviations, or
anomalies. For “precursor data point”, it refers to a data point that pre-
cedes or leads to an anomaly event in a sequence of data. It indicates the
data point that serves as a precursor to the anomaly event, providing infor-
mation or context that may be relevant to understanding or predicting the
anomaly. The “abnormal data point” refers to a data observation that devi-
ates significantly from the expected or typical behaviour within a dataset. In
data analysis, abnormal data points are those that exhibit unusual patterns,
deviations, or anomalies compared to the majority of the data.

The various data points may be dynamically identified using clustering
techniques if clear distance metrics distinguish abnormal, precursor, and nor-
mal data points. In the case where the algorithm is unable to identify the
precursor data points, domain knowledge experts may be able to identify
precursor and abnormal data points. This identification is crucial for subse-
quently extracting patterns which are later translated into Linear Temporal
Logic (LTL) formulas. The LTL formula is generated based on the set of pre-
cursor data points as positive traces and abnormal data points as negative
traces.

4.3.2. Extraction process

With the help of domain knowledge, we establish clusters or instances that
categorize normal, precursor, and anomaly patterns. Using insights from the
group selection, we create a trace file as input to generate the LTL formula.
As discussed in Section 4, n denotes the number of states of precursor data
points. For the anomaly instance, m represents the number of states of the
abnormal data points, the choice of m must exclude the data sequence of n
to ensure that only normal instances are extracted. The selection of n and
m depends on the behaviour of anomalies and their occurrence in the time

21

series, as determined by domain expert analysis. Incorrect selection may
affect the accuracy of the temporal behaviour. In data analysis, a row of
data represents the system’s state at a specific point in time. Thus, in our
discussion, the terms ”row” and ”state” are used interchangeably to convey
the same concept. The group selection and extraction processes are carried
out using the Algorithm 1:

Algorithm 1 processes a dataset from a CSV file by extracting patterns
based on the values in the ‘Cluster Label‘ column, which serves as the cluster
identifier. The ‘Cluster Label‘ is a categorical variable that assigns each data
point to a specific cluster or category based on its similarity to other data
points, typically determined by clustering or classification algorithms. Algo-
rithm 1 organizes and extracts the data according to these cluster identifiers
to generate predictive and anomaly traces. These traces are then combined
into a single trace file for further analysis. This output trace file will serve
as the input for the next phase, LTL formula learning.

4.4. Phase IV: LTL Property Learning

The next phase of our framework is the LTL formula learning (Phase IV
according to Figure 2). During this phase, we learn the LTL formula derived
from the outcome of phase III (section 4.3). In the process of learning Linear
Temporal Logic (LTL) formulas from historical datasets, it is anticipated
that the dataset encompasses both regular and anomalous events. The LTL
formula is influenced by the temporary patterns observed in the dataset and
the interplay among the data variables if it exists. This phase aims to learn
the LTL formula that distinguishes positive (P) and negative (N) trace sets,
where the formula should serve as a property for every trace in P and not
for any trace in N.

To derive the LTL formula, we employ samples2LTL algorithm [29], a
technique used to automatically generate LTL formulas from execution traces.
According to Neider and Gavran [29], the repository offers two methods: one
encodes the problem as the satisfiability of a Boolean formula, providing it to
the Z3 solver, while the other is grounded in decision tree learning. The con-
cept involves transforming the observed behaviour of a system, represented
as a trace (τ), into a formal LTL formula that captures specific desired prop-
erties or behaviours. The trace τ is formalized in Section 3.1.1 and defined
as a sequence of states or events. The algorithm outputs an LTL formula
capturing the observed properties or behaviours in the given trace. A set of
atomic propositions is defined that describe properties or conditions in the

22

Algorithm 1 Data Extraction and Trace Compilation

1: Load CSV file into DataFrame ‘df‘
2: if ‘Cluster Label’ column does not exist in ‘df‘ then
3: Print ”Error: ‘Cluster Label’ not found.”
4: return
5: end if
6: Initialize lists: normal patterns ‘N’, anomaly patterns ‘A’, predictive -

patterns ‘P’
7: Count unique clusters in ‘Cluster Label’
8: if clusters 0, 1, and 2 exist then
9: for each row in ‘df‘ do

10: if ‘Cluster Label’ == 0 then
11: Extract m rows as ‘N’: N = {dt, . . . , dt+m−1}
12: else if ‘Cluster Label’ == 1 then
13: Extract m rows as ‘A’: A = {dt′ , . . . , dt′+m−1}
14: else if ‘Cluster Label’ == 2 then
15: Extract n rows as ‘P’: P = {dt′′ , . . . , dt′′+n−1}
16: end if
17: end for
18: else if clusters 0 and 1 exist then
19: for each row in ‘df‘ do
20: if ‘Cluster Label’ == 0 then
21: Extract m rows as ‘N’
22: else if ‘Cluster Label’ == 1 then
23: Extract m rows as ‘A’
24: end if
25: end for
26: Extract n rows leading to ‘Cluster Label’ == 1 as ‘P’
27: end if
28: Establish t (predictive) and t′ (anomaly, t′ > t)
29: Compile positive trace from ‘P’ and negative trace from ‘A’
30: Write traces to ‘patterns.trace’ with separator “—”

system and are derived from the states or events in the trace. For instance,
a trace like 1, 0, 1; 0, 0, 0; 0, 1, 1 defines three states, each indicating values for
three propositions x0, x1, x2. The Samples2LTL algorithm analyses the given
trace and converts it into an LTL formula based on the observed behaviours.

23

Using the algorithm, an LTL formula is generated with the combination of
atomic propositions and temporal operators as identified in Section 3.

In our framework, the Samples2LTL algorithm takes the trace file derived
from Phase III (section 4.3) and generates LTL formula. LTL formulas,
which serve as a formal language for expressing temporal properties, play a
crucial role in runtime verification, dynamic monitoring, and assessing system
behaviour during execution.

4.5. Phase V: Runtime Monitoring

As shown in Figure 2, Phase V (Runtime Verification) represents the final
stage of our framework, which involves runtime verification. In this phase,
we verify the conformity of the system model with the property specification
defined using the derived LTL formula in phase IV (section 4.4). At this
stage, the runtime checker assesses real-time data against temporal properties
for ongoing monitoring. The generated temporal properties are employed to
predict the likelihood of an anomaly in the system in real-time. When an
anomaly is predicted, the runtime verifier immediately triggers an alarm
to alert the system in advance, enabling proactive interventions before the
anomaly occurs.

Hou et al. [22] introduced a runtime verification engine for the digital
twin, which is capable of verifying properties expressed in various temporal
logic languages. The paper [22] highlighted that runtime verification utilizes
some variants of LTL, including LTL on finite traces (LTLf) and three-valued
LTL (LTL3). The Process Analysis Toolkit (PAT), a model checker, supports
both LTLf and PTLTL (Past-time LTL), with PTLTL being another useful
language for specifying security-related properties [15]. In this paper, we
implement the runtime verification engine with the declaration of the LTL
formula as the property. This paper adopts LTL on finite trace (LTLf) with
strong next, that is, X A is true when the next state exists and makes A
true; otherwise, X A is false. In this scenario, F A is only true when there is
a future state that makes A true; otherwise, it is false.

In our framework, we integrate runtime validation using an algorithm
based on the runtime-monitor script from Hou et al. [22]’s work. Runtime
monitoring involves three phases: runtime modelling, property definition,
and runtime checker.

Runtime Modelling:. We construct the automaton. A system can be mod-
elled using real-time data captured from the system as input. In our frame-

24

work, we are mainly interested in verifying properties over the state variables
of the system. Let us name the state variables as var1, var2, · · ·, a state S
is simply a snapshot of the values of state variables, i.e.,S::= {var1 = val1,
var2 = val2, · · · }. In PAT, we model a state via a process in Communicat-
ing Sequential Processes [21] with C# (CSP#) [39]. The process performs
variable assignments as below.

S() = {svar1 = val1; svar2 = val2; ...} → Skip;

The final trace T is a sequence of states, modelled as follows.

T () = S1();S2(); ...

Property Definition:. The user can define properties over state variables. For
example, the following code defines a proposition that states “var1 is not 0”.
Linear Temporal Logic (LTL) is used for specifying properties of the system’s
behaviour. LTL is based on temporal operators that describe how properties
evolve.

Runtime checker:. The generated LTL formulas are incorporated into a run-
time checker. The runtime checker dynamically monitors the system’s ex-
ecution and evaluates it against the specified LTL formulas. During the
execution of the system, the runtime checker continuously observes its be-
haviour in real-time. It checks whether the temporal properties specified by
the LTL formulas are satisfied at different points in the execution.

The foundation of our runtime verification framework is based on the
observation that verifying LTL with finite traces in Process Analysis Toolkit
(PAT) language corresponds to verifying FLTL with strong next/future. It
provides a means to detect and respond to violations of desired properties
during system operation. In the PAT model checker, for instance, if the
property condition is defined as:

#define v1Safe (var1! = 0);

We verify whether the observed behaviour, defined as a sequence of states
(S) or Trace(), satisfies the specified LTL formula, v1Safe. This process
involves evaluating the formula against the observed sequence of states S to
determine if it holds true. Given the property stated above, using the PAT
model checker, we check the safety property that “var1 should never be 0”
using the temporal modality G, which is written as □:

25

#assert Trace() |= □v1Safe;

For our framework, the runtime verification outcome can be categorized
into two possibilities:

• If the system’s behaviour (S) conforms to the specified temporal prop-
erties, the verification result is positive (true). This implies that there
is a tendency for violation or violation is taking place.

• If the system behaviour (S) does not conform to the specified temporal
properties, the verification result is negative (false), which indicates
that the system behaviour has no violation.

For our framework, the generated LTL formula from the historical data
is used as a security property and is defined for runtime verification as the
runtime checker in the PAT (CSP) language. In the case of a violation,
the runtime verification tool may generate alerts or reports to notify rele-
vant stakeholders about the detected deviation from the expected behaviour.
These alerts can be used for further investigation or corrective actions. De-
pending on the severity of the violation and the nature of the system, run-
time verification outcomes may trigger adjustment mechanisms, modification
strategies, dynamic response techniques, or corrective measures to restore the
system to a compliant state.

5. Experimental Evaluation

In this section, we discuss three case studies to demonstrate the imple-
mentation of our framework and evaluate its performance. Our experimental
exercise begins with the simplest system dataset obtained from the CubeSat
Communication system as the first case study and proceed to more complex
system data analysis. For the CubeSat Communication system, we collated
an unlabelled dataset acquired from a testbed designed to replicate a gen-
uine CPS environment while the remaining two case studies which come with
labels (the BATADAL team’s work [41], and Power Substation Automation
Systems [44]) were obtained online. In all the experiments, we used the pa-
rameters described in Section 4 and are tuned as necessary based on the
nature of each data.

26

• Train-test Split: The engineering datasets were split into training and
testing data in a 70-30% split ratio except for the Power Substation
Automation Systems dataset where the training phase employed attack
datasets associated with IED1, and the testing phase utilized attack
datasets related to IED2.

• Framework Parameter: The parameters for each case study are pre-
sented in Table 1. Due to the lack of a real-time system, we utilized
the testing data as the runtime data to create a system model and im-
plemented our runtime model checker using the Process Analysis Tool
(PAT).

Case Studies
Data Extraction Trace

n m s

Case 1: CubeSat 10 10 30

Case 2: BATADAL 20 15 50

Case 3: Power Substation Dataset 20 15 50

Table 1: This table depicts the parameters set for data processing for each case study.

For supervised learning, data are trained on labelled data while for
unsupervised learning, data are trained on unlabelled data. In the
unsupervised machine learning scenario of a CubeSat Communication
dataset (an unlabelled dataset), clustering techniques are used to reveal
patterns and structures within the data. The last two case studies em-
ploy supervised machine learning, using labelled columns for data clas-
sification to facilitate precise predictions of new data. The effectiveness
of our prediction depends on the accurate clustering or classification of
the data in a time series. Therefore, we evaluate the machine learn-
ing algorithms for clustering the unlabelled dataset to select the most
suitable one using the Silhouette Coefficient, while assuming that the
labelled dataset is correctly labelled. The one-hot encoding algorithm
is used to convert numerical variables into binary representations. We
evaluated the effectiveness of the clustering algorithm using clustering
evaluation metrics such as the Silhouette Coefficient, a metric useful
for unlabelled data evaluation. In addition, classification evaluation

27

metrics such as accuracy, precision, sensitivity, and the F1 score are
used for supervised learning scenarios where the true labels are known.

• Evaluation assessment: In anomaly detection, evaluation centres on
pinpointing the exact moment an anomaly occurs, with metrics pri-
marily assessing the accuracy of identifying these specific time points.
Conversely, anomaly prediction focuses on predicting anomalies before
they happen within a time series. In each case, our evaluation is based
on how early the prediction is made, ensuring it occurs before the
anomaly period begins. We evaluate our framework using evaluation
metrics to assess our prediction performance. The evaluation metrics,
which include prediction time, precision, sensitivity, and F1-score, are
defined as follows:

– Prediction Time: This refers to the interval between when an
anomaly prediction is made and when the actual anomaly occurs.
In anomaly prediction, prediction time is critical, as it determines
how much lead time is available for preventive actions. An effec-
tive prediction time allows for sufficient warning, enabling oper-
ators or systems to respond and potentially mitigate the impact
of the predicted anomaly. In our framework, the prediction time
is determined by the number of states leading up to the anomaly
detection. Based on the system properties defined, the runtime
checker verifies each trace fed into the system to ensure confor-
mance. When a violation is detected, it typically triggers a pre-
defined response process, such as an alarm, to handle potential
issues. The immediate response helps prevent the anomaly from
affecting the system’s operations. This deviation signifies that the
system’s behaviour has deviated from the expected norm, which
could indicate an anomaly, fault, or unexpected condition.

– Precision: It is also known as Positive Predictive Value, which
measures the proportion of correctly identified positive instances
(true positives) out of all instances predicted as positive. Preci-
sion in anomaly prediction assesses how often predictions of future
anomalies are correct.

– Sensitivity: It is also known as Recall or True Positive Rate, mea-
sures the proportion of actual positive instances that were cor-

28

rectly identified. Sensitivity measures how well the model identi-
fies anomalies in advance

– F1 score: The F1 Score is the harmonic mean of Precision and
Recall, providing a balanced measure that considers both false
positives and false negatives. It is a robust measure when both
avoiding false alarms and capturing true anomalies are crucial.

The result analysis is presented in each case study, while the discussion
of the outcomes can be found in Section 6. The test data is divided into
traces based on the parameters specified in Table 1 to perform the eval-
uation. Runtime verification is conducted using a runtime checker that
examines traces to determine whether the system’s behaviour aligns
with predefined properties, specifically the LTL formulas derived for
each case study. We use PAT as a runtime checker and by contin-
uously comparing observed behaviour with these properties, runtime
verification swiftly detects deviations in advance of an anomaly event
in time series. When a deviation is detected by the runtime checker,
it typically triggers a predefined response process designed to handle
potential issues. This deviation indicates that the system’s behaviour
has been violated, which could signify an anomaly, fault, or unexpected
condition.

5.1. Case Study 1: Satellite Communication Systems

This case study examines a CubeSat experimental setup utilizing Processor-
in-the-Loop (PiL) testing to simulate a satellite communication system. The
setup consists of two main components: the ground station (GS) and the
satellite itself. The ground station includes equipment for transmitting, re-
ceiving, and other necessary functions. The satellite, which is a physical twin
of the actual satellite, communicates with the ground station through uplink
and downlink channels. LabView, a software development environment, was
used to configure different parameters and establish communication between
the ground station and the satellite.

An injection of false data was performed and the data were captured in
text format. This led to two different attacks on the CubeSat system which
are GPS spoofing and attitude control manipulation. For the GPS spoofing
attack, a false GPS signal was sent to mislead the satellite’s navigation and
positioning systems. An attacker sends fraudulent GPS signals that mimic
legitimate signals from GPS satellites. These false signals interfered with

29

the genuine GPS signals received by CubeSat. The CubeSat’s onboard GPS
receiver processes the spoofed signals, causing it to calculate an incorrect
position and trajectory. This misled the satellite about its location and
movement. The CubeSat responded to the manipulated position data by
making erroneous adjustments to its orbit or attitude, resulting in the second
attack. In Attack 2 (Attitude Control Manipulation), the attack targeted the
satellite’s attitude control system, which is responsible for maintaining the
satellite’s orientation in space. By manipulating the system, the attacker
disrupted the satellite’s ability to properly align with its intended position,
affecting its precision in navigation and orientation. This interference led to
issues with the satellite’s positioning systems, ultimately hindering its ability
to carry out its designated functions, such as communication, imaging, or
data collection.
During the CubeSat experiment, engineering data such as the ground station
processor temperature, satellite processor temperature, the ground station
processor voltage, satellite processor voltage, rotational speed, and satellite
magnetic angle, are captured. Various parameters at normal operations are
shown in Figure 3.

Engineering data were collected under two conditions: normal and at-
tack/abnormal. The unlabelled data collection lasted for 180 seconds. For
traffic captured under normal conditions, the temperature processor readings
were captured under an average room temperature of about 24◦C while the
processor voltage was about 3V for both the ground station and satellite sta-
tion. For the rotational speed, a value of 0 was captured as normal from the
satellite while 163◦ was observed as the normal magnetic angle of the satel-
lite. Likewise, while the experiment was carried out in the laboratory, the
conditions were varied to show an attack scenario. The impact resulted in
a change in processor voltage, temperature, magnetic angle, and rotational
speed. The captured data was not labelled and an unsupervised machine
learning technique will be required to analyse the captured data. Shown in
Figure 3 is the visual of the statistical distribution of the dataset obtained
from the CubeSat experimental setup.

Data Pre-processing. The collated engineering data is pre-processed by clean-
ing the raw data and translating it into a format useful for machine learning
analysis. Data normalization is part of the pre-processing. The data nor-
malization process involves transforming variables to a common scale. The
numerical variables are converted into binary representations using the K-

30

means Clustering algorithm.

Pattern Discovery. The next step in the LTL based runtime verification
framework is to learn temporary patterns. Given the type of engineering
data obtained, which is an unlabelled dataset, we implement an unsuper-
vised learning approach. The step towards learning temporary patterns is
the selection of a suitable clustering algorithm and choosing the number of
clusters (k). The clustering outcome is assessed using the Silhouette Co-
efficient, a suitable evaluation metric for unsupervised learning. Using the
elbow method, we identify the optimal number of clusters (3) for various
unsupervised learning algorithms. Following data standardization, we apply
the algorithms with K = 3 and evaluate their performance. Compared to
the other algorithms in Table 2, the evaluation result highlights hierarchical
clustering as the preferred option, achieving a score of 0.7365, which indicates
well-defined and well-separated clusters.

Evaluation Metrics KMeans Spectral Hierarchical GMM BIRCH Mean Shift DBSCAN AGNES

Silhouette Coefficient 0.6652 0.7118 0.8521 0.3152 0.6051 0.6652 0.6652 0.6652

Table 2: The assessment of CubeSat dataset clustering through different algorithms points
to hierarchical clustering as the favoured choice, with a Silhouette Coefficient value of
0.7365.

Clustering presents three clusters (0, 1, 2). With the aid of domain
knowledge, a cluster indicative of the normal, predictive and anomaly are
identified.

Featuring Engineering. By implementing Agglomerative hierarchical cluster-
ing, the dataset is clustered into three groups, cluster ‘2’ is identified as the
group associated with precursor data points, cluster ‘0’ corresponds to the
group of normal data points while Cluster ‘1’ is identified as the group asso-
ciated with abnormal data points.

By applying the Algorithm 1, we extracted n states of the precursor data
points as predictive patterns and m states of the abnormal data points as
anomaly patterns. The values of n and m are indicated in Table 1. The
predictive patterns and anomaly patterns were extracted from positive and
negative traces respectively. The respective traces are then stored in a “pat-
terns.trace” file to be used as input into the LTL formula generator algorithm.

31

Figure 3: The graph displays the statistical distribution of data points for the CubeSat
dataset, with the x-axis representing features and the y-axis showing the distribution of
their values, which includes whiskers and outliers.

LTL Property Learning. In this phase, we learn the LTL formula to describe
sequential patterns in data or system behaviour. After generating the trace

32

file, a representation of the temporary patterns learned from the training
dataset, we fed the file into the Traces2LTL algorithm. As a result, it gener-
ated the Linear Temporal Logic (LTL) formula as shown in Table 3:

Proposition Features Normal Value Range (Inliner) Formula

x1 GS TEMPERATURE 23-25 ¬F (x1)

x2 SAT TEMPERATURE 23-25 ¬F (x2)

x3 GS PROCESSOR VOLTAGE 3 ¬F (x3)

x4 SAT PROCESSOR VOLTAGE 3 ¬F (x4)

x5 SAT ROTATIONAL SPEED 0 ¬F (x5)

x6 ADCS MAGNETIC ANGLE 163 ¬F (x6)

Table 3: Table showing the Case Study 1 LTL propositions, dataset features, their normal
value ranges (Inliner) representing normal states, and the corresponding LTL formulae.

The LTL formula encompassed propositions spanning from x1 to x6. This
formulation emerged because there were no discernible connections between
the parameters denoted by these propositions despite the acquisition of pat-
terns from each parameter.

In Linear Temporal Logic (LTL), the expressions ¬F (x3) and ¬F (x6) in-
dicate that, at a specific future time, the anomaly events at positions x3 and
x6 will ultimately become true, where the propositions x3 and x6 correspond
to “GS PROCESSOR VOLTAGE” and “ADCS MAGNETIC ANGLE” re-
spectively within the dataset. Applying the LTL formula to a satellite com-
munication system dataset implies that anomalies remained false in the time
series until temporary patterns emerged, signalling a departure from nor-
mal system operation. Analysis revealed that a voltage of 3.19 volts and
a magnetic angle of 163 degrees represented values associated with normal
system operations. The LTL formula, applied to variables “GS PROCES-
SOR VOLTAGE” and “ADCS MAGNETIC ANGLE” (denoted as x3 and
x6 respectively), asserts that an anomaly is expected in the future if there is
a deviation from the normal value ranges, indicative of temporary patterns.

Runtime Monitoring. Following the acquisition of the LTL formula, we move
on to the subsequent phase, runtime verification. A CubeSat communication

33

model is developed using a testing dataset that represents 30% of the total
historical dataset. This testing dataset is partitioned into various traces, with
each trace representing a sequence of states. These states are then fed into
a runtime checker to assess the system’s adherence to the property defined
by the generated LTL formula. The runtime verification process, along with
its associated property (the generated LTL formula), is scripted in PAT, as
elaborated in Section 4.5.

The defined property aims to determine the occurrence of anomalies in
any state within the sequence of states. The verifier outputs “true” if such
a state is identified, or “false” if no anomalies are observed throughout the
sequence of states.

5.1.1. Result Analysis

Evaluating our framework techniques involves a comprehensive analysis
of their performance, accuracy, and efficiency in predicting anomalies within
CubeSat communication systems. We identify the first instance of prediction
in the time series and then apply other evaluation metrics, including preci-
sion, recall/sensitivity, and F1-score, as discussed earlier in the evaluation
section, to assess the effectiveness of our techniques in accurately identifying
anomalies.

In the first prediction before the anomaly, the framework made predic-
tions 15 states before the occurrence of an anomaly. Two instances of attack
events were observed in the testing data. The results indicated that two
instances of predictive events were observed. A high precision value of 1.0
indicates that the model’s predictions are mostly correct and signifies that
the model accurately predicted most instances within the dataset. Likewise,
1.0 is a high recall or sensitivity value which indicates that the model is
effective at capturing most of the positive instances. The F1 score, repre-
senting the harmonic mean of precision and recall, is 1.0 in this instance.
For this case study, the evaluation results demonstrate that our framework is
highly effective in predicting anomalies from the testing data. These results
are further compared with other case studies in Table 7, highlighting the
framework’s accuracy in anomaly prediction.

5.2. Case Study 2: Water Distribution System

This is a case study of cyber attacks on the water distribution system of
C-Town, a Supervisory control and data acquisition (SCADA) system and
dataset was created and published by the BATADAL team [41]. Developed

34

for an international competition aimed at securing critical infrastructure,
the dataset features time-series data from a simulated water distribution
system. This data includes normal operations and scenarios where cyber-
attacks manipulate sensor readings or control commands. C-Town consists
of 388 nodes linked with 429 pipes and is divided into 5 district-metered
areas (DMAs). The BATADAL data include the water level at all 7 tanks of
the network (T1–T7), the status and flow of all 11 pumps (P U1 to P U11)
and the one actuated valve (V2) of the network, and pressure at 24 pipes of
the network that correspond to the inlet and outlet pressure of the pumps
and the actuated valve.

The BATADAL dataset includes various types of cyber-attacks that sim-
ulate real-world strategies to disrupt water distribution. For instance, in
Attack 1, pressure features P U10 and P U11 are manipulated from 0 to 1.
Attack 2 involves replaying sensor data to create fluctuations in features like
P U1 and P U2, which, although within normal ranges, can cause issues like
overflow if sustained. Attack 3 is more complex, involving simultaneous ma-
nipulation of multiple features. As described in the study [41], three datasets
(testing and two training datasets) were created. For our experiment, the
Training2 dataset was used which spans approximately six months and fea-
tures several attacks, some of which have been provisionally labelled. We
expanded the size of the dataset with synthesized data. After collating the
dataset, we implement our framework to learn a pattern from the dataset.
Figure 4 is the visual of the dataset for the water distribution system dataset.

Data Pre-processing. The SCADA system monitors a comprehensive set of
43 variables, which encompass the water levels within the tanks (7 variables
represented as L), as well as the inlet and outlet pressure measurements
for both the actuated valve and pumping stations (12 variables denoted as
P). Additionally, it includes the flow rates and operational statuses of the
actuated valve and pumps, represented by 24 variables denoted as F and S -
respectively. We conducted a comprehensive data pre-processing, involving
format conversion, and data normalization.

Pattern Discovery. With the 70% training data, data classification is per-
formed using various classification algorithms, including the random forest
algorithm as identified by Aghashahi et al. [2]. Using evaluation metrics and
a confusion matrix, the result reveals that the random forest algorithm is
more efficient for anomaly detection of the case study data set than other

35

Figure 4: The graph indicates the statistical distribution of data points for the Water
Distribution System dataset, with the x-axis representing feature names and the y-axis
showing the distribution of their values

algorithms. The evaluation result of the random forest algorithm is as fol-
lows: True Positives (492), True Negatives (3685), false Positives (0), and
false Negatives (0). Furthermore, the accuracy, precision, recall and the F1
score are equal to 1.

Featuring Engineering. With the aid of domain expert analysis, we also as-
sessed whether the predicted label of the model derived from the classifica-
tion algorithm aligns with the actual label. The dataset is attack labelled
(“ATT FLAG”) with a 1/0 label column, with 1 representing the abnormal
data point and 0 representing the normal data point.

The next step after confirming the anomaly detection accuracy is the
extraction of temporal patterns leading to the anomaly event. We followed
the pattern discovery process as explained in phase 4.3. The n precursor
states leading to the abnormal data point were extracted, encoded using
techniques like one-hot encoding, and saved as positive traces. Similarly,

36

m states ‘before’ and ‘after’ the abnormal point were encoded and stored
as negative traces. The values of n and m for this case study are listed in
Table 1, and the traces are saved in a trace file.

LTL Property Learning. The next phase is the definition of properties, ex-
pressed using Linear Temporal Logic (LTL). We acquire LTL formulas using
the samples2LTL algorithm with the trace file as input to deduce the sys-
tem property. In PAT, we define the LTL formula as a property in the .csp
format. Table 4 presents the result of the generated LTL formula, and the
proposition along with its representations are represented in the table.

The LTL formula is input as the security property which is used in the
runtime checker.

Runtime Monitoring. We performed the runtime verification of the water
distribution system by creating the runtime model of the water distribution
system from the testing data and verifying the system’s conformance to the
derived LTL formulas. The testing dataset is chunked to form a series of
traces with each trace containing six (6) states of data. Each trace is checked
and input into a runtime checker to verify if the learned LTL formula set as
the property of the system holds. The runtime verification discloses “true”
if there is a state where the property holds, or “false” if there is no presence
of anomalies at any state in the verified sequence of states.

5.2.1. Result Analysis

We evaluate our framework’s performance based on prediction time, pre-
cision, sensitivity and F1-score. A predicted pattern is detected four states
before the anomaly occurs. This deviation indicates that the system’s be-
haviour has violated normal behaviour, which could signify an anomaly, fault,
or unexpected condition. In our data analysis, there were a total of 35 in-
stances of attacks from the synthesised data. Shown in Table 7 is the result
of the analysis. In this case, a precision of 0.91 was recorded, indicating that
the model correctly predicts a positive instance of approximately 91% of the
time, with a sensitivity of 0.94 (94%) indicative of a high proportion of true
positives and an F1 score of 0.93 suggests a good trade-off between precision
and recall.

5.3. Case Study 3: Power Substation Automation Systems

This case study presents a simulated test environment for an IEC 61850-
compliant substation automation system (SAS), as established by the re-

37

Proposition Feature
Normal Value

Range (Inliner)
LTL Formula

x2 L T1 0 - 4

!(F(x30));

x28 && !(x30);

!(x31);

!(x29 U x31);

!x5;

X(x2);

(x5 U x10);

F(x8 && x7);

(! (x21 U x12));

X(X(x22));

(x19 → (x20 U x19));

X(X(X(x9)));

x3 L T2 0 - 5

x5 L T4 2 - 4

x9 F PU1 87 - 121

x10 S PU1 1

x12 S PU2 0 & 1

x13 F PU3 0

x16 S PU4 0 & 1

x19 F PU6 0

x20 S PU6 0

x21 F PU7 0 - 51

x22 S PU7 0 & 1

x28 S PU10 0 & 1

x29 F PU11 0

x30 S PU11 0

x31 F V2 0

Table 4: Table showing the Case study 2 LTL propositions, affected features of the dataset,
their range of values (Inliner) representing the normal states and the generated LTL for-
mula

search conducted by Wang et al. [44]. The study is centred on the utilization
of the IEC 61850 standard, which offers an economically efficient software-
based simulation platform. This testbed is hosted on Oracle VirtualBox and

38

comprises five virtual machines (VMs). Among these VMs, one is responsible
for emulating a scaled-down primary plant within a distribution substation,
employing MATLAB/Simulink. The emulated primary plant encompasses
various components, including a 66kV high-voltage line, two transformers, a
22kV low-voltage line, four feeders, and multiple circuit breakers.

The dataset obtained from the simulated test environment encompasses
two distinct benign operational behaviours observed in substation operations:
normal operation, characterized by the absence of any unusual events, and
emergency operation, which occurs during non-malicious events. A total of
31 datasets were generated based on various scenarios, including 15 benign
scenarios and 16 attack scenarios. The datasets consist of benign behaviour
data, which encompass 7,447 individual samples for normal operation and
12,457 individual samples for emergency operation. Attack datasets include
scenarios involving intelligent electronic devices (IEDs), specifically IED1 and
IED2, with 8,015 and 9,902 individual samples, respectively.

According to the paper [44], the analysed attacks encompass FDIA and
replay attacks. The study involved the creation of eight unique attack sce-
narios about GOOSE messages generated by IED1, and these scenarios were
subsequently replicated for GOOSE messages originating from IED2. Mod-
ification of data in the original message, and addition of fake data or fake
messages were the two forms of FDIA carried out and four attack scenarios
for both the normal operation and the emergency operation respectively were
implemented. All benign behaviour datasets and attack datasets from IED1
were used exclusively for training, while the attack datasets from IED2 were
reserved solely for testing. Each training and testing dataset was further
categorized as follows: two instances of false data injection attacks occurring
during normal operations were labelled as 901 and 903; two occurrences of
message modification attacks during normal operations were labelled as 902
and 904; two instances of false data injection attacks during emergency op-
erations were labelled as 905 and 907; and two cases of message modification
attacks during emergency operations were labelled as 906 and 908.

Data Pre-processing. Our learning LTL formulae process for this case study
begins with an initial step: data pre-processing. In this phase, we remove
categorical data presented as text. Employing a feature selection approach
(using SelectKBest with ANOVA F-statistic), we encapsulate critical infor-
mation, thereby enhancing the model’s capacity to discern patterns within
the data. This transformation resulted in a streamlined dataset, reducing its

39

dimensionality from 36 columns to a more manageable 13 features comprising
of network features (“Heartbeat”, “APPID”, “gocbRef”, “goID”, “Dif Sq”,
“stNum”, “sqNum”, “num of data”, “data Dec”, “data”) and physical fea-
tures (“I CB-TRSF1”, “I FDR1”, “I FDR4”). After the data pre-processing
stage, we proceed to the pattern discovery phase.

Pattern Discovery and Featuring Engineering. Figures 5 to 8 present a visual
representation of the statistical distribution of the water distribution system
dataset. Following the extraction of significant features through a feature
selection mechanism, our focus shifts to discovering patterns in the dataset
which we leverage on the labelled column (‘Label’). We rely on dataset
labelling, assuming that the anomaly detection model proposed by Wang
et al. [44] has effectively identified anomalies in the dataset.

The next phase is the application of domain expert analysis, specifically,
we extracted the ‘positive traces,’ and ‘negative traces’. The positive traces
include n states preceding the malicious events to identify temporary pat-
terns before the occurrence of an attack event. In contrast, the negative
traces comprise m states (before and after the occurrence of an attack event)
indicative of benign occurrences. The values for n and m are indicated in
Table 1.

Consequently, we move forward with the conversion of variables into bi-
nary representation using the One-hot encoding. The binary representation
of variables sets the groundwork for pattern extraction into a trace file, which
serves as the input for the subsequent phase—the learning algorithm for LTL
formulas.

LTL Property Learning. Following the extraction and binary representation
of positive and negative traces, our focus shifts to the LTL (Linear Tempo-
ral Logic) formula learning algorithm, a pivotal phase in our cybersecurity
framework. The positive and negative traces, now in a binary format, are
seamlessly integrated into the LTL learning algorithm. This algorithm sys-
tematically analyses the binary traces to derive LTL formulas that succinctly
capture the temporal relationships and patterns associated with each attack
scenario. The eight distinct attack scenarios (901, 902, 903, 904, 905, 906,
907, and 908) are individually subjected to the LTL learning process. The
dataset characteristics are expressed as propositions (x0, x5, ...) within the
LTL formula, and the diverse representations of these features are illustrated
in Table 5.

40

Proposition x0 x4 x5 x6 x8 x9 x11 x12 x13

Features Heartbeat time Dif Sq num of data I TRSF1-W2 I CB-TRSF1 I TRSF1-W1 I FDR1 I FDR4

Table 5: The propositions of the LTL formula and the corresponding column names they
represent.

Table 6 presents the generated LTL formula for each of the aforemen-
tioned attack scenarios. These formulas serve as a representation of the
identified temporal patterns.

Class 901 902 903 904 905 906 907 908

LTL Formula

F (x0) ¬(F (x4)) F (x0)

G(x4 → x6)

F (x13) F (x9)

F (x11) F (x12)

F (x5)

x6 U x12 F (x5)

¬(x9) F (x8)
X(X(x13))

G(x9)

G(¬(x4))

Table 6: Formulated LTL formula from Power Substation Automation Systems Dataset
for each attack scenario (901-908).

After generating the LTL formulae, we set the security property according
to the formula learned for each testing dataset and perform the runtime
monitoring to validate the system program. The property is used to track
if there is any execution error that traditional testing or static analysis may
not find.

Runtime Monitoring. Using attack datasets of IED2 as the testing, a runtime
model is developed. The behaviour of the system at time series is generated
as a sequence of states where each state represents the system’s state at a
specific point in time. In this phase, the testing data set is split into traces
based on four (4) states per trace, where each row is a state of the system in
a time series. Each trace is fed into the runtime checker.

In runtime monitoring, the compliance of the system via each trace is
verified against the set property using the PAT model checker. During the
execution of the model checker, we continuously monitor the observed be-
haviour of the system, checking whether the observed behaviour satisfies the
specified LTL formula. This involves evaluating the LTL formula over the

41

observed behaviour to determine whether it is true or false. The outcome of
runtime verification can be described as follows: If the checker returns true,
it indicates that the system’s behaviour conforms to the specified property,
thereby verifying the presence of an anomaly and confirming that a violation
has occurred. This implies that the system’s behaviour demonstrates that
an anomalous event is imminent. Conversely, if the checker returns false, it
signifies that no violation has taken place.

5.3.1. Result Analysis

By employing a sequential classification approach based on a sliding win-
dow, Wang et al. [44]’s anomaly detection method successfully identified
insider attacks on a range of devices, achieving an impressively low false-
negative rate of under 1%. Our research goes a step beyond the work con-
ducted by Wang et al. [44]. In contrast, our framework delves into predicting
transient attack patterns and formulates a system security property using
a Linear Temporal Logic (LTL) formula. This formula is then used to as-
sess the system’s compliance in real-time, thus proactively avoiding potential
attacks. Table 7 is the case studies’ evaluation result.

We measured the prediction time and other metrics. The first prediction
occurred 5 states before the anomaly for the class 901 dataset and presented
in Table 7 is the prediction time for other datasets. A precision of at least
60% was achieved and this percentage indicates how precise the model is in
identifying positive instances. Although class 901 exhibited a low precision
rate, higher precision is preferred to minimize false positives, as demonstrated
in other cases presented in Table 7. The framework performs better in the
other case studies.

Sensitivity values are relatively high, at least 70% across the classes. This
suggests that the model is effective at capturing most of the actual positive
instances, which is crucial for identifying potential attacks. F1 scores are
relatively high, with at least 60% in all classes. This suggests a good balance
between precision and recall, indicating that the model is performing well in
terms of both false positives and false negatives.

6. Discussion

We demonstrated our work by applying the framework to three case stud-
ies in cyber-physical systems and predicting anomaly events within their

42

datasets. From the training data, we generated system-specific Linear Tem-
poral Logic (LTL) formulas, which were subsequently fed into the runtime
monitoring process. The runtime monitoring process involves feeding chunks
of testing data as traces (which parameter as indicated in Table 1) into the
runtime checker, using the derived LTL formula from the training data for
each case study as the specification of properties. This process triggers a
”True” or ”False” outcome, indicating whether the system conforms to the
specified properties or not.

From the outcome of the runtime verification, we evaluated each case
study by calculating the prediction time and evaluation metrics such as pre-
cision, sensitivity, and the F1 score based on the confusion matrix. The
table 7 presents the outcome of the evaluation of the three case studies us-
ing our framework to predict the anomaly. The experimental results from
all case studies indicate that the model performs well in all cases except for
classes 2 and 4 in case study 3.

In Case Study 1 (Section 5.1), out of the total testing data, there were
20 anomaly traces. Based on our definition of precursor events, we would
anticipate finding 20 instances or traces of these precursor events. From the
runtime verification, 2 traces were false positive (FP) while no false negative
trace was recorded. This produced an accuracy score of 0.999 with a precision
score of 0.993. This simply means that the framework adequately predicted
most instances of anomaly within the dataset. All anomaly events in the
testing data of the case study were captured.

In Case Study 2 (Section 5.2), false negatives were observed. Out of all
the traces extracted from the testing dataset, 35 attack events were present,
so we anticipated finding 35 precursor events. The evaluation uncovered 2
false positive traces and 2 false negative traces. This means that 2 normal
cases were incorrectly identified as anomalies, while another 2 instances of
anomalies were incorrectly predicted as the negative class.

In Case Study 3 (Section 5.3), across all 8 classes of datasets ranging from
901 to 908, there were recorded rates of 20% false positives and 10% false
negatives. The precision, sensitivity, and F1-score for classes 902 and 904 are
low due to a high number of false positives and false negatives. These issues
can arise due to several factors, including data attack characteristics, noisy
data, inappropriate threshold settings, and complex decision boundaries. In
our future work, we will focus on addressing these issues by implementing
solutions such as data filtering and precise data scaling.

The evaluation results have demonstrated the effectiveness and perfor-

43

Case Studies Prediction Time (rows) Precision Sensitivity F1-Score

Case 1: CubeSat 15 1.0 1.0 1.0

Case 2: BATADAL 4 0.91 0.94 0.93

Case 3: Class 901 5 0.908 0.957 0.932

Case 3: Class 902 3 0.604 0.800 0.688

Case 3: Class 903 5 0.883 0.932 0.888

Case 3: Class 904 2 0.656 0.700 0.677

Case 3: Class 905 4 0.888 0.943 0.915

Case 3: Class 906 3 0.961 0.956 0.958

Case 3: Class 907 5 0.872 0.928 0.899

Case 3: Class 908 3 0.913 0.930 0.921

Table 7: Evaluation Result of the three case studies. Case 1 is the CubeSat dataset and the
anomaly is a false data injection attack, Case 2 is an anomaly in the Water distribution
system (BATADAL) [41]. Case 3 is anomalies in Substation Automation Systems [44]
where class 901, 903, 905, and 907 are different types of replay attacks and class 902, 904,
906 and 908 are different types of false data injection attacks.

mance of our framework; however, several limitations impact its prediction
accuracy. One key limitation is the framework’s dependence on data clus-
tering/classification, which plays a crucial role in identifying patterns and
making predictions. The accuracy of the predictions is highly influenced by
the quality and precision of the clustering process, which may not always be
optimal for all types of data or scenarios.
Furthermore, the determination of which clusters correspond to normal, pre-
cursor and abnormal behaviours is subjective and depends on the expertise
of domain specialists or the setting of a threshold. This introduces another
layer of limitation, as the choice of these labels can vary across different
domains or contexts.

44

6.1. Comparison with other models

The evaluation results indicate that the framework can predict the anomaly,
though we face evaluation challenges in comparing our result outcomes with
other related works. To assess the performance of the proposed framework,
the latter is compared with other models [16, 18, 19, 25, 40].
Existing anomaly prediction models depend on machine learning algorithms
such as the Logistic Regression algorithm [19], Isolation Forest (IF) algo-
rithm [16], Decision Trees [40] while for Interpretable Anomaly Prediction
(IAP) [25], probabilistic anomaly score was determined using regularized
logistic regression. However, there are some deficiencies both in applica-
tion and function. In terms of function, all these models lack the ability to
generate alerts or provide timely responses on predicting the anomalies in
real-time while our framework which combines LTL with machine learning
in a hybrid approach addresses the problem making it an advanced state-of-
the-art model. In terms of application, the input and output data used in
the models of El-Hadad et al. [16], Gu and Wang [18], Hadj-Kacem et al.
[19], and Tan et al. [40] differ from the data employed in our model, making
a direct comparison with our work challenging.

Furthermore, two of the datasets (BATADAL [41] and Power Substation
Automation Systems [44]) deployed in our study were originally used for
anomaly detection models and not for prediction. We analysed the datasets
for anomaly prediction with the assumption that there will exist a predictive
pattern leading to the anomaly events. Our framework extends beyond de-
tecting anomaly events; it is designed to predict the events before the actual
occurrence, thereby serving as a preventive measure against the occurrence of
attacks. We introduced an LTL-based runtime verification technique to pre-
dict anomaly symptoms by applying LTL as system-defined properties which
are human-readable rules, making it easy to interpret flagged anomalies based
on expected temporal patterns. Violations of specific LTL properties directly
explain anomalies, allowing precise identification of cause and context. Based
on our approach, the LTL properties can be tailored to capture the unique
operational behaviours, and failure modes of a specific system and designed
with a special alert state, as illustrated in Figure 2 to ensure a prompt re-
sponse can be made before impact.

6.2. Experimental Evaluation Challenges

We recognise some challenges in evaluating the outcome of our experimen-
tal results with related research. First, our datasets were generated within a

45

simulated environment rather than being collected from an actual real-time
Cyber-Physical System (CPS). The absence of experiments conducted with
real CPS hinders our ability to conclude on the performance of our frame-
work. At this stage, additional experiments are imperative to assert any
generalized claims of the framework to other CPS scenarios.

Second, in the experimental evaluation, two out of the three datasets,
BATADAL [41] and Power Substation Automation System [44] were sourced
online, while the CubaSat dataset was internally generated. Notably, these
datasets were primarily used for anomaly detection assessment rather than
prediction, and the CubaSat dataset has not been publicly released. Con-
sequently, as per our current knowledge, none of these datasets has been
previously employed for anomaly prediction purposes. This lack of compara-
ble prior work limits the available benchmarks for evaluating our framework.

Third, we applied various algorithms for data pre-processing, clustering,
and classification. Our anomaly prediction hinges on the outcomes produced
by these algorithms. The selection of the algorithm depends on the specific
characteristics and nature of the data.

7. Conclusion

Safeguarding users and valuable assets from cyber-attacks is one of the
most important challenges within cybersecurity. Particularly, the tampering
of engineering data in cyber-physical systems and IoT systems can severely
harm the system’s integrity and its users’ well-being.

To address these concerns, we have introduced an LTL based runtime
verification framework that leverages runtime verification, effectively using
the strengths of data analytics and the acquisition of Linear Temporal Logic
(LTL) formulas. This paper delves into the methodology for extracting LTL
formulas from historical data. Our approach involves the processing of his-
torical data, employing clustering techniques to derive sequences that encap-
sulate the evolving pattern. These data sequences are subsequently fed into
an LTL learning algorithm, resulting in the creation of LTL formulas that
encapsulate the detected patterns. An important feature of our framework
is its unique capability to proactively predict anomalies, encompassing both
faults and potential attacks, well in advance of their actual manifestation.

This entire procedure seamlessly integrates into our runtime framework,
resulting in a comprehensive and holistic approach. Our approach effective-
ness is validated through extensive evaluations employing three case studies

46

datasets from cyber-physical systems, where we consistently achieve an im-
pressive accuracy rate of at least 90% across the three cases in pre-emptively
forecasting anomalies within time series data.

References

[1] C. C. Aggarwal and C. C. Aggarwal. An introduction to outlier analysis.
Springer, 2017.

[2] M. Aghashahi, R. Sundararajan, M. Pourahmadi, and M. K. Banks.
Water distribution systems analysis symposium–battle of the attack de-
tection algorithms (batadal). In World Environmental and Water Re-
sources Congress 2017, pages 101–108, 2017.

[3] S. Ahmed, Y. Lee, S.-H. Hyun, and I. Koo. Unsupervised machine
learning-based detection of covert data integrity assault in smart grid
networks utilizing isolation forest. IEEE Transactions on Information
Forensics and Security, 14(10):2765–2777, 2019.

[4] B. A. Alkhaleel. Machine learning applications in the resilience of
interdependent critical infrastructure systems—a systematic literature
review. International Journal of Critical Infrastructure Protection,
44:100646, 2024. ISSN 1874-5482. doi: https://doi.org/10.1016/j.
ijcip.2023.100646. URL https://www.sciencedirect.com/science/

article/pii/S1874548223000598.

[5] A. Alqudhaibi, M. Albarrak, A. Aloseel, S. Jagtap, and K. Salonitis.
Predicting cybersecurity threats in critical infrastructure for industry
4.0: a proactive approach based on attacker motivations. Sensors, 23
(9):4539, 2023.

[6] R. Baheti and H. Gill. Cyber-physical systems. The impact of control
technology, 12(1):161–166, 2011.

[7] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger. Introduction
to runtime verification. Lectures on Runtime Verification: Introductory
and Advanced Topics, pages 1–33, 2018.

[8] M. Bashendy, A. Tantawy, and A. Erradi. Intrusion response systems for
cyber-physical systems: A comprehensive survey. Computers & Secu-
rity, 124:102984, 2023. ISSN 0167-4048. doi: https://doi.org/10.1016/

47

https://www.sciencedirect.com/science/article/pii/S1874548223000598
https://www.sciencedirect.com/science/article/pii/S1874548223000598

j.cose.2022.102984. URL https://www.sciencedirect.com/science/

article/pii/S0167404822003765.

[9] T. Berghout, M. Benbouzid, and S. Muyeen. Machine learning for cyber-
security in smart grids: A comprehensive review-based study on meth-
ods, solutions, and prospects. International Journal of Critical Infras-
tructure Protection, 38:100547, 2022. ISSN 1874-5482. doi: https://doi.
org/10.1016/j.ijcip.2022.100547. URL https://www.sciencedirect.

com/science/article/pii/S1874548222000348.

[10] A. Bernstein and P. K. Harter Jr. Proving real-time properties of pro-
grams with temporal logic. ACM SIGOPS Operating Systems Review,
15(5):1–11, 1981.

[11] J. Chen and X. Ran. Deep learning with edge computing: A review.
Proceedings of the IEEE, 107(8):1655–1674, 2019.

[12] K. Choi, J. Yi, C. Park, and S. Yoon. Deep learning for anomaly detec-
tion in time-series data: Review, analysis, and guidelines. IEEE Access,
9:120043–120065, 2021. doi: 10.1109/ACCESS.2021.3107975.

[13] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Formalization and val-
idation of safety-critical requirements. arXiv preprint arXiv:1003.1741,
2010.

[14] B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen, J. Jiang, Y. Zhu, J. Liu,
B. Zhang, and G.-W. Wei. Machine learning methods for small data
challenges in molecular science. Chemical Reviews, 123(13):8736–8780,
2023.

[15] X. Du, A. Tiu, K. Cheng, and Y. Liu. Trace-length independent runtime
monitoring of quantitative policies. IEEE Transactions on Dependable
and Secure Computing, 18(3):1489–1510, 2019.

[16] R. El-Hadad, Y. F. Tan, and W. N. Tan. Anomaly prediction in elec-
tricity consumption using a combination of machine learning techniques.
International Journal of Technology, 13(6):1317–1325, 2022.

[17] Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verifica-
tion. Engineering dependable software systems, pages 141–175, 2013.

48

https://www.sciencedirect.com/science/article/pii/S0167404822003765
https://www.sciencedirect.com/science/article/pii/S0167404822003765
https://www.sciencedirect.com/science/article/pii/S1874548222000348
https://www.sciencedirect.com/science/article/pii/S1874548222000348

[18] X. Gu and H. Wang. Online anomaly prediction for robust cluster sys-
tems. In 2009 IEEE 25th International Conference on Data Engineering,
pages 1000–1011. IEEE, 2009.

[19] I. Hadj-Kacem, S. B. Jemaa, S. Allio, and Y. B. Slimen. Anomaly
prediction in mobile networks : A data driven approach for machine
learning algorithm selection. In NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, pages 1–7, 2020. doi: 10.1109/
NOMS47738.2020.9110429.

[20] K. Havelund and D. Peled. Runtime verification: from propositional
to first-order temporal logic. In Runtime Verification: 18th Interna-
tional Conference, RV 2018, Limassol, Cyprus, November 10–13, 2018,
Proceedings 18, pages 90–112. Springer, 2018.

[21] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[22] Z. Hou, Q. Li, E. Foo, J. Song, and P. Souza. A digital twin runtime
verification framework for protecting satellites systems from cyber at-
tacks. In 2022 26th International Conference on Engineering of Complex
Computer Systems (ICECCS), pages 117–122. IEEE, 2022.

[23] J. Hu, B. Lennox, and F. Arvin. Robust formation control for networked
robotic systems using negative imaginary dynamics. Automatica, 140:
110235, 2022.

[24] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor. Un-
supervised learning. In An Introduction to Statistical Learning: with
Applications in Python, pages 503–556. Springer, 2023.

[25] R. Langone, A. Cuzzocrea, and N. Skantzos. Interpretable anomaly
prediction: Predicting anomalous behavior in industry 4.0 settings via
regularized logistic regression tools. Data & Knowledge Engineering,
130:101850, 2020. ISSN 0169-023X. doi: https://doi.org/10.1016/j.
datak.2020.101850. URL https://www.sciencedirect.com/science/

article/pii/S0169023X1830644X.

[26] A. Legay, B. Delahaye, and S. Bensalem. Runtime verification. Lecture
Notes in Computer Science, 6418:122–135, 2010.

49

https://www.sciencedirect.com/science/article/pii/S0169023X1830644X
https://www.sciencedirect.com/science/article/pii/S0169023X1830644X

[27] T. Li, M. L. Comer, E. J. Delp, S. R. Desai, J. L. Mathieson, R. H.
Foster, and M. W. Chan. Anomaly scoring for prediction-based anomaly
detection in time series. In 2020 IEEE Aerospace Conference, pages 1–7.
IEEE, 2020.

[28] P. Malhotra, L. Vig, G. Shroff, P. Agarwal, et al. Long short term
memory networks for anomaly detection in time series. In Esann, volume
2015, page 89, 2015.

[29] D. Neider and I. Gavran. Learning linear temporal properties. In
2018 Formal Methods in Computer-Aided Design (FMCAD), pages 1–
10. IEEE, 2018.

[30] A. Pnueli. The temporal logic of programs. In 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977), pages 46–57.
ieee, 1977.

[31] R. Raha, R. Roy, N. Fijalkow, and D. Neider. Scalable anytime algo-
rithms for learning fragments of linear temporal logic. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 263–280. Springer, 2022.

[32] V. S. Rajkumar, A. Ştefanov, A. Presekal, P. Palensky, and J. L. R. Tor-
res. Cyber attacks on power grids: Causes and propagation of cascading
failures. IEEE Access, 2023.

[33] H. Riggs, S. Tufail, I. Parvez, M. Tariq, M. A. Khan, A. Amir, K. V.
Vuda, and A. I. Sarwat. Impact, vulnerabilities, and mitigation strate-
gies for cyber-secure critical infrastructure. Sensors, 23(8):4060, 2023.

[34] C. Schaffer. Selecting a classification method by cross-validation. Ma-
chine learning, 13:135–143, 1993.

[35] S. Schmidl, P. Wenig, and T. Papenbrock. Anomaly detection in time se-
ries: a comprehensive evaluation. Proceedings of the VLDB Endowment,
15(9):1779–1797, 2022.

[36] K. R. Shahapure and C. Nicholas. Cluster quality analysis using silhou-
ette score. In 2020 IEEE 7th international conference on data science
and advanced analytics (DSAA), pages 747–748. IEEE, 2020.

50

[37] Z. Shang, Y. Zhang, X. Zhang, Y. Zhao, Z. Cao, and X. Wang.
Time series anomaly detection for kpis based on correlation analysis
and hmm. Applied Sciences, 11(23), 2021. ISSN 2076-3417. doi:
10.3390/app112311353. URL https://www.mdpi.com/2076-3417/11/

23/11353.

[38] J. Sun, Y. Liu, and J. S. Dong. Model checking csp revisited: Introducing
a process analysis toolkit. In International symposium on leveraging
applications of formal methods, verification and validation, pages 307–
322. Springer, 2008.

[39] J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards flexible veri-
fication under fairness. In International conference on computer aided
verification, pages 709–714. Springer, 2009.

[40] Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly prediction
for large-scale hosting infrastructures. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing,
pages 173–182, 2010.

[41] R. Taormina, S. Galelli, N. O. Tippenhauer, E. Salomons, A. Ostfeld,
D. G. Eliades, M. Aghashahi, R. Sundararajan, M. Pourahmadi, M. K.
Banks, et al. Battle of the attack detection algorithms: Disclosing cyber
attacks on water distribution networks. Journal of Water Resources
Planning and Management, 144(8):04018048, 2018.

[42] E. Umargono, J. E. Suseno, and S. V. Gunawan. K-means clustering
optimization using the elbow method and early centroid determination
based on mean and median formula. In The 2nd International Semi-
nar on Science and Technology (ISSTEC 2019), pages 121–129. Atlantis
Press, 2020.

[43] M. A. Umer, C. M. Ahmed, M. T. Jilani, and A. P. Mathur. Attack
rules: an adversarial approach to generate attacks for industrial control
systems using machine learning. In Proceedings of the 2th Workshop on
CPS&IoT Security and Privacy, pages 35–40, 2021.

[44] X. Wang, C. Fidge, G. Nourbakhsh, E. Foo, Z. Jadidi, and C. Li.
Anomaly detection for insider attacks from untrusted intelligent elec-
tronic devices in substation automation systems. IEEE Access, 10:6629–
6649, 2022. doi: 10.1109/ACCESS.2022.3142022.

51

https://www.mdpi.com/2076-3417/11/23/11353
https://www.mdpi.com/2076-3417/11/23/11353

[45] L. Yang. Pat: Process analysis toolkit, 2009. URL https://pat.comp.

nus.edu.sg/. Accessed: 17 October, 2024.

[46] X.-X. Yin, Y. Miao, and Y. Zhang. Time series based data explorer and
stream analysis for anomaly prediction. Wireless Communications and
Mobile Computing, 2022(1):5885904, 2022.

[47] H. Zhang, B. Liu, and H. Wu. Smart grid cyber-physical attack and
defense: A review. IEEE Access, 9:29641–29659, 2021.

[48] X. Zheng, C. Julien, M. Kim, and S. Khurshid. Perceptions on the state
of the art in verification and validation in cyber-physical systems. IEEE
Systems Journal, 11(4):2614–2627, 2015.

[49] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez. Braceassertion:
Runtime verification of cyber-physical systems. In 2015 IEEE 12th In-
ternational Conference on Mobile Ad Hoc and Sensor Systems, pages
298–306. IEEE, 2015.

52

https://pat.comp.nus.edu.sg/
https://pat.comp.nus.edu.sg/

(a) 901

(b) 902

Figure 5: The graph indicates the statistical distribution of data points for the Power
Substation Automation Systems dataset for class 901 and 902.

53

(a) 903

(b) 904

Figure 6: The graph indicates the statistical distribution of data points for the Power
Substation Automation Systems dataset for class 903 and 904.

54

(a) 905

(b) 906

Figure 7: The graph indicates the statistical distribution of data points for the Power
Substation Automation Systems dataset for class 905 and 906.

55

(a) 907

(b) 908

Figure 8: The graph indicates the statistical distribution of data points for the Power
Substation Automation Systems dataset for class 907 and 908.

56

	Introduction
	Motivation
	Literature gap
	Our Framework

	Related Work
	Prediction Based Anomaly Detection
	Anomaly Prediction

	Preliminaries
	Data Formalization
	Time Series Data
	Labelling Process

	Linear Temporal Logic (LTL)
	Runtime Verification Specification

	The Proposed Framework
	Phase I: Dataset Pre-processing
	Phase II: Pattern Discovery
	Phase III: Feature Engineering
	Group selection
	Extraction process

	Phase IV: LTL Property Learning
	Phase V: Runtime Monitoring

	Experimental Evaluation
	Case Study 1: Satellite Communication Systems
	Result Analysis

	Case Study 2: Water Distribution System
	Result Analysis

	Case Study 3: Power Substation Automation Systems
	Result Analysis

	Discussion
	Comparison with other models
	Experimental Evaluation Challenges

	Conclusion

