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Abstract

Separation logic (SL) is an extension of Hoare logic to reason about programs with
mutable data structures. This dissertation studies automated reasoning for the asser-
tional language (i.e., formulae that represent pre- and post-conditions) of separation
logic. We start from the core of separation logic called Boolean BI (BBI), then consider
various propositional abstract separation logics (PASLs) as extensions of BBI. These
logics are “abstract” because they are independent of any particular concrete memory
model. Finally, we look at separation logic with Reynolds’s heap model semantics.

We first try to capture BI logics using nested sequents. Our design has a special
structure of interleaving additive and multiplicative nested sequents. We discover
that this nested structure causes much complication when considering the rules for
transferring information between nested sequents. Then we change the angle to solve
this problem by using labelled sequents.

We present a labelled sequent calculus LSBBI for BBI. The calculus is simple, sound,
complete, and enjoys cut-elimination. We show that all the structural rules in LSBBI can
be localised around applications of certain logical rules, based on which we demon-
strate a free variable calculus that deals with the structural rules lazily in a constraint
system. We propose a heuristic method to quickly solve certain constraints, and show
some experimental results to confirm that our approach is feasible for proof search.

Based on LSBBI, we develop a modular proof theory for various PASLs using cut-
free labelled sequent calculi. We first extend LSBBI to handle Calcagno et al.’s original
logic of separation algebras by adding rules for partial-determinism and cancellativity.
We prove the completeness of our calculus via an intermediate calculus that enables
us to construct counter-models from the failure to find a proof. We then capture
other PASLs by adding rules for other properties in separation theories. We present a
theorem prover based on our labelled calculi for these logics.

For concrete heap semantics, we consider Reynolds’s SL with all logical connectives
but without arbitrary predicates. This logic is not recursively enumerable but is very
useful in practice. We give a sound labelled sequent calculus LSSL for this logic. We
illustrate the subtle deficiencies of some existing proof calculi for SL, and show that
our rules repair these problems. We extend LSSL with rules for linked lists and binary
trees, giving a sound, complete and terminating proof system for a popular fragment
called symbolic heap. Our prover shows comparable results with Smallfoot on valid
formulae and on formulae extracted from program verification examples, but it is
not competitive on large invalid formulae. However, our prover handles the largest
fragment of logical connectives in SL.
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Chapter 1

Introduction

Programming is the daily job for many people working in information technology,
computer science and engineering. Program code is compiled to build software or
applications and is now embedded in almost every aspect of our lives. It is certainly
important to write, compile and build programs, but it is also important to know
that the programs are running in the way they are expected to. Testing is a common
method to reduce errors in programs and software, but one can never prove that a
program is correct by testing, as Edsger Dijkstra said [30]:

Program testing can be used to show the presence of bugs, but never to
show their absence!

Another way to attack the problem is to formally verify that a program is correct,
this is a job about logical reasoning and proofs, and this is where Hoare logic [48]
comes into play by analysing a piece of program code and the states before and after
the code. Hoare logic employs a simple programming language with sequencing, as-
signment command, conditional command of the form “if...then...else”, and “while”
loop. Although this language is Turing complete, which means it can express any com-
putable computation, modern programming languages often have more complicated
features such as pointers, references etc., the use of which is error-prone in program
code. Separation logic deals with this issue by extending Hoare logic with memory
manipulation commands in the programming language. However, a new way to solve
the problem also opens up more problems. The assertions in Hoare logic to express
the states of programs are formulated in classical (first-order) logic with arithmetic,
which is a well-developed logic but is no longer sufficient in separation logic. To ex-
press and reason about memory resources in separation logic, the assertional language
in Hoare logic is also extended with new logical connectives and special predicates.
Consequently, we need a new logic to reason about the assertions in separation logic.

Separation logic is a huge topic involving programming languages, assertional
reasoning, and specification verification. In this dissertation we will not look at all of
them, but will zoom in on the part of assertions, whose logic is historically ambigu-
ously also called “separation logic”. Our aim is to find proof methods to verify the
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2 Introduction

validity of assertions. This is particularly useful since some Hoare logic rules rely on
this type of reasoning. The assertional language of separation logic, on the one hand is
built upon classical logic, is also an application of the less known bunched logics [74],
which involve two non-classical logics: intuitionistic logic [58] and linear logic [40].
This dissertation first studies bunched logics, then considers separation logics.

This chapter sets up the scene for our work and gives necessary background knowl-
edge in classical logic, intuitionistic logic and linear logic. We discuss these logics at
a high level in terms of syntax, semantics, proof theory, and proof search. Bunched
logics will be reviewed in Chapter 2 and separation logics in Chapter 5. Chapter 3
and 4 give our main results on bunched logics, and Chapter 6 and 7 present our con-
tributions on separation logics respectively with abstract and concrete semantics.

1.1 Logic and Reasoning

Logic in the broad sense is the study of valid reasoning, it is a cross-discipline subject
that features philosophy, mathematics, and computer science. Logical reasoning takes
many forms, historically we have been reasoning via informal natural languages, for-
mal inferences, mathematics etc.. But unlike the fantasy advertised by many fictions
and movies, logical reasoning never tells us anything fundamentally new, it only helps
to dig out the facts and relations hidden in our knowledge. The logics we consider in
this dissertation are symbolic logics, which focus on symbolic abstractions that capture
formal reasoning using inferences. The notion of symbolism emerged centuries ago
from the wild proposal of Leibniz, who intended to find a universal language that can
express everything and a calculus of reasoning with some mechanisation to decide
the truth of assertions in that language. Hilbert’s programme started in around 1900
aimed at a related task to capture mathematics in consistent and complete theories.
But after Gödel, Turing et al.’s work from 1931 onward, we now know that Leibniz
and Hilbert were far too ambitious. However, the idea of formalising reasoning using
abstract symbols has the advantage that the person, or even a machine, who carries
out the proof does not need to understand the meaning of the proof and the object to
be proved at all, one only has to apply the inference rules as instructed by the calculus
and its mechanisation. This is exactly what machines are good at and why symbolism
is the key to make automated reasoning possible. Here we call the symbolic represen-
tation of a language as the syntax, the meaning of symbols as semantics, the calculus
of reasoning as proof theory, and the mechanisation as proof search. These will be the
aspects we look at logic and reasoning in the sequel.

1.1.1 Syntax and Semantics of Classical Logic

We start from classical logic, which is widely used and arguably is the oldest of all
logics, it is also a part of our long term target separation logic. We shall use the
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notations of Fitting [34], Troelstra and Schwichtenberg [93], and Harrison [47] for the
introduction to classical logic.

For the syntax, we consider the following logical connectives as first-class citizens:
¬,∨,∧,→, ∀, ∃. Logical constants are ⊥,>. Note that = is not first-class in this defini-
tion. We use the following notation for objects in the language:

• variables are denoted by x, y, z, ...
• function symbols are denoted by f , g, h, ...
• constants are denoted by a, b, c, ...
• terms are denoted by t, s, r, ...
• atomic formulae are P, Q, ...
• relations/predicates symbols are denoted by R with subscripts or superscripts
• arbitrary formulae are written as A, B, C, ...

The arity of a function or a relation is the number of arguments it takes. Constants
can be seen as functions of arity 0, i.e., functions with no arguments. Terms are built
up from variables and functions as follows:

• any variable is a term;
• any expression f (t1, · · · , tn), where f is a n-ary function symbol and t1, · · · , tn

are terms, is a term.

Formulae in classical (first-order) logic are defined inductively as:

• >,⊥ are atomic formulae;
• any expression R(t1, · · · , tn), where R is a n-ary relation/predicate symbol and

t1, · · · , tn are terms, is an atomic formula;
• if A is a formula, so is ¬A;
• if A, B are formulae, so are A ∨ B, A ∧ B, A→ B;
• if A is a formula and x is a variable, then ∀x.A and ∃x.A are formulae.

The semantics of classical logic are determined by a non-empty domain D of objects
that we can quantify over, an interpretation I that specifies the meaning of functions
and relations, and a valuation v that specifies the meaning of variables. The pair (D, I)
is called a model. We write Dn to mean a tuple of n elements in D. Formally, the
interpretation I

• maps each n-ary function symbol f to a function f I : Dn → D;
• maps each n-ary relation symbol R to a boolean function RI : Dn → {true,false}.

The valuation v maps each variable to an item in the domain D. We write tI,v for the
value of term t valuated by interpretation I and valuation v. The value of terms under
the interpretation I and valuation v are defined as follows:

• xI,v = v(x)
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[R(t1, · · · , tn)]I,v =

{
true if RI(t

I,v
1 , · · · , tI,v

n ) = true
false otherwise

[¬A]I,v =

{
true if AI,v is false
false otherwise

[A ∧ B]I,v =

{
true if AI,v and BI,v are true
false otherwise

[A ∨ B]I,v =


true if AI,v is true or

BI,v is true
false otherwise

[A→ B]I,v =


true if AI,v is false or

BI,v is true
false otherwise

[∃x.A]I,v =


true if for some d ∈ D,

AI,v[d/x] is true
false otherwise

[∀x.A]I,v =


true if for all d ∈ D,

AI,v[d/x] is true
false otherwise

⊥I,v = false

>I,v = true

Table 1.1: The semantics of classical logic.

• [ f (t1, · · · , tn)]I,v = f I(tI,v
1 , · · · , tI,v

n )

A special case of a zero arity function is that a constant a is valuated as aI , since no
variables are involved. The semantics for each type of formula is given in Table 1.1,
where v[d/x] is a valuation that agrees with v but with x mapped to d.

A classical logic formula A is true in the model (D, I) if AI,v is true for every
valuation v. A formula is valid if it is true in all models; a formula is satisfiable if it is
true in some model.

1.1.2 Sequent Calculus for Classical Logic

There are often many proof calculi for a logic. In the case for classical logic, Hilbert
gave a set of axioms and deduction rules, now called the Hilbert system (discussed
in Section 2.2), Gentzen [39] later gave two types of proof calculi, namely the natural
deduction calculus NK and the sequent calculus LK. Natural deduction calculus sim-
ulates the way humans do reasoning, while sequent calculus is more mechanical and
amenable to mathematical analysis and automated reasoning. For this reason, we will
only cover the latter calculus here.

A sequent in LK is an expression of the form

A1, · · · , An ` B1, · · · , Bm

where A1, · · · , An and B1, · · · , Bm are both sequences of formulae. The symbol ` is
called turnstile, which should be thought of as an implication. The left hand side of `
is called the antecedent, the right hand side is the succedent. Commas in the antecedent
mimic conjunction ∧, while commas in the succedent are proxies for disjunction ∨.
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Therefore the above sequent can be seen as

A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm.

We shall use uppercase greek letters such as Γ, ∆ for arbitrary structures, i.e., comma
separated formulae. An inference rule r is in the form

ρ1 · · · ρn
r

α

where the sequents ρ1, · · · , ρn are premises and the sequent α is the conclusion. A rule
with no premises is called a zero-premise rule, a rule is unary (resp. binary) if it has one
premise (resp. two premises). We may apply substitutions in a rule application. A
substitution [y/x] on a formula A replaces every occurrence of x in A by y. Inference
rules in LK [39] are given in Figure 1.11.

The original LK calculus does not include rules for logical constants > and ⊥,
which can be encoded as P → P and P ∧ ¬P respectively. We give the derived rules
for > and ⊥ as below.

Γ ` ∆
>L

Γ,> ` ∆
>R

Γ ` >, ∆
⊥L

Γ,⊥ ` ∆
Γ ` ∆

⊥R
Γ ` ⊥, ∆

A formula A is provable/derivable if we can build a derivation tree using the in-
ference rules such that ` A is the bottom sequent of the derivation, and each top
sequent in the derivation is the empty sequent, i.e., the top of a zero-premise rule. See
Figure 1.2 for an example derivation of A→ (B→ (A ∧ B)) in LK.

Usually we are interested in two basic properties of a proof calculus: soundness
and completeness. A proof calculus is sound if every provable formula is valid, it is
complete if every valid formula is provable. It is proven that LK is as powerful as NK
and the Hilbert system: they are all sound and complete for classical logic.

1.1.3 Backward Proof Search and Cut-elimination

When we prove a formula A using LK, instead of starting from zero-premise rules and
working downward, we often start from the sequent ` A and apply the inference rules
backwards (upwards). The applications of rules form a derivation tree where ` A is the
bottom sequent, and each rule application with n premises forks n branches in the tree.
When we apply a zero-premise rule on a sequent upwards, we say the corresponding
branch is closed. The formula is proved when every branch in the derivation tree is
closed, this process is called backward proof search. A backward proof search procedure
is effectively a proof by contradiction, explained as follows: a sequent Γ ` ∆ can be
falsified when “everything in Γ is true and everything in ∆ is false”. We start from
` A, assuming that A is false, and try to find counter-examples to falsify this sequent

1The rules ∨L and ∧R copy all the context upwards, while the rule → L splits the context in the
conclusion. These are Gentzen’s original rules in LK.
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Identity and Cut:

id
A ` A

Γ ` ∆, A A, Γ′ ` ∆′
cut

Γ, Γ′ ` ∆, ∆′

Logical Rules:

Γ, A ` ∆
∧L1

Γ, A ∧ B ` ∆
Γ, B ` ∆

∧L2
Γ, A ∧ B ` ∆

Γ ` A, ∆
∨R1

Γ ` A ∨ B, ∆
Γ ` B, ∆

∨R2
Γ ` A ∨ B, ∆

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨ B ` ∆
Γ ` A, ∆ Γ ` B, ∆

∧R
Γ ` A ∧ B, ∆

Γ ` A, ∆ B, Γ′ ` ∆′
→ L

Γ, Γ′, A→ B ` ∆, ∆′
Γ, A ` B, ∆

→ R
Γ ` A→ B, ∆

Γ ` A, ∆
¬L

Γ,¬A ` ∆
Γ, A ` ∆

¬R
Γ ` ¬A, ∆

Γ, A[t/x] ` ∆
∀L

Γ, ∀x.A ` ∆
Γ ` A[y/x]∆

∀R
Γ ` ∀x.A, ∆

Γ, A[y/x] ` ∆
∃L

Γ, ∃x.A ` ∆
Γ ` A[t/x]∆

∃R
Γ ` ∃x.A, ∆

Structural Rules:

Γ ` ∆
WL

Γ, A ` ∆
Γ ` ∆

WR
Γ ` A, ∆

Γ, A, A ` ∆
CL

Γ, A ` ∆
Γ ` A, A, ∆

CR
Γ ` A, ∆

Γ, A, B, Γ′ ` ∆
EL

Γ, B, A, Γ′ ` ∆
Γ ` ∆, A, B, ∆′

ER
Γ ` ∆, B, A, ∆′

Side Condition: in ∀R and ∃L, y does not occur in the conclusion.

Figure 1.1: The sequent calculus LK for classical logic.

id
A ` A

WL
A, B ` A

id
B ` B

WL
B, A ` B

EL
A, B ` B

∧R
A, B ` A ∧ B

→ R
A ` B→ (A ∧ B)

→ R
` A→ (B→ (A ∧ B))

Figure 1.2: An example derivation of A→ (B→ (A ∧ B)) in LK.
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using backward proof search. The fact that the proof search ends with every branch
closed means that every possibility for A to be false leads to a contradiction, so A must
be valid. If a branch in the derivation cannot be closed whatsoever, then that branch
is indeed a counter-example that falsifies A.

One important aspect of backward proof search is to control the structural rules,
especially cut and contraction, because they can be applied as often as one wishes
hence they may yield infinite proof search. Logical rules, on the other hand, break the
formulae down to smaller subformulae, and eliminate logical connectives upwards,
thus purely logical rule applications from the original LK would eventually stop. As a
result, many variants of LK have arisen to ensure that proof search is driven by logical
connectives.

It is easy to make the rules EL and ER admissible. We only need to assume that
the antecedent and succedent of a sequent are made of multisets rather than lists.
The rules WL, WR for weakening2 can be absorbed into zero-premise rules, in fact,
the derived rules for >R and ⊥L already have weakening built in. That is, we allow
contexts Γ, ∆ to appear in the conclusion. Similarly, we can change the rule id to

id
Γ, A ` A, ∆

Contraction, handled by the rules CL and CR, needs more care. We have to copy some
formulae or structures from the conclusion to the premise(s) when necessary. The
following rules for ∧L and ∨R merge the two cases in the original LK:

Γ, A, B ` ∆
∧L

Γ, A ∧ B ` ∆
Γ ` A, B, ∆

∨R
Γ ` A ∨ B, ∆

The new ∧L rule, for example, builds in a contraction of A ∧ B, and applications of
∧L1 and ∧L2 to obtain A and B respectively. In → L, we now need to copy the entire
context to both premises. That is,

Γ ` A, ∆ Γ, B ` ∆
→ L

Γ, A→ B ` ∆

Finally, the ∀L rule assumes that ∀x.A is true in the conclusion, and replaces x by
some t in the premise. Since every item d in the domain makes A[d/x] true, the t we
choose in the rule application may not be the (only) one we need, thus we should keep
the formula ∀x.A so that we can instantiate x to other items in the domain at higher
places in the derivation, similarly for the rule ∃R. In light of this, the rules ∀L and ∃R
are modified as follows:

Γ, ∀x.A, A[t/x] ` ∆
∀L

Γ, ∀x.A ` ∆
Γ ` ∃x.A, A[t/x], ∆

∃R
Γ ` ∃x.A, ∆

Note that the principal formula in the above rules is copied to the premise. Thus
the principal formula can be used as many times as possible in the proof search. The
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Identity and Cut:

id
Γ, A ` A, ∆

Logical Rules:

Γ, A, B ` ∆
∧L

Γ, A ∧ B ` ∆
Γ ` A, ∆ Γ ` B, ∆

∧R
Γ ` A ∧ B, ∆

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨ B ` ∆
Γ ` A, B, ∆

∨R
Γ ` A ∨ B, ∆

Γ ` A, ∆ Γ, B ` ∆
→ L

Γ, A→ B ` ∆
Γ, A ` B, ∆

→ R
Γ ` A→ B, ∆

Γ ` A, ∆
¬L

Γ,¬A ` ∆
Γ, A ` ∆

¬R
Γ ` ¬A, ∆

Γ, ∀x.A, A[t/x] ` ∆
∀L

Γ, ∀x.A ` ∆
Γ ` A[y/x]∆

∀R
Γ ` ∀x.A, ∆

Γ, A[y/x] ` ∆
∃L

Γ, ∃x.A ` ∆
Γ ` ∃x.A, A[t/x], ∆

∃R
Γ ` ∃x.A, ∆

Side Condition: in ∀R and ∃L, y does not occur in the conclusion.

Figure 1.3: The alternative sequent calculus LK′ for classical logic.

above modifications yield an alternative version of LK, here called LK’, summarised
in Figure 1.3. The proof systems LK and LK’ are equivalent.

We say an inference rule

ρ1 · · · ρn
r

α

is admissible in a calculus when we can prove that, if the premises ρ1, · · · , ρn are all
derivable in the calculus, then the conclusion α is also derivable in the calculus without
using the rule r. With the above modifications, all the structural rules in LK are
admissible, so they are not needed for the completeness of LK anymore.

There is another rule that may cause uncertainty in proof search: the cut rule. In
a backward cut application, we have to guess the formula A (called the cut formula)
in the premise, that formula can be any (sub)formula in the conclusion, or even a new
formula. The presence of the cut rule certainly is a headache in proof search, this leads
to Gentzen’s Hauptsatz (main theorem), the cut-elimination theorem: every formula

2Called “thinning” in the original LK.
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that is derivable in LK can be derived without using the cut rule. The profound
impact of cut-elimination, however, is not in our scope of discussion.

The alternative proof system LK’ is more amenable to backward proof search and
automation. The only trouble in proof search would be the new ∀L and ∃R rule, which
do not eliminate the corresponding connective in the premise, and may still cause non-
termination, which unfortunately is inevitable for classical (first-order) logic reasoning.
At the worst, we can still tell a machine to apply the rules fairly, e.g., iteratively apply
each rule in every possible way so that each possible rule application could eventually
be tried. In this way, if a formula is valid, we will eventually find a derivation; but if a
formula is invalid, our algorithm may never stop.

1.2 Intuitionistic Logic and Linear Logic

While classical logic has been used for a long time in the history, there are situations
where we demand different ways of reasoning. The assertional language of separa-
tion logic (cf. Section 5.1), for example, finds classical logic inadequate, thus extends
classical logic with some features from bunched logics (cf. Section 2.1), which, besides
the use of classical logic, also mix the flavours of two non-classical logics: intuitionistic
logic and linear logic. We briefly discuss these two non-classical logics in this section.

1.2.1 Intuitionistic Logic

The need for intuitionism, dating back to early 20th century, comes from the notion of
“constructive proof” in mathematics, which shows each step of reasoning by giving
an evidence of a mathematical object [92]. Classical logic validates two theorems that
have the same effect on provability: ¬¬A → A, i.e., double negation elimination; and
A ∨ ¬A ↔ >, i.e., the law of excluded middle. It turns out that these two classical
theorems are the source of non-constructivism in classical logic, and denying either of
them from classical logic gives intuitionistic logic.

Let us see some examples of non-constructive proofs [47]. A typical example proof
using double negation elimination is for the following problem:

Prove that at least one of e + π and e− π is irrational.

Proof. Proof by contradiction. Assume that both e+π and e−π are rational, then their
sum 2e should be rational, which is false, therefore at least one of them is irrational.

The above proof is perfectly fine, but we still do not know which one of e + π and
e − π is irrational, that is, no evidence is given in the proof. For another example
using the law of excluded middle, consider the following:

Prove that there are two irrational numbers x, y such that xy is rational.
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Proof. Consider
√

2
√

2
, if it is rational, then x = y =

√
2 is a solution; otherwise let

x =
√

2
√

2
and y =

√
2, xy =

√
2

2
= 2 is rational.

Again, the proof is legitimate, but there is no concrete evidence of x and y.
A logic can be defined by its syntax and semantics, or it can be defined by syntax

and proof theory. In this and the next subsection, we shall define logics by giving its
syntax and proof theory.

The syntax of intuitionistic logic is the same as classical logic, we only need to
modify the sequent calculus LK so that theorems such as double negation elimination
and the law of excluded middle cannot be proven. Gentzen originally proposed a se-
quent calculus LJ for intuitionistic logic as LK with the restriction that in the succedent
of each sequent, no more than one formula is permissible.

In this dissertation we will mainly use intuitionistic logic at the propositional level,
that is, we do not consider terms, functions, relations, and quantifiers; the atomic for-
mulae will then be just atomic propositions. The sequent calculus for propositional
intuitionistic logic thus does not have rules for quantifiers, and there is an easy adap-
tation from LK without quantifier rules, one only need to change the → R rule to the
following:

Γ, A ` B
→ R

Γ ` A→ B, ∆

This variant of LJ is often called LJ′, which allows multiple formulae in the succedent,
but the context ∆ in the rule→ R does not appear in the premise. The sequent calculus
LJ′ is sound and complete for intuitionistic logic, and it enjoys cut-elimination.

1.2.2 Linear Logic

Another situation where classical logic is inappropriate is reasoning about resources.
For example, we can phrase “if I have a coin, I can buy a chocolate” as coin → choc,
but the idempotence of ∧ in classical logic (i.e., A↔ A ∧ A) makes the above formula
equivalent to coin → choc ∧ choc, which, depending on the interpretation of ∧, might
be understood as “if I have a coin, I can buy two chocolates”, which is obviously not
the same as the original sentence. So logical connectives such as conjunction need to
be interpreted carefully when resource reasoning is involved. If we interpret A ∧ A as
two copies of A, then we should not make ∧ idempotent.

Girard’s linear logic [40] deals with this problem by allowing two different flavours
of logical connectives: normal logical connectives (additives) as in classical logic, and
linear connectives (multiplicatives) that are not idempotent.

Even at the propositional level, the syntax of linear logic is more involved than
propositional (classical) logic, here we shall adapt the notation from Troelstra and
Schwichtenberg [93] instead, which gives more resemblance to classical logic and is
less confusing. Additive logical constants are > and ⊥, multiplicatively we have “unit”
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1 and “zero”3 0. Additive logical connectives are ∧,∨,→ as usual; while multiplica-
tively the conjunction ∗ is called “tensor” (or “times”, written as ◦ in some literature),
the disjunction + is called “par”, the implication −◦ is called “lollipop”. Note that
there is only one negation ¬. Moreover, to give controlled access to weakening and
contraction, we add exponentials ? (called “why not”) and ! (called “of course”).

Proof theoretically, linear logic is a typical substructural logic, as it lacks some of the
structural rules in LK, i.e., the rules for weakening and contraction. While the rules for
additive connectives and the negation ¬ are the same as the ones in LK (cf. Figure 1.1,
we include >R and ⊥L, but not >L nor ⊥R; we also do not need rules for →, which
can be encoded as A → B ≡ (!A)−◦ B, the rules for multiplicative connectives treat
the context in a sequent differently. The rules for unit and zero are given below, where
1R and 0L require that there is no context at all:

Γ ` ∆
1L

Γ, 1 ` ∆
1R

` 1
0L

0 `
Γ ` ∆

0R
Γ ` 0, ∆

The rules for tensor, par and lollipop are similar to the LK rules in Section 1.1.3,
although here we do not build in structural rules, but instead emphasise the resource
reading by forcing that the context has to be split in binary rules (i.e., the context in
the conclusion cannot be copied to both premises). The rules are shown as follows:

Γ, A, B ` ∆
∗L

Γ, A ∗ B ` ∆
Γ ` A, ∆ Γ′ ` B, ∆′

∗R
Γ, Γ′ ` A ∗ B, ∆, ∆′

Γ, A ` ∆ Γ′, B ` ∆′
+L

Γ, Γ′, A + B ` ∆, ∆′
Γ ` A, B, ∆

+R
Γ ` A + B, ∆

Γ ` A, ∆ B, Γ′ ` ∆′
−◦ L

Γ, Γ′, A−◦ B ` ∆, ∆′
Γ, A ` B, ∆

−◦ R
Γ ` A−◦ B, ∆

The exponential ! allows a formula to be used zero or more times, while the dual
exponential ? means that a formula can be obtained zero or more times. We allow
weakening and contraction for ! formulae in the antecedent and ? formulae in the
succedent. The rules for ! and ? are given below.

Γ ` ∆
W!

Γ, !A ` ∆
Γ, A ` ∆

L!
Γ, !A ` ∆

!Γ,` A, ?∆
R!

!Γ `!A, ?∆
Γ, !A, !A ` ∆

C!
Γ, !A ` ∆

Γ ` ∆
W?

Γ `?A, ∆
!Γ, A `?∆

L?
!Γ, ?A `?∆

Γ ` A, ∆
R?

Γ `?A, ∆
Γ `?A, ?A, ∆

C?
Γ `?A, ∆

Exponentials are not used in the sequel, but we will use multiplicative connectives
from linear logic, although in slightly different notations. The cut rule

3In Girard’s original presentation, 0 is additive falsity, > is additive truth; ⊥ is multiplicative falsity
(“zero”), and 1 is multiplicative truth (“unit”). Also, the symbols for logical connectives are different.
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Γ ` A, ∆ Γ′, A ` ∆′
cut

Γ, Γ′ ` ∆, ∆′

can be eliminated in this system and completeness is still maintained.
In Section 2.1, we will introduce bunched logics using ∗, −∗ , ∨∗ , ∼ , >∗, ⊥∗

as the multiplicative conjunction, implication, disjunction, negation, truth and falsity
respectively.

1.3 Kripke Semantics and Labelled Sequent Calculus

We have introduced two non-classical logics from the syntax and proof theory point of
view, here we discuss how to present and manipulate the semantics for non-classical
logics, using intuitionistic logic as the running example.

In this dissertation we will be interested in Kripke style semantics for non-classical
logics, here we give a brief review based on Goré’s presentation [42]. The core in the
semantics is usually called a Kripke frame, which is a pair (W, R) of a non-empty set
W of possible worlds and a relation R on W. The relation R is often a binary relation
for many logics, although later we will be interested in ternary relations. Given two
worlds w, w′ ∈W, we say w′ is a successor of w, or equivalently, w is a predecessor of w′,
if R(w, w′) holds.

For propositional non-classical logics, we use a valuation v from atomic proposi-
tions to sets of worlds, i.e., v : PVar → P(W), where PVar is the set of propositions
and P(W) denotes the powerset of W. Given a proposition p, v(p) is the set of worlds
that make p true. The triple (W, R, v) is called a Kripke model. The semantics for logical
connectives are defined using a forcing relation 
 between a world and a formula. We
write w 
 A if A is true at w; we write w 6
 A if A is not true at w.

Kripke semantics are not particularly useful for classical logic, in which every for-
mula is true in the same world, so we only need a singleton set W, which is not very
interesting. This is not the case for intuitionistic logic. Truth is persistent in intuitionis-
tic logic: if a world makes p true, then its successor also makes p true. Formally, for
any valuation v and any two worlds w and w′,

if w ∈ v(p) and R(w, w′) then w′ ∈ v(p).

The semantics for intuitionistic conjunction and disjunction are the same as in classical
logic, that is,

w 
 A ∧ B iff w 
 A and w 
 B
w 
 A ∨ B iff w 
 A or w 
 B

But intuitionistic implication is interpreted with the binary relation R:

w 
 A→ B iff ∀w′.(R(w, w′) and w′ 
 A) implies w′ 
 B.
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And of course, every world makes > true and no worlds make ⊥ true.
For easier access to semantics in proof search, we can integrate the Kripke seman-

tics into sequent calculus, giving a labelled sequent calculus [72], where the structures Γ
and ∆ in a sequent Γ ` ∆ consist of labelled formulae of the form w : A and relational
atoms of the form wRw′. The intended meaning is that w : A means A is true at w, and
wRw′ means that R(w, w′) holds. The rules for ∧, for example, are straightforward:

Γ, w : A, w : B ` ∆
∧L

Γ, w : A ∧ B ` ∆
Γ ` w : A, ∆ Γ ` w : B, ∆

∧R
Γ ` w : A ∧ B, ∆

The rules for→ are more tricky, since we need to consider the quantifier in the seman-
tics. From the backward proof search reading, if w : A → B occurs in the antecedent
and the sequent is falsifiable, then w : A → B is true, so for every wRw′, either w′ : A
is false or w′ : B is true, giving the following rule:

Γ, wRw′ ` w′ : A, ∆ Γ, wRw′, w′ : B ` ∆
→ L

Γ, wRw′, w : A→ B ` ∆

On the other hand, if w : A→ B is in the succedent and the sequent is falsifiable, then
w : A → B is false. By negating the semantics, we obtain that there exists some w′

such that wRw′ holds and w′ : A is true and w′ : B is false. Since we do not know
what w′ exactly is, we follow the method from the ∃L rule in LK: create a fresh world
for w′. Thus the→ R rule runs as follows:

Γ, wRw′, w′ : A ` w′ : B, ∆
→ R

Γ ` w : A→ B, ∆
w′ does not occur in the conclusion.

Binary relations are sufficient for capturing the semantics of intuitionistic logic,
but in this dissertation we will be concerned with more complex logics for resource
reasoning, these logics involve ternary relations instead. For example, we may want
to capture that the combination of two resources x and y form another resource z, this
will sometimes be denoted as x ◦ y = z. To be consistent with the Kripke semantics
notation, we shall write R(x, y, z) for such a ternary relation. We may also use . for
the relation symbol R, written infix, as in (x, y . z). We prefer to use the former form
in the semantics, and use the latter form in our labelled calculi.

As a hindsight, although labelled sequent calculus does not tell us much about
proof theory itself, it certainly is a convenient way to analyse how the relation R
relates the worlds and how to assign formulae to the worlds they are true at. This is
vital to our main contributions in this dissertation, but we shall stop the spoiler for
now.
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Chapter 2

The Logics of Bunched Implications

We have seen the proof theory and semantics of classical logic, intuitionistic logic, and
linear logic in Chapter 1. In this chapter we give a literature review for more specific
logics that we shall consider in this dissertation. These include the logic of bunched
implications (BI) and its neighbours, i.e., Boolean BI (BBI), Classical BI (CBI), etc.. We
will see that these logics combine the flavours of classical logic, intuitionistic logic, and
linear logic in certain ways, but meanwhile are different from the previous logics both
proof theoretically and semantically.

BI was developed in 1999 by O’Hearn and Pym with a semantic motivation on
resource reasoning, although the logic and its neighbours were mainly developed in
terms of syntax and proof theory [75]. Algebraic semantics were discussed as an alter-
native perspective for defining the logic, but the original Kripke semantics proposed
for BI were only sound and complete for BI without ⊥, and incomplete for BI [84].
Complete Kripke semantics for BI and BBI were developed years later by Galmiche et
al. [38, 36]. The semantics, proof theory, and applications of CBI were then studied by
Brotherston and Calcagno [17].

Interestingly, the resource reasoning aspect of BI and BBI had found successful
applications even before their semantics were properly developed. Early in 2000,
Reynolds proposed extensions of Hoare logic to reason about shared mutable data
structures using BI as the assertion logic [87]. This perspective was also pursued by
Ishtiaq, O’Hearn, Yang etc. who gave different extensions of Hoare logic using BBI
instead [54, 76]. In 2002, Reynolds used BBI as the assertion logic and formalised the
above as separation logic [88], which has been a hot topic and has received much at-
tention in the program verification community. We will come back with a literature
review for separation logic in Chapter 5.

In this chapter we will first give the syntax and semantics for BI, BBI, and CBI
in Section 2.1, as these logics are the ones we will use in later chapters. Then we
review the proof theoretical perspective of these logics. Respectively in Section 2.2
we present the Hilbert system, which is useful when proving completeness of other
calculi and generating random theorems; and in Section 2.3 we give Brotherston’s
Display Calculi, which is the basis for developing shallow and deep inference calculi

15
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in Chapter 3. More specific BI variants and applications of BI logics are discussed in
Section 2.4.

2.1 BI and Its Neighbours

This section introduces BI and its neighbours. These logics commonly have two coun-
terparts that can be freely combined when building formulae: the additive connectives
allow weakening and contraction; and the multiplicative connectives behave like linear
connectives and forbid weakening and contraction. Both types of connectives could be
either classical, in the sense that double negation elimination is allowed, or intuition-
istic. The above choices yield four possible combinations as summarised below.

Logic Additives Multiplicatives
BI intuitionistic intuitionistic

dMBI intuitionistic classical
BBI classical intuitionistic
CBI classical classical

These variants of BI are sometimes viewed from an algebraic perspective. Combin-
ing Heyting algebra (as additives) and Lambek algebra (as multiplicatives) gives BI;
changing the former to Boolean algebra gives BBI; Boolean additives and de Morgan
multiplicatives result in CBI; finally, Heyting additives and de Morgan multiplicatives
give dMBI. In this view the names of these logics are self-explanatory.

Since most applications of BI logics are based on BBI, which is also the focus in this
dissertation, we shall pay more attention to BBI than other variants. On the contrary,
dMBI is a rarely used variant, thus will not be discussed here.

2.1.1 The Logic of Bunched Implications

We start with a rather informal introduction to BI, as we will not use this logic directly.
More technical details will come in the next subsection when we introduce BBI.

With resource reasoning in mind, O’Hearn and Pym developed the syntax of BI
as a combination of additive connectives >,⊥,→,∧,∨ and multiplicative connectives
>∗, ∗,−∗ , defined formally as below, where p denotes an atomic proposition:

A ::= p | > | ⊥ | A ∧ A | A ∨ A | A→ A | >∗ | A ∗ A | A−∗ A

By tradition ∗ is called “star” and −∗ is called “magic wand”. We use >∗ as the
multiplicative unit as opposed to I in the literature just to reduce ambiguity when we
introduce alphabetic symbols later.

We will not give the Kripke-style semantics of BI as it is not very important to our
following discussion, instead, we will give a Hilbert-style system for BI in Section 2.2
to complete the picture. Interested readers are referred to Pym et al. and Galmiche et
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al.’s work for a detailed account on BI semantics [85, 38]. Informally, we shall borrow
the following reading of BI connectives from Pym [84]:

A→ B: if I were to obtain enough money to make A true, then I should also have
enough to make B true.

A ∧ B: the money I have got is both enough to make A true and enough to make B
true (but may not be enough to make A and B true at the same time).

A ∨ B: the money I have got is enough to make A true or to make B true.

A ∗ B: I can use part of my money to make A true, and the left over is enough to make
B true (and vice versa).

A−∗ B: if you were to give me enough money to make A true, combined with what I
already have, I should then have enough to make B true.

In this reading the multiplicative unit >∗ simply means “I don’t have any money”, >
is “true no matter how much I have”, but ⊥ is much more complicated to capture.
Saying ⊥ is “false no matter how much I have” might result in incompleteness of the
semantics. See [38] for more detailed and formal discussion.

BI differs from linear logic in several ways [84]. Firstly, Girard’s reading of linear
logic has a “proofs-as-actions” flavour [40], where a proposition is a resource and a
proof is a way to manipulate resources. In BI, the reading is “completely declara-
tive”, a proposition is just a statement whose truth value may involve consideration of
resources. Secondly, also more technically, in BI we expect the following [84]:

coin−∗ choc 6` coin→ choc

That is, “if I could obtain a coin then I would have enough to buy a chocolate” does not
imply that “if I had a coin I would be able to buy a chocolate”. The former combines
my existing money with the extra coin I get, while the latter only uses the coin. In
linear logic, however, when A→ B is defined by !A−◦ B, we have the following:

coin−◦ choc ` coin→ choc

The intuitionistic reading in the above explanation of connectives may not be ob-
vious, to clarify this, we use Galmiche et al.’s notation below [38]. One may think of a
relation v to “compare” resources, so m v n means that m is less than or equal to n.
The intuitionistic implication can be interpreted using a Kripke style forcing relation
as follows:

m 
 A→ B iff ∀n such that m v n, n 
 A implies n 
 B.

Whereas the classical implication does not concern other resources:
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m 
 A→ B iff m 
 A implies m 
 B.

The linear reading of the multiplicative connectives involves an operation ◦ to
“combine” resources, thus m ◦ n is the combination of m and n. The ∗ connective
effectively considers two parts that can be combined to form the current resource:

w 
 A ∗ B iff ∃m, n s.t. m ◦ n = w and m 
 A and n 
 B.

Therefore A ∗ A ⇐⇒ A is not true in general. For example, saying “the money I have
is enough to buy a chocolate” does not imply that “a part of my money is enough
to buy a chocolate, the rest is enough to buy another chocolate”. The −∗ connective
features combining the current resource with a foreign resource:

n 
 A−∗ B iff ∀m, w if m ◦ n = w and m 
 A then w 
 B.

The notion of BI validity is defined based on its proof theory rather than semantics.
Traditionally, the sequent calculus LBI for BI has nested structures (but not nested
sequents) in the sequent [84]. This is a natural consequence of having two types of
connectives. That is, we need two types of structural connectives “;” and “,” in the
sequent to respectively denote additive conjunction and multiplicative conjunction in
the antecedent of the sequent. The succedent only contains a single formula since both
types of connectives are intuitionistic. As a result, we may have the following nested
structure in a sequent:

A1; (A2, A3, (A5; A6; · · · )) ` B

Another perspective is that the antecedent is now a tree with “;” and “,” as internal
nodes and formulae as leaves. Such trees are called bunches, thus we have the name of
this logic as “bunched implications”. Formally, we use Γ and ∆ for bunches, defined
below, where A is a BI formula:

Γ ::= A | ∅m | Γ, Γ | ∅a | Γ; Γ

Just as we have two types of structural connectives, we also have two structural
units: ∅a for additive connectives, and ∅m for multiplicative connectives. The “turn-
stile” in the sequent can also be interpreted in different ways, ∅a ` A corresponds to
an additive implication, and ∅m ` A corresponds to a multiplicative implication. We
write Γ(∆) for a bunch Γ in which ∆ appears as a sub-tree.

The sequent calculus LBI for BI [84] is given in Figure 2.1. The exchange rule E
allows the order of comma or semicolon separated formulae to be shuffled, i.e.,

A; B ≡ B; A and A, B ≡ B, A.

The additive rules and multiplicative rules look very similar in LBI, but weakening
and contraction can only operate on semicolons, not commas. The rule ∨L requires
two structures Γ and ∆ in the conclusion, each contains the formula A ∨ B. A simpler
formulation
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Identities:

axiom
A ` A

Γ ` A ∆(A) ` B
cut

∆(Γ) ` B

Structural Rules:

Γ(∆) ` A
W

Γ(∆; ∆′) ` A
Γ(∆; ∆) ` A

C
Γ(∆) ` A

Γ ` A
E, (∆ ≡ Γ)

∆ ` A

Units:

Γ(∅m) ` A
>∗L

Γ(>∗) ` A
>∗R

∅m ` >∗
⊥L

Γ(⊥) ` A

Γ(∅a) ` A
>L

Γ(>) ` A
>R

∅a ` >

Multiplicative Rules:

Γ ` A ∆(∆′, B) ` C
−∗ L

∆(∆′, Γ, A−∗ B) ` C
Γ, A ` B

−∗ R
Γ ` A−∗ B

Γ(A, B) ` C
∗L

Γ(A ∗ B) ` C
Γ ` A ∆ ` B

∗R
Γ, ∆ ` A ∗ B

Additive Rules:

Γ ` A ∆(∆′; B) ` C
→ L

∆(∆′; Γ; A→ B) ` C
Γ; A ` B

→ R
Γ ` A→ B

Γ(A; B) ` C
∧L

Γ(A ∧ B) ` C

Γ ` A ∆ ` B
∧R

Γ; ∆ ` A ∧ B
Γ(A) ` C ∆(B) ` C

∨L
Γ(A ∨ B); ∆(A ∨ B) ` C

Γ ` Ai ∨R, (i = 1, 2)
Γ ` A1 ∨ A2

Figure 2.1: The sequent calculus LBI for BI.

Γ(A) ` C Γ(B) ` C
Γ(A ∨ B) ` C

can be derived via a contraction on Γ(A ∨ B) in the conclusion.
A formula A is valid if either ∅a ` A is provable or ∅m ` A is provable in LBI. But

since the former implies the latter, the above can be redefined as

A formula A is valid if ∅m ` A is provable in LBI.

This notion of validity is different from the validity of BBI and CBI as we will see
later. The multiplicative unit ∅m stands for the empty resource, so a formula A is valid
in BI can be understood as “A is true when I don’t have anything”, but BBI and CBI
validity of a formula A is characterised as “A is true no matter what I have”.
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2.1.2 Boolean BI

This subsection gives a formal introduction to BBI, the definitions here will be vital in
Chapter 4 where we discuss a labelled sequent calculus for BBI.

BBI formulae are defined inductively as follows, where p is an atomic proposition,
>∗, ∗,−∗ are the multiplicative unit, multiplicative conjunction, and multiplicative
implication respectively:

A ::= p | > | ⊥ | ¬A | A ∧ A | A ∨ A | A→ A | >∗ | A ∗ A | A−∗ A

Since the additive part in BBI is classical, we can simplify the language by just using
→ and ⊥ as additive connectives and consider >,¬,∧,∨ as defined ones.

As for BI, BBI was first defined as the above syntax plus a Hilbert system [84]. The
corresponding semantics of BBI came later in terms of non-deterministic monoids and
ternary relations [36].

A non-deterministic monoid is a triple (M, ◦, ε) where M is a non-empty set,
ε ∈ M and ◦ :M×M→ P(M) is a mapping from pairs of members ofM to subsets
ofM. The extension of ◦ to P(M) is defined as X ◦Y =

⋃{x ◦ y : x ∈ X, y ∈ Y}. The
following conditions hold in this monoid:

Identity: ∀a ∈ M. ε ◦ a = {a}
Commutativity: ∀a, b ∈ M. a ◦ b = b ◦ a
Associativity: ∀a, b, c ∈ M. a ◦ (b ◦ c) = (a ◦ b) ◦ c.

Galmiche and Larchey-Wendling also gave another view of the semantics in terms
of a ternary relation. As it is also a tradition in modal logic to define the semantics
based on accessibility relation of worlds, we adopt the ternary relation view of the
semantics in the following.

The ternary relation over worlds is defined by R ⊆ M ×M ×M such that
R(a, b, c) if and only if c ∈ a ◦ b. We therefore have the following conditions for all
a, b, c, d ∈ M:

Identity: R(ε, a, b) iff a = b
Commutativity: R(a, b, c) iff R(b, a, c)
Associativity: If ∃k s.t. R(a, k, d) and R(b, c, k) then ∃l s.t. R(a, b, l) and R(l, c, d).

Thus we obtain a BBI relational frame (M, R, ε) from a non-deterministic monoid
(M, ◦, ε) in the obvious way. Intuitively, the relation R(x, y, z) means that z can be
partitioned into two parts: x and y. The identity condition can be read as every
world can be partitioned into an empty world and itself. Commutativity captures
that partitioning z into x and y is the same as partitioning z into y and x. Finally,
associativity means that if z can be partitioned into x and y, and x can be further
partitioned into u and v, then all together z consists of u, v and y. Therefore there
must exist an element w which is the combination of v and y, such that w and u form
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z. Note that since we do not restrict this monoid to be cancellative (i.e., x ◦ y = x ◦ z
implies y = z), R(x, y, x) does not imply y = ε.

A BBI model (M, R, ε, v) consists of a relational frame (M, R, ε) and a valuation
v : PVar → P(M) where PVar is the set of propositional variables (i.e., atomic propo-
sitions) and P(M) is the powerset of M. A forcing relation “
” between elements of
M and BBI-formulae is defined as follows [36]:

m 
 >∗ iff m = ε m 
 p iff p ∈ PVar and m ∈ v(p)
m 
 ⊥ iff never m 
 A ∨ B iff m 
 A or m 
 B
m 
 > iff always m 
 A ∧ B iff m 
 A and m 
 B
m 
 ¬A iff m 6
 A m 
 A→ B iff m 6
 A or m 
 B
m 
 A ∗ B iff ∃a, b.(R(a, b, m) and a 
 A and b 
 B)
m 
 A−∗ B iff ∀a, b.(R(m, a, b) and a 
 A) implies b 
 B)

Given a BBI model (M, R, ε, v), a BBI formula A is true at m ∈ M if m 
 A. A BBI
formula A is valid if it is true at every world in every BBI model.

2.1.3 Classical BI

Classical logic differs from intuitionistic logic by having a stronger negation, this is also
the case for BI logics. The multiplicative part in BI and BBI are both intuitionistic and
only have >∗, ∗,−∗ as logical connectives. In CBI, where both the additive part and
the multiplicative part are classical, multiplicative negation is present in the language,
from which we can also define multiplicative falsity and disjunction. The syntax of
CBI is defined as below:

A ::= p | > | ⊥ | ¬A | A ∧ A | A ∨ A | A→ A |
>∗ | ⊥∗ | ∼ A | A ∗ A | A ∨∗ A | A−∗ A

where ⊥∗, ∼, ∨∗ are respectively the multiplicative falsity, negation, and disjunction.
The semantics of CBI extend that of BBI by adding more items to specialise the

model. We shall use the definition by Brotherston and Calcagno [17] as below.

Definition 2.1.1. A CBI model is a tuple (M, R, ε,−, ∞, v) where (M, R, ε, v) is a BBI
model and − : M → M and ∞ ∈ M such that for each m ∈ M, −m is the unique
element of M satisfying R(m,−m, ∞). We extend − pointwise to P(M) → P(M) by
−N =de f {−n | n ∈ N}.

The forcing relation between elements ofM and CBI-formulae extends that for BBI
(end of Section 2.1.2) with the following clauses for the new logical connectives [17]:

m 
 ⊥∗ iff m 6= ∞ m 
∼ A iff −m 6
 A
m 
 A ∨∗ B iff ∀a, b.(R(a, b,−m) implies −a 
 A or −b 
 B)
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The truth and validity of CBI formulae are defined similar to those for BBI. That
is, given a CBI model (M, R, ε,−, ∞, v), a CBI formula A is true at m ∈ M if m 
 A;
it is valid if it is true at every world in every CBI model.

CBI has a more complete set of logical connectives than other BI logics. This could
be convenient when designing a proof system with an emphasis on duality of logical
connectives, such as the ones that will be shown later in Chapter 3. However, the se-
mantics of CBI is more involved than that of BBI, and some elements in the semantics,
such as − and ∞, cannot be interpreted in some resource models. A typical computa-
tional model based on CBI is the finance model [17], where we have positive resource
as “the money I own” and negative resource as “the money I owe”. In this setting,
M is the set of integers Z, R(i, j, k) iff i + j = k, ε is 0, − is just the negative sign on
integers, and ∞ is also 0.

2.2 Hilbert Systems for BI Logics

The additive part of BI logics is either intuitionistic or classical propositional logic,
whose Hilbert system can be extended to obtain axiomatisation for the corresponding
BI logic. For this reason, we first give the Hilbert systems for intuitionistic proposi-
tional logic à la Troelstra and Schwichtenberg [93], as shown in Figure 2.2.

Axioms:
A→ (B→ A) A→ A ∨ B B→ A ∨ B
A ∧ B→ A A ∧ B→ B A→ (B→ (A ∧ B))
(A→ (B→ C))→ ((A→ B)→ (A→ C))
(A→ C)→ ((B→ C)→ (A ∨ B→ C)) ⊥ → A

Deduction Rules:
` A ` A→ B MP` B

Figure 2.2: The Hilbert system for intuitionistic propositional logic.

The axioms and deduction rules in a Hilbert system should be seen as schemata.
For example, we can uniformly replace A by a formula when using the above axioms
and deduction rule. When ¬A is understood as A→ ⊥, the Hilbert system for classical
propositional logic can be obtained by adding to Figure 2.2 the axiom of double negation
elimination:

¬¬A→ A.

Alternatively, one can also add the law of excluded middle A ∨ ¬A or add Peirce’s law
((A→ B)→ A)→ A to the axioms in Figure 2.2 to get the Hilbert system for classical
propositional logic.

The Hilbert system for BI and BBI respectively consist of the axioms and rules for
intuitionistic and classical propositional logic for the additive fragment, and additional
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axioms and rules for the multiplicative fragment. For the latter, we use the axiomati-
sation given in [36], and listed in Figure 2.3. The axioms and rules in Figure 2.3 are
exactly those of multiplicative intuitionistic linear logic (MILL).

Axioms Deduction Rules

A→ (>∗ ∗ A)

(>∗ ∗ A)→ A
(A ∗ B)→ (B ∗ A)

(A ∗ (B ∗ C))→ ((A ∗ B) ∗ C)

` A→ C ` B→ D ∗
` (A ∗ B)→ (C ∗ D)

` A→ (B−∗ C)
−∗ 1` (A ∗ B)→ C

` (A ∗ B)→ C
−∗ 2` A→ (B−∗ C)

Figure 2.3: Some axioms and rules for the Hilbert system for BI and BBI.

Although we may use CBI in the sequel, its Hilbert axiomatisation is not particu-
larly important in this dissertation. In short, Pym suggested adding the axiom

(A−∗ ⊥∗)−∗ ⊥∗ → A

but the Hilbert system of CBI is not discussed in much detail [84]. The Hilbert system
for CBI is obtained by adding the axioms for multiplicative classical linear logic (MLL)
to the Hilbert system for BBI. Interested readers may also take the translation between
CBI and a modal logic given by Brotherston and Calcagno [17] and reverse engineer
their Hilbert axiomatisation for the corresponding modal logic.

2.3 Display Calculi for BI Logics

The display calculi we discuss in this section are given by Brotherston [16], who first
proposed a display calculus for CBI with Calcagno [17], and then extended their result
to a unified display calculus framework for the four BI logics mentioned in Section 2.1.
Their methodology will be used when we try to give nested sequent calculi for BI
logics in Chapter 3. That is, we first aim at a system for the logic with the largest set
of logical connectives, then work backwards to trim the system down for logics with
fewer connectives.

Generally speaking, a display calculus also has a sequent-like structure, which is
called a consecution in some literature, but here we shall just stay with the word sequent.
Structures range over capital Greek letters Γ, ∆, ..., and a sequent is in the form Γ ` ∆.
As in a sequent calculus, we will have structural connectives, but not limited to the
ones for the unit, conjunction and disjunction, we also need the ones for negation and
implication, as shown below [16]:
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Structural connectives:
Additive Multiplicative Arity Antecedent meaning Succedent meaning

∅a ∅m 0 truth falsity
] [ 1 negation negation
; , 2 conjunction disjunction
⇒ −◦ 2 undefined implication

We assume that unary structural connectives bind tighter than binary structural con-
nectives. A structure Γ in a sequent may consist of either a formula or (sub)structure(s)
connected by a structural connective. As usual, we call the top-level structural connec-
tive in a structure the main structural connective. Neither⇒ nor −◦ is allowed to appear
as the main structural connective of an antecedent in a sequent since their meaning in
that case is undefined.

In a display calculus, there are logical rules to manipulate logical connectives,
structural rules to generate or remove structures, and also display postulates to move
structures across the turnstile and display or undisplay structures. Display postulates
are written as S <>D S′ where S, S′ are sequents.

The first group of rules, called DLIL, are for the additive part of BI (i.e., intuition-
istic logic), as shown in Figure 2.4.

Antecedent structural connectives: ∅a ;
Succedent structural connectives: ⇒
Display postulates: Γ1; Γ2 ` ∆ <>D Γ1 ` Γ2 ⇒ ∆ <>D Γ2; Γ1 ` ∆
Logical rules:

⊥L
⊥ ` ∆

∅a ` ∆
>L

> ` ∆
>R

Γ ` >
A; B ` ∆

∧L
A ∧ B ` ∆

Γ ` A Γ ` B
∧R

Γ ` A ∧ B
A ` ∆ B ` ∆

∨L
A ∨ B ` ∆

Γ ` Ai ∨R, i ∈ {1, 2}
Γ ` A1 ∨ A2

Γ ` A B ` ∆
→ L

A→ B ` Γ⇒ ∆
Γ; A ` B

→ R
Γ ` A→ B

Structural rules:

∅a; Γ ` ∆
∅a L

Γ ` ∆
Γ1; (Γ2; Γ2) ` ∆

AAL

(Γ1; Γ2); Γ3 ` ∆
Γ1 ` ∆

WL
Γ1; Γ2 ` ∆

Γ; Γ ` ∆
CL

Γ ` ∆

Figure 2.4: Inference rules in DLIL.

For the additive part of BBI, we extend the rules in Figure 2.4 with the rules in
Figure 2.5, except that the ∨R and → L rule in Figure 2.4 are replaced with the corre-
sponding ones in Figure 2.5. We call the resultant system DLCL.

The inference rules for the multiplicative part of BI and BBI are called DLLM and
given in Figure 2.6.

Finally, the multiplicative part of CBI is captured by DLdMM, which extends the



§2.3 Display Calculi for BI Logics 25

Antecedent structural connectives: ∅a ] ;
Succedent structural connectives: ∅a ] ;
Display postulates:

Γ1; Γ2 ` ∆ <>D Γ1 ` ]Γ2; ∆ <>D Γ2; Γ1 ` ∆

Γ ` ∆1; ∆2 <>D Γ; ]∆1 ` ∆2 <>D Γ ` ∆2; ∆1

Γ ` ∆ <>D ]∆ ` ]Γ <>D ]]Γ ` ∆

Logical rules: Structural rules:

Γ ` ∅a
⊥R

Γ ` ⊥
]A ` ∆

¬L
¬A ` ∆

Γ ` ]A
¬R

Γ ` ¬A
Γ ` ∆; ∅a

∅a R

Γ ` ∆

Γ ` A B ` ∆
→ L

A→ B ` ]Γ; ∆
Γ ` A; B

∨R
Γ ` A ∨ B

Figure 2.5: Some Inference rules in DLCL.

Antecedent structural connectives: ∅m ,
Succedent structural connectives: −◦
Display postulates: Γ1, Γ2 ` ∆ <>D Γ1 ` Γ2−◦ ∆ <>D Γ2, Γ1 ` ∆

Logical rules: Structural rules:

∅m ` ∆
>∗L

>∗ ` ∆
A, B ` ∆

∗L
A ∗ B ` ∆

Γ ` A B ` ∆ −∗ L
A−∗ B ` Γ−◦ ∆

∅m, Γ ` ∆
∅m L

Γ ` ∆

>∗R
∅m ` >∗

Γ1 ` A Γ2 ` B
∗R

Γ1, Γ2 ` A ∗ B
Γ, A ` B

−∗ R
Γ ` A−∗ B

Γ1, (Γ2, Γ2) ` ∆
MAL

(Γ1, Γ2), Γ3 ` ∆

Figure 2.6: Inference rules in DLLM

rules in Figure 2.6 with the rules in Figure 2.7, except that the rule −∗ L is replaced by
corresponding rule in Figure 2.7.

Thus we obtain the display calculi for BI, BBI, dMBI, and CBI respectively from
DLIL + DLLM, DLCL + DLLM, DLIL + DLdMM and DLCL + DLdMM. These display
calculi are sound and complete w.r.t. the semantics or Hilbert system given in previous
sections for corresponding logics. Moreover, Brotherston’s display calculi for BI logics
inherit the advantage from Belnap’s Display Logic [5] in that cut-admissibility can be
easily checked as long as the eight conditions for display calculi are met [16].

The inference rules in a display calculus can only be applied to top level structures,
if one wants to apply a rule to a substructure, one has to “display” that substructure on
the top level by using display postulates. Thus Belnap [5] originally showed a display
theorem which ensures that any substructure in a sequent can be displayed. The same
property also holds for Brotherston’s display calculi.

Although display calculi are powerful in theory, proof search in such systems is
often not practical because the display postulates can be used at any time to shuffle
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Antecedent structural connectives: ∅m [ ,
Succedent structural connectives: ∅m [ ,
Display postulates:

Γ1, Γ2 ` ∆ <>D Γ1 ` [Γ2, ∆ <>D Γ2, Γ1 ` ∆

Γ ` ∆1, ∆2 <>D Γ, [∆1 ` ∆2 <>D Γ ` ∆2, ∆1

Γ ` ∆ <>D [∆ ` [Γ <>D [[Γ ` ∆

Logical rules: Structural rules:

⊥∗L
⊥∗ ` ∅m

Γ ` ∅m
⊥∗R

Γ ` ⊥∗
[A ` ∆

¬L
∼ A ` ∆

Γ ` [A
¬R

Γ `∼ A
Γ ` ∆, ∅m

∅m R

Γ ` ∆

Γ ` A B ` ∆ −∗ L
A−∗ B ` [Γ, ∆

A ` ∆1 B ` ∆2
∨∗ L

A ∨∗ B ` ∆1, ∆2

Γ ` A, B
∨∗ R

Γ ` A ∨∗ B

Figure 2.7: Some Inference rules in DLdMM.

structures in a sequent, generating redundant proofs. In Chapter 3 we continue from
Brotherston’s display calculi and discover more effective ways for proof search.

2.4 Other BI variants and their applications

So far we have briefly discussed BI, BBI, CBI, their semantics and proof theory. There
are many other variants, mainly based on BBI and come from practical computational
models. The BBI semantics are based on non-deterministic commutative monoids (cf.
Section 2.1.2), the monoids can also be partial-deterministic or total-deterministic to
give BBIPD and BBITD respectively. We shall sometimes call the original BBI as BBIND
to distinguish it from other BBI variants. As expected, partial-determinism forces that

∀a, b, c, d ∈ M. c ∈ a ◦ b and d ∈ a ◦ b implies c = d.

Totality can be defined on top of partial-determinism as

∀a, b ∈ M. ∃c ∈ M s.t. a ◦ b = c.

A number of more application-oriented properties can be added to BBI to form even
more specific logics, which will be discussed later in Section 5.2.

Unfortunately, among the logics we discussed in this chapter, only BI is decid-
able [38], BBIND, BBIPD, BBITD, CBI are all undecidable [20, 62].

Nevertheless, a majority of applications of bunched logics are based on the un-
decidable BBI, more specifically, on BBIPD. The most famous example might be
separation logic [88, 54, 76], which inspired us to start a journey on proof methods
and automated reasoning for these logics. Of course, there are computational models
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based on BI or other variants, Pym discussed the following models based on BI in his
book [84]: logic programming, interference and non-interference in imperative pro-
gramming, Petri nets, CCS-like models, and pointer models. The latter is actually the
prototype of separation logic, proposed by Reynolds, Ishtiaq, O’Hearn, et al. before
the word “separation logic” was settled [76]. The intuitionistic nature of BI implies that
if a part of memory makes an assertion true, any extension of that part of memory will
also make the assertion true. This monotonicity property makes the early version of
separation logic less expressive than the one based on BBI. In fact, the former logic can
be translated into the latter version [88].

Besides BI and BBI, Brotherston et al. worked actively on CBI and proposed various
possible applications of it [17], including Abelian groups, effect algebras, languages,
generalised heaps, bit arithmetic, integer modulo arithmetic, syntactic models, deny-
guarantee model etc., and the finance model we covered at the end of Section 2.1.3.
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Chapter 3

Nested Sequents and Deep
Inference for BI Logics

BI logics have many applications in computer science. Our target is one of the most
important ones: separation logic. The assertion logic of separation logic is based on
either BI or BBI, thus proof search for BI logics is the key to support precondition
strengthening and postcondition weakening in separation logic. We have given an
overview of BI logics, their semantics and proof theory in the previous chapter. The
latter includes Hilbert systems and display calculi. However, neither of these two
methods are efficient for proof search. The case for Hilbert systems is well-known,
and for display calculi, the display postulates and explicit structural rules are both
responsible for generating large and redundant structures in proof search. Therefore
despite the proof theoretical importance of Hilbert systems and display calculi, there
is a need for other proof methods for BI logics that are more proof-search-friendly.

This chapter takes the same avenue as Postniece’s work on nested sequent cal-
culi [83]. That is, we start from Brotherston’s display calculi [16] and convert them
into shallow inference systems with nested sequents, then we absorb the display rules
and structural rules by allowing the logical rules to be applied on any nested sequent
at any level and using propagation rules to transfer structures between different nested
sequents, giving a deep inference system. Also inspired by Goré et al.’s nested sequent
calculus, we decide to take a detour by working on CBI instead of BBI, because the
nested sequent structure and inference rules in their calculi reply on the residuation
of logical and structural connectives. In this sense CBI, with a more complete set of
logical connectives, is easier to work with. The hope is that an inference system for
CBI, or for an extended logic with even more connectives, can be trimmed down to
handle logics with fewer connectives such as BBI. For this we need to show a “separa-
tion property” [44] to come back to our original goal towards proof search for BBI. The
reader may be aware of another work on nested sequents for BBI by Park et al. [77],
which was developed roughly at the same time as our work in this chapter, but we
were not aware of that work until we had proceeded into the next chapter. Therefore
we could not have started our work by adapting Park et al.’s nested sequents. In fact,

29
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their nested sequents are in a very different style compared to ours.
Section 3.1 gives an overview of nested sequent calculus, shallow and deep infer-

ence, followed by Section 3.2 where we give a shallow nested sequent calculus for CBI.
We discuss a deep inference system for CBI in Section 3.3, which unfortunately is not
complete w.r.t. the display calculi for CBI. Section 3.4 concludes this Chapter with a
discussion of Park et al.’s nested sequent system that is sound and complete w.r.t. the
Hilbert system for BBI.

3.1 Nested Sequents with Shallow and Deep Inference

We discuss here the general idea of nested sequent calculus, shallow and deep infer-
ence systems without going to full details, taking Postniece’s work on bi-intuitionistic
logic as an example [83]. Bi-intuitionistic logic (BiInt) is intuitionistic logic plus dual-
intuitionistic logic, thus every logical connective in BiInt has a dual connective. For
example, ∧ is dual to ∨, > is dual to ⊥, and there are two less commonly seen con-
nectives −< and ∼ , respectively called “exclusion” and “paraconsistent negation”,
dual to → and ¬. As we would expect, −< has shallow nested sequent rules dual to
(intuitionistic)→:

A ` B, Y
−< L

X, A−< B ` Y
X ` A, Y X, B ` Y

−< R
X ` A−< B, Y

where we write A, B for formulae, X, Y and later W for structures defined below1:

X ::= ∅ | A | (X, X) | X . X

The −< L rule discards the context X in the antecedent of the conclusion when viewed
“backwards”. The paraconsistent negation can be defined by ∼ A = >−< A. The
shallow nested sequent calculus LBiInt1 for BiInt [83] has an additional structural
connective . compared to the normal sequent calculus LJ for Int (cf. Section 1.2.1).
This structural connective mimics the effect of the turnstile `, which on the top level
is a proxy for implication →, therefore making the sequent into nested sequents. That
is, any substructure (X′ . Y′) in a sequent can be deemed a nested sequent, a sequent
X ` Y is then a tree where ` is the top level turnstile, and . connectives are lower
level turnstiles. However, since . may appear on both sides of a sequent, it would not
completely make sense if we did not have the dual connective −< to→. That is, . in
the antecedent is a structural proxy for −< , while in the succedent is a proxy for →.
Although having nested sequents, as a shallow inference system, LBiInt1 only allows us
to apply inference rules on the top-level sequent, which is why we distinguish the top-
level turnstile from lower level ones. If we want to manipulate lower level structures,

1Courtesy of Postniece’s notation, which is slightly different from sequent calculi we present in other
chapters of this dissertation where we use Γ, ∆, · · · for structures.
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we have to “display” them to the top-level as in display calculi. This operation is
called “zoom-in” in the nested sequent calculus. The shallow system LBiInt1 has the
following “display rules”:

(X1 . Y1), X2 ` Y2
SL

X1, X2 ` Y1, Y2

X1 ` Y1, (X2 . Y2)
SR

X1, X2 ` Y1, Y2

X2 ` Y2, Y1 .L

X2 . Y2 ` Y1

X1, X2 ` Y2 .R

X1 ` X2 . Y2

The above rules make the shallow system essentially the same as Goré’s display cal-
culus for BiInt [43], but with a few minor differences such as built-in structural rules.

In nested sequent calculi it is often important to distinguish the polarity of contexts.
Roughly speaking, a simple context is a structure with a hole [], denoted by Σ[], which
is not under the scope of any .. If Σ[] is on the left hand side of the nearest . (i.e., the
hole is to the left of the current level turnstile), it is a negative context; occurring on the
right hand side of the nearest . makes Σ[] positive. Associating Σ[] and other structures
with “,” does not change polarity, neither does further nesting in .. A positive context
is written as Σ+[] and a negative context is Σ−[]. We will see formal definition of these
notions in later sections.

Postniece then presented another shallow system called LBiInt2 in which all the
structural rules except for .L and .R are absorbed into logical rules. Based on these
shallow inference systems, a more interesting result is Postniece’s deep inference system
DBiInt, which allows us to apply rules at any level of the sequent. Moreover, DBiInt
has four propagation rules that copy formulae from a nested sequent to another, as
shown below:

Σ−[A, (A, X . Y)]
.L1

Σ−[A, X . Y]
Σ+[(X . Y, A), A]

.R1

Σ+[X . Y, A]

Σ[A, X . (W, (A, Y . Z))]
.L2

Σ[A, X . (W, (Y . Z))]
Σ[((X . Y, A), W) . Z, A]

.R2

Σ[((X . Y), W) . Z, A]

The rule .L1 copies a formula A on the left hand side of . outside to a higher level
sequent, the nested sequent to be applied on must be in a negative hole. The rule .R1

does exactly the opposite. The rule .L2 copies a formula A on the left hand side of .
to the left hand side of a inner (lower level) nested sequent, mirrored by the rule .R2.

The deep inference system DBiInt is sound and complete w.r.t. the shallow infer-
ence systems, which are shown sound and complete for BiInt. However, naive proof
search in DBiInt is not terminating, thus Postniece [83] went on the give a variant
called DBiInt1 which gives terminating and more efficient proof search.
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3.2 SICBI: A Shallow Inference System for CBI

This section and the next one discuss an attempt following Postniece’s route. We
use Brotherston’s display calculus for CBI as the base system and first convert it to a
shallow nested sequent calculus, then a deep one. As mentioned before, we choose
CBI because it has more multiplicative connectives, our plan is to show that a sound
and complete deep system for CBI can be trimmed down to a sound and complete
system for BBI etc.. However, the logical connectives in CBI are still not enough for
the duality we require, so we have to add “exclusion” connectives for both the additive
part and the multiplicative part as in BiInt but without adding extra expressive power.

Unlike the nested sequent calculi for BiInt, we now need to consider different
flavours of turnstiles, because we have an additive implication and a multiplicative
implication. As a result, we use `a or .a as the turnstiles in an additive sequent where
only “;” and .m are allowed to connect structures, and use `m or .m as the turnstile in
a multiplicative sequent where only “,” and .a are allowed to connect structures. Our
nested sequents form a tree in which the levels have interleaving flavour of turnstiles.
A foreseeable advantage of this type of nested sequents is that we can isolate additive
reasoning from multiplicative reasoning, thus it is possible to use the state-of-the-
art first-order provers to reason about the additive sequents, and use some specific
method to reason about the multiplicative sequents.

3.2.1 Inference Rules in SICBI

Recall the syntax of CBI from Section 2.1.3:

A ::= p | > | ⊥ | ¬A | A ∧ A | A ∨ A | A→ A |
>∗ | ⊥∗ | ∼ A | A ∗ A | A ∨∗ A | A−∗ A

where p is an atomic proposition, we may use A, B, F as arbitrary formula. We now
add two more logical connectives to the above definition, respectively the additive
exclusion −< and multiplicative exclusion −−× . The additive exclusion A−< B is
defined as A ∧ ¬B, and A−−× B is defined as A∗ ∼ B. Note that unlike in BiInt, we
do not have “paraconsistent negation” since both parts of CBI are classical and the
paraconsistent negations collapse with the normal negations.

The structures in our nested sequent X1 `a X2 (or Y1 `m Y2) are defined as below,
where X is an additive structure and Y is a multiplicative structure, A is a CBI formula:

X ::= ∅a|A|X; X|Y .m Y

Y ::= ∅m|A|Y, Y|X .a X

Note that , and ; work as multiset union and bind tighter than .a and .m, which are
effectively the same as `a and `m respectively, but we write them in different styles to
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emphasise that `a and `m are the top level turnstiles. The structural connectives are
proxies for some logical connectives, thus we can translate structures into formulae as
in Figure 3.1.

τ(X1 `a X2) = τ−(X1)→ τ+(X2) τ(Y1 `m Y2) = τ−(Y1)−∗ τ+(Y2)

τ−(∅a) = > τ+(∅a) = ⊥
τ−(∅m) = >∗ τ+(∅m) = ⊥∗

τ−(A) = A τ+(A) = A
τ−(X1; X2) = τ−(X1) ∧ τ−(X2) τ+(X1; X2) = τ+(X1) ∨ τ+(X2)

τ−(Y1, Y2) = τ−(Y1) ∗ τ−(Y2) τ+(Y1, Y2) = τ+(Y1) ∨∗ τ+(Y2)

τ−(X1 .a X2) = τ−(X1)−< τ+(X2) τ+(X1 .a X2) = τ−(X1)→ τ+(X2)

τ−(Y1 .m Y2) = τ−(Y1)−−× τ+(Y2) τ+(Y1 .m Y2) = τ−(Y1)−∗ τ+(Y2)

Figure 3.1: Structure translation of nested sequents

The rotation of the sequent tree to move a sequent to the root node is exactly the
“zooming-in” operation on a substructure within a nested sequent or the “display”
operation in display calculi. A context is a structure with a hole []. We write Σ[X]
for the structure obtained by filling the hole [] in the context Σ[] with a structure X.
A simple context is then defined as follows, where Z is a structure either additive or
multiplicative:

Σ[] ::= [] | Σ[], (Z) | (Z), Σ[] | Σ[]; (Z) | (Z); Σ[]

The polarity is defined à la Postniece [83]. The hole in a simple context is never
in the scope of ., and is neutral. Positive and negative contexts are defined non-
traditionally as any further nesting of . does not change polarity. We write Σ−[] to
indicate that Σ[] is negative and Σ+[] is positive. The details are as follows:

• If Σ[] is a simple context then Σ[] . Z is a negative context and Z .Σ[] is a positive
context.

• If Σ[] is a positive/negative context then so are (Σ[], Z), (Z, Σ[]), (Σ[]; Z), (Z; Σ[]),
Σ[] . Z, and Z . Σ[].

For example, the context ([] . Y) . Y′ is negative and (X . []) . Y is positive.
The shallow inference nested sequent calculus for CBI is shown in Figure 3.2 and

Figure 3.3. We refer to this calculus as SICBI. We write A, B for formulae and X and Y
possibly with subscripts are respectively additive and multiplicative structures. Notice
that the additive (resp. multiplicative) structural unit ∅a (resp. ∅m) is assumed in our
system, so the rules for them are neglected. That is, we assume that X; ∅a ≡ X and
Y, ∅m ≡ Y. Similarly, we do not explicitly state associativity and commutativity rules
for both structures as they are built in. Our presentation of the rules might be verbose
in the sense that some logical connectives can be defined from others, but we show the
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Identity and cut:

ida
X1; A `a X2; A

X1 `a X2; A A; X3 `a X4 cuta
X1; X3 `a X2; X4

idm
A `m A

Y1 `m Y2, A A, Y3 `m Y4 cutm
Y1, Y3 `m Y2, Y4

Logical rules:

X1 `a X2
>L

X1;> `a X2

>R
∅a `a >

Y1 `m Y2
>∗L

Y1,>∗ `m Y2

>∗R
∅m `m >∗

⊥L
⊥ `a ∅a

X1 `a X2
⊥R

X1 `a ⊥; X2

⊥∗L
⊥∗ `m ∅m

Y1 `m Y2
⊥∗R

Y1 `m ⊥∗, Y2

X1; Ai `a X2 ∧L, i ∈ {1, 2}
X1; A1 ∧ A2 `a X2

X1 `a A; X2 X3 `a B; X4
∧R

X1; X3 `a A ∧ B; X2; X4

X1; A `a X2 X3; B `a X4
∨L

X1; X3; A ∨ B `a X2; X4

X1 `a Ai; X2 ∨R, i ∈ {1, 2}
X1 `a A1 ∨ A2; X2

X1 `a A; X2 X3; B `a X4
→ L

X1; X3; A→ B `a X2; X4

X1; A `a B; X2
→ R

X1 `a A→ B; X2

X1; A `a B; X2 −< L
X1; A−< B `a X2

X1 `a A; X2 X3; B `a X4 −< R
X1; X3 `a A−< B; X2; X4

Y1, A, B `m Y2
∗L

Y1, A ∗ B `m Y2

Y1 `m A, Y2 Y3 `m B, Y4
∗R

Y1, Y3 `m A ∗ B, Y2, Y4

Y1, A `m Y2 Y3, B `m Y4
∨∗ L

Y1, Y3, A ∨∗ B `m Y2, Y4

Y1 `m A, B, Y2
∨∗ R

Y1 `m A ∨∗ B, Y2

Y1 `m A, Y2 Y3, B `m Y4 −∗ L
Y1, Y3, A−∗ B `m Y2, Y4

Y1, A `m B, Y2 −∗ R
Y1 `m A−∗ B, Y2

Y1, A `m B, Y2 −−× L
Y1, A−−× B `m Y2

Y1 `m A, Y2 Y3, B `m Y4 −−× R
Y1, Y3 `m A−−× B, Y2, Y4

Figure 3.2: Shallow inference nested sequent calculus SICBI for CBI part 1.
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Structural rules:

X1 `a X2
WL

X1; X3 `a X2

X1 `a X2
WR

X1 `a X3; X2

X1; X3; X3 `a X2
CL

X1; X3 `a X2

X1 `a X2; X3; X3
CR

X1 `a X2; X3

X1; A .m ∅m `a X2
Ta L

X1; A `a X2

X1 `a ∅m .m A; X2
Ta R

X1 `a A; X2

Y1, A .a ∅a `m Y2
Tm L

Y1, A `m Y2

Y1 `m ∅a .a A, Y2
Tm R

Y1 `m A, Y2

Display rules:

X1 `a X2; (Y1 .m Y2)
D1

(X1 .a X2), Y1 `m Y2

Y1 `m Y2, (X1 .a X2)
D2

(Y1 .m Y2); X1 `a X2

X1 .a X3 `m X2 .a X4
.1

X1; X2 `a X3; X4

Y1 .m Y3 `a Y2 .m Y4
.2

Y1, Y2 `m Y3, Y4

Figure 3.3: Shallow inference nested sequent calculus SICBI for CBI part 2.

rules for them nonetheless for the sake of duality. We say a sequent is additive if the
top turnstile is `a; it is multiplicative if the top turnstile is `m. We say a rule is additive
if it only manipulates additive sequents. A rule is multiplicative if it only manipulates
multiplicative sequents. Display rules are neither additive nor multiplicative because
the conclusion and the premise in these rules may be either types of sequents.

We use double lines in some structural rules and display rules to denote that these
rules are reversible. The display postulates are captured by the four display rules. We
explicitly allow multiple structures on both side of turnstile, but by the definition of
structures, these rules are equivalent to those in Brotherston’s DLCBI . Since we force
that additive and multiplicative sequents must be interleaving, the structural rules and
display rules are quite complicated to ensure the correct structure. The rules TaL, TaR,
TmL, TmR deal with situations where the formula is multiplicative but the turnstile is
additive (and vice versa), in which case we add units to make the formula the child
of the current node. For example, A ∗ B is a multiplicative formula, but if it appears
in A ∗ B `a X, we cannot directly apply the ∗L rule. We have to use the rule TaL
to encapsulate the formula into a multiplicative (inner) sequent (A ∗ B .m ∅m) `a X,
display the inner sequent to get A ∗ B `m (∅m .a X), then apply the ∗L rule.

In Figure 3.4 we use a simple example to illustrate how to prove the formula (A ∗
B) → (B ∗ A) using SICBI. In general, to prove a formula A, we start with the end
sequent ∅a `a A, and then apply the rules in SICBI backwards.
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idm
A `m A

idm
B `m B

∗R
A, B `m B ∗ A

Tm R
A, B `m (∅a .a B ∗ A)

∗L
A ∗ B `m (∅a .a B ∗ A)

D2

(A ∗ B .m ∅m) `a B ∗ A
Ta L

A ∗ B `a B ∗ A
→ R

∅a `a (A ∗ B)→ (B ∗ A)

Figure 3.4: An example derivation of (A ∗ B)→ (B ∗ A) in SICBI.

3.2.2 Soundness of SICBI

We now provide a translation from SICBI structures to DLCBI structures, and then
we prove that the former is sound in regard to the latter. The detailed translation is
shown in Figure 3.5 where τ()D is the translation to display sequents, and τ()−, τ()+

are translations to formulae or structures. The following lemma states that if a sequent
in SICBI is derivable, then the translated sequent in DLCBI is also derivable.

τ(X1 `a X2)D = τ(X1)
− ` τ(X2)+ τ(Y1 `m Y2)D = τ(Y1)

− ` τ(Y2)+

τ(∅a)∗ = ∅a τ(∅m)∗ = ∅m
τ(A)∗ = A
τ(X1; X2)∗ = τ(X1)

∗; τ(X2)∗ τ(Y1, Y2)∗ = τ(Y1)
∗, τ(Y2)∗

τ(Y1 .m Y2)− = τ(Y1)
−, [τ(Y2)+ τ(X1 .a X2)− = τ(X1)

−; ]τ(X2)+

τ(Y1 .m Y2)+ = [τ(Y1)
−, τ(Y2)+ τ(X1 .a X2)+ = ]τ(X1)

−; τ(X2)+

The ∗ sign stands for either + or −, and it is fixed in a certain translation.

Figure 3.5: Structure translation from SICBI to DLCBI

Lemma 3.2.1. If a sequent X1 `a X2 (Y1 `m Y2) is provable in SICBI, then there is a proof of
τ(X1 `a X2)D (τ(Y1 `m Y2)D) in DLCBI .

Proof. By induction on the depth of derivation.
(i) Base case is that for any sequents in SICBI that can be proved in one step, we

can find a proof in DLCBI for the translated sequent. Obviously the applicable rules in
SICBI are ida, idm, >R, >∗R, ⊥L, and ⊥∗L, all of which are easy to prove by deriving
our rules in DLCBI . Now we give the detailed proofs.

The proof for ida rule is as follows.

τ(conclusion)D = τ(X1; A `a X2; A)D = τ(X1; A)− ` τ(X2; A)+

= τ(X1)
−; τ(A)− ` τ(X2)

+; τ(A)+ = τ(X1)
−; A ` τ(X2)

+; A
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id
A ` A

WL
τ(X1)

−; A ` A
WR

τ(X1)
−; A ` τ(X2)+; A

Note that the identity A ` A is derived from Lemma 4.3 in [16]. The original id rule
in DLCBI uses atomic propositions only.

The case for idm is easier.

τ(conclusion)D = τ(A `m A)D = τ(A)− ` τ(A)+ = A ` A

id
A ` A

The cases for >R, >∗R, ⊥L, and ⊥∗L are done by just translating, as shown se-
quentially below.

For >R:
τ(conclusion)D = τ(∅a `a >)D = ∅a ` >

>R
∅a ` >

For >∗R:
τ(conclusion)D = τ(∅m `m >∗)D = ∅m ` >∗

>∗R
∅m ` >∗

For ⊥L:
τ(conclusion)D = τ(∅a `a ⊥)D = ∅a ` ⊥

⊥L
∅a ` ⊥

For ⊥∗L:
τ(conclusion)D = τ(∅m `m ⊥∗)D = ∅m ` ⊥∗

⊥∗L
∅m ` ⊥∗

Therefore the base case holds.
(ii) The induction hypothesis is that if we can simulate all proofs in SICBI of depth

n using DLCBI for the translated sequents, then we can also simulate proofs of depth
n + 1 in SICBI for the translated sequents. The last steps of those proofs in SICBI can
only be done by applying one of the rules (with non-empty premise) in Figure 3.2 and
Figure 3.3. Note that the display postulates in DLCBI imply commutativity of ; and ,.
For simplicity, we will use this in the following text without explicitly stating it.

Now we show that if a rule in SICBI (below left) is applied in the last step, then we
can find a proof of the form (below right) in DLCBI .
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premise
ρ

conclusion

τ(premise)D

...
τ(conclusion)D

Since the induction hypothesis says we already have a proof of τ(premise)D, it is
sufficient to show that we can derive τ(conclusion)D from τ(premise)D. Therefore we
have a proof in DLCBI for the translated sequent when the (n + 1)th applied rule is ρ.

First we show that the two cut rules in SICBI can be simulated in DLCBI .
For cuta:

τ(premisele f t)D = τ(X1 `a X2; A)D = τ(X1)
− ` τ(X2)

+; A

τ(premiseright)D = τ(A; X3 `a X4)D = A; τ(X3)
− ` τ(X4)

+

τ(conclusion)D = τ(X1; X3 `a X2; X4)D = τ(X1; X3)
− ` τ(X2; X4)

+

= τ(X1)
−; τ(X3)

− ` τ(X2)
+; τ(X4)

+

τ(X1)
− ` τ(X2)+; A

AD2a
τ(X1)

−; ]τ(X2)+ ` A
A; τ(X3)− ` τ(X4)

+

AD1a
A ` ]τ(X3)−; τ(X4)

+

cut
τ(X1)

−; ]τ(X2)+ ` ]τ(X3)−; τ(X4)
+

AD1b
τ(X1)

−; ]τ(X2)+; τ(X3)− ` τ(X4)
+

AD2b
τ(X1)

−; τ(X3)− ` τ(X2)+; τ(X4)
+

Similarly for cutm:

τ(premisele f t)D = τ(Y1 `m Y2, A)D = τ(Y1)
− ` τ(Y2)

+, A

τ(premiseright)D = τ(A, Y3 `m Y4)D = A, τ(Y3)
− ` τ(Y4)

+

τ(conclusion)D = τ(Y1, Y3 `m Y2, Y4)D = τ(Y1, Y3)
− ` τ(Y2, Y4)

+

= τ(Y1)
−, τ(Y3)

− ` τ(Y2)
+, τ(Y4)

+

τ(Y1)
− ` τ(Y2)+, A

MD2a
τ(Y1)

−, [τ(Y2)+ ` A
A, τ(Y3)− ` τ(Y4)

+

MD1a
A ` [τ(Y3)−, τ(Y4)

+

cut
τ(Y1)

−, [τ(Y2)+ ` [τ(Y3)−, τ(Y4)
+

MD1b
τ(Y1)

−, [τ(Y2)+, τ(Y3)− ` τ(Y4)
+

MD2b
τ(Y1)

−, τ(Y3)− ` τ(Y2)+, τ(Y4)
+

Now we consider structural rules.
For WL:

τ(premise)D = τ(X1 `a X2)D = τ(X1)
− ` τ(X2)

+

τ(conclusion)D = τ(X1; X3 `a X2)D = τ(X1; X3)
− ` τ(X2)

+ = τ(X1)
−; τ(X3)

− ` τ(X2)
+
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τ(X1)
− ` τ(X2)+

WL
τ(X1)

−; τ(X3)− ` τ(X2)+

For WR:

τ(premise)D = τ(X1 `a X2)D = τ(X1)
− ` τ(X2)

+

τ(conclusion)D = τ(X1 `a X2; X3)D = τ(X1)
− ` τ(X2; X3)

+ = τ(X1)
− ` τ(X2)

+; τ(X3)
+

τ(X1)
− ` τ(X2)+

WR
τ(X1)

− ` τ(X2)+; τ(X3)+

For CL:

τ(premise)D = τ(X1; X3; X3 `a X2)D = τ(X1; X3; X3)
− ` τ(X2)

+

= τ(X1)
−; τ(X3)

−; τ(X3)
− ` τ(X2)

+

τ(conclusion)D = τ(X1; X3 `a X2)D = τ(X1; X3)
− ` τ(X2)

+ = τ(X1)
−; τ(X3)

− ` τ(X2)
+

τ(X1)
−; τ(X3)−; τ(X3)− ` τ(X2)+

AD1a
τ(X3)−; τ(X3)− ` ]τ(X1)

−; τ(X2)+
CL

τ(X3)− ` ]τ(X1)
−; τ(X2)+

AD1b
τ(X1)

−; τ(X3)− ` τ(X2)+

For CR:

τ(premise)D = τ(X1 `a X2; X3; X3)D = τ(X1)
− ` τ(X2; X3; X3)

+

= τ(X1)
− ` τ(X2)

+; τ(X3)
+; τ(X3)

+

τ(conclusion)D = τ(X1 `a X2; X3)D = τ(X1)
− ` τ(X2; X3)

+ = τ(X1)
− ` τ(X2)

+; τ(X3)
+

τ(X1)
− ` τ(X2)+; τ(X3)+; τ(X3)+

AD2a
τ(X1)

−; ]τ(X2)+ ` τ(X3)+; τ(X3)+
CR

τ(X1)
−; ]τ(X2)+ ` τ(X3)+

AD2b
τ(X1)

− ` τ(X2)+; τ(X3)+

For the TaL rule,

τ(premise)D = τ(X1; A .m ∅m `a X2)D = τ(X1; A .m ∅m)
− ` τ(X2)

+

= τ(X1)
−; τ(A .m ∅m)

− ` τ(X2)
+

= τ(X1)
−; (τ(A)−, [τ(∅m)

+) ` τ(X2)
+ = τ(X1)

−; (A, [∅m) ` τ(X2)
+

τ(conclusion)D = τ(X1; A `a X2)D = τ(X1; A)− ` τ(X2)
+ = τ(X1)

−; τ(A)− ` τ(X2)
+

= τ(X1)
−; A ` τ(X2)

+

And we have the following inference:
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τ(X1)
−; (A, [∅m) ` τ(X2)+

AD1a
A, [∅m ` ]τ(X1)

−; τ(X2)+
MD2b

A ` (]τ(X1)
−; τ(X2)+), ∅m

∅m R

A ` ]τ(X1)
−; τ(X2)+

AD1b
τ(X1)

−; A ` τ(X2)+

For TaR,

τ(premise)D = τ(X1 `a ∅m .m A; X2)D = τ(X1)
− ` τ(∅m .m A; X2)

+

= τ(X1)
− ` τ(∅m .m A)+; τ(X2)

+

= τ(X1)
− ` ([τ(∅m)

−, τ(A)+); τ(X2)
+ = τ(X1)

− ` ([∅m, A); τ(X2)
+

τ(conclusion)D = τ(X1 `a A; X2)D = τ(X1)
− ` τ(A; X2)

+ = τ(X1)
− ` τ(A)+; τ(X2)

+

= τ(X1)
− ` A; τ(X2)

+

τ(X1)
− ` ([∅m, A); τ(X2)+

AD2a
τ(X1)

−; ]τ(X2)+ ` [∅m, A
MD1b

∅m, (τ(X1)
−; ]τ(X2)+) ` A

∅m L

τ(X1)
−; ]τ(X2)+ ` A

AD2b
τ(X1)

− ` A; τ(X2)+

For TmL,

τ(premise)D = τ(Y1, A .a ∅a `m Y2)D = τ(Y1, A .a ∅a)
− ` τ(Y2)

+

= τ(Y1)
−, τ(A .a ∅a)

− ` τ(Y2)
+

= τ(Y1)
−, (τ(A)−; ]τ(∅a)

+) ` τ(Y2)
+ = τ(Y1)

−, (A; ]∅a) ` τ(Y2)
+

τ(conclusion)D = τ(Y1, A `m Y2)D = τ(Y1, A)− ` τ(Y2)
+ = τ(Y1)

−, τ(A)− ` τ(Y2)
+

= τ(Y1)
−, A ` τ(Y2)

+

And we have the following inference:

τ(Y1)
−, (A; ]∅a) ` τ(Y2)+

MD1a
A, ]∅a ` [τ(Y1)

−, τ(Y2)+
AD2b

A ` ([τ(Y1)
−, τ(Y2)+); ∅a

∅a R

A ` [τ(Y1)
−, τ(Y2)+

MD1b
τ(Y1)

−, A ` τ(Y2)+

The case for TmR is symmetric. The cases for display rules in SICBI are as follows.
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For D1,

τ(premise)D = τ(X1 `a X2; (Y1 .m Y2))D = τ(X1)
− ` τ(X2; (Y1 .m Y2))

+

= τ(X1)
− ` τ(X2)

+; τ(Y1 .m Y2)
+ = τ(X1)

− ` τ(X2)
+; ([τ(Y1)

−, τ(Y2)
+)

τ(conclusion)D = τ((X1 .a X2), Y1 `m Y2)D = τ((X1 .a X2))
−, τ(Y1)

− ` τ(Y2)
+

= (τ(X1)
−; ]τ(X2)

+), τ(Y1)
− ` τ(Y2)

+

τ(X1)
− ` τ(X2)+; ([τ(Y1)

−, τ(Y2)+)
AD2a

τ(X1)
−; ]τ(X2)+ ` [τ(Y1)

−, τ(Y2)+
MD1b

(τ(X1)
−; ]τ(X2)+), τ(Y1)

− ` τ(Y2)+

The case for D2 is dual:

τ(premise)D = τ(Y1 `m Y2, (X1 .a X2))D = τ(Y1)
− ` τ(Y2, (X1 .a X2))

+

= τ(Y1)
− ` τ(Y2)

+, τ(X1 .a X2)
+ = τ(Y1)

− ` τ(Y2)
+, (]τ(X1)

−; τ(X2)
+)

τ(conclusion)D = τ((Y1 .m Y2); X1 `a X2)D = τ((Y1 .m Y2))
−; τ(X1)

− ` τ(X2)
+

= (τ(Y1)
−, [τ(Y2)

+); τ(X1)
− ` τ(X2)

+

τ(Y1)
− ` τ(Y2)+, (]τ(X1)

−; τ(X2)+)
MD2a

τ(Y1)
−, [τ(Y2)+ ` ]τ(X1)

−; τ(X2)+
AD1b

(τ(Y1)
−, [τ(Y2)+); τ(X1)

− ` τ(X2)+

For .1,

τ(premise)D = τ(X1 .a X3 `m X2 .a X4)D = τ(X1 .a X3)
− ` τ(X2 .a X4)

+

= τ(X1)
−; ]τ(X3)

+ ` ]τ(X2)
−; τ(X4)

+

τ(conclusion)D = τ(X1; X2 `a X3; X4)D = τ(X1; X2)
− ` τ(X3; X4)

+

= τ(X1)
−; τ(X2)

− ` τ(X3)
+; τ(X4)

+

τ(X1)
−; ]τ(X3)+ ` ]τ(X2)−; τ(X4)

+

AD1b
τ(X1)

−; ]τ(X3)+; τ(X2)− ` τ(X4)
+

AD2b
τ(X1)

−; τ(X2)− ` τ(X3)+; τ(X4)
+

The case for .2 is similar since no weakening nor contraction is used here.

τ(premise)D = τ(Y1 .m Y3 `a Y2 .m Y4)D = τ(Y1 .m Y3)
− ` τ(Y2 .m Y4)

+

= τ(Y1)
−, [τ(Y3)

+ ` [τ(Y2)
−, τ(Y4)

+

τ(conclusion)D = τ(Y1, Y2 `m Y3, Y4)D = τ(Y1, Y2)
− ` τ(Y3, Y4)

+

= τ(Y1)
−, τ(Y2)

− ` τ(Y3)
+, τ(Y4)

+
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τ(Y1)
−, [τ(Y3)+ ` [τ(Y2)−, τ(Y4)

+

MD1b
τ(Y1)

−, [τ(Y3)+, τ(Y2)− ` τ(Y4)
+

MD2b
τ(Y1)

−, τ(Y2)− ` τ(Y3)+, τ(Y4)
+

Note that the derivations for the rules TaL, TaR, TmL, TMR, D1, D2, .1, and .2 only
use invertible rules in DLCBI , thus we can also prove that there are derivations from
conclusion to premise, so these rules in SICBI are reversible.

The following deals with logical rules with non-empty premises. Again, the cases
for >L, >∗L, ⊥R and ⊥∗R are proved by merely translation and a direct application
of corresponding rules.

For >L,

τ(premise)D = τ(X1 `a X2)D = τ(X1)
− ` τ(X2)

+

τ(conclusion)D = τ(X1;> `a X2)D = τ(X1;>)− ` τ(X2)
+ = τ(X1)

−;> ` τ(X2)
+

τ(X1)
− ` τ(X2)+

unit
τ(X1)

−; ∅a ` τ(X2)+
AD1a

∅a ` ]τ(X1)
−; τ(X2)+

>L
> ` ]τ(X1)

−; τ(X2)+
AD1b

τ(X1)
−;> ` τ(X2)+

For >∗L,

τ(premise)D = τ(Y1 `m Y2)D = τ(Y1)
− ` τ(Y2)

+

τ(conclusion)D = τ(Y1,>∗ `m Y2)D = τ(Y1,>∗)− ` τ(Y2)
+ = τ(Y1)

−,>∗ ` τ(Y2)
+

τ(Y1)
− ` τ(Y2)+

unit
τ(Y1)

−, ∅m ` τ(Y2)+
MD1a

∅m ` [τ(Y1)
−, τ(Y2)+

>∗L
>∗ ` [τ(Y1)

−, τ(Y2)+
MD1b

τ(Y1)
−,>∗ ` τ(Y2)+

For ⊥R,

τ(premise)D = τ(X1 `a X2)D = τ(X)− ` τ(X2)
+

τ(conclusion)D = τ(X1 `a ⊥; X2)D = τ(X1)
− ` τ(⊥; X2)

+ = τ(X)− ` ⊥; τ(X2)
+

τ(X1)
− ` τ(X2)+

unit
τ(X1)

− ` ∅a; τ(X2)+
AD2a

τ(X1)
−; ]τ(X2)+ ` ∅a

⊥R
τ(X1)

−; ]τ(X2)+ ` ⊥
AD2b

τ(X1)
− ` ⊥; τ(X2)+
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For ⊥∗R

τ(premise)D = τ(Y1 `m Y2)D = τ(Y1)
− ` τ(Y2)

+

τ(conclusion)D = τ(Y1 `m ⊥∗, Y2)D = τ(Y1)
− ` τ(⊥∗, Y2)

+ = τ(Y)− ` ⊥∗, τ(Y2)
+

τ(Y1)
− ` τ(Y2)+

unit
τ(Y1)

− ` ∅m, τ(Y2)+
MD2a

τ(Y1)
−, [τ(Y2)+ ` ∅m

⊥∗R
τ(Y1)

−, [τ(Y2)+ ` ⊥∗
MD2b

τ(Y1)
− ` ⊥∗, τ(Y2)+

For ∧L,

τ(premise)D = τ(X1; A1 `a X2)D = τ(X1; A1)
− ` τ(X2)

+

= τ(X1)
−; τ(A1)

− ` τ(X2)
+ = τ(X1)

−; A1 ` τ(X2)
+

τ(conclusion)D = τ(X1; A1 ∧ A2 `a X2)D = τ(X1; A1 ∧ A2)
− ` τ(X2)

+

= τ(X1)
−; τ(A1 ∧ A2)

− ` τ(X2)
+ = τ(X1)

−; A1 ∧ A2 ` τ(X2)
+

τ(X1)
−; A1 ` τ(X2)+

AD1a
A1 ` ]τ(X1)

−; τ(X2)+
WL

A1; A2 ` ]τ(X1)
−; τ(X2)+

∧L
A1 ∧ A2 ` ]τ(X1)

−; τ(X2)+
AD1b

τ(X1)
−; A1 ∧ A2 ` τ(X2)+

The case for keeping A2 in the premise has a similar proof but weakens A1 instead.
For ∧R,

τ(premisele f t)D = τ(X1 `a A; X2)D = τ(X1)
− ` τ(A; X2)

+

= τ(X1)
− ` τ(A)+; τ(X2)

+ = τ(X1)
− ` A; τ(X2)

+

τ(premiseright)D = τ(X3 `a B; X4)D = τ(X3)
− ` τ(B; X4)

+

= τ(X3)
− ` τ(B)+; τ(X4)

+ = τ(X3)
− ` B; τ(X4)

+

τ(conclusion)D = τ(X1; X3 `a A ∧ B; X2; X4)D = τ(X1; X3)
− ` τ(A ∧ B; X2; X4)

+

= τ(X1)
−; τ(X3)

− ` A ∧ B; τ(X2)
+; τ(X4)

+

τ(X1)
− ` A; τ(X2)+

AD2a
τ(X1)

−; ]τ(X2)+ ` A
τ(X3)− ` B; τ(X4)

+

AD2a
τ(X3)−; ]τ(X4)

+ ` B
∧R

τ(X1)
−; τ(X3)−; ]τ(X2)+; ]τ(X4)

+ ` A ∧ B
AD2b

τ(X1)
−; τ(X3)−; ]τ(X2)+ ` A ∧ B; τ(X4)

+

AD2b
τ(X1)

−; τ(X3)− ` A ∧ B; τ(X2)+; τ(X4)
+

The cases for ∨L and ∨R are dual to ∧R and ∧L.
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For ∨L

τ(premisele f t)D = τ(X1; A `a X2)D = τ(X1; A)− ` τ(X2)
+

= τ(X1)
−; τ(A)− ` τ(X2)

+ = τ(X1)
−; A ` τ(X2)

+

τ(premiseright)D = τ(X3; B `a X4)D = τ(X3; B)− ` τ(X4)
+

= τ(X3)
−; τ(B)− ` τ(X4)

+ = τ(X3)
−; B ` τ(X4)

+

τ(conclusion)D = τ(X1; X3; A ∨ B `a X2; X4)D = τ(X1; X3; A ∨ B)− ` τ(X2; X4)
+

= τ(X1)
−; τ(X3)

−; A ∨ B ` τ(X2)
+; τ(X4)

+

τ(X1)
−; A ` τ(X2)+

AD1a
A ` τ(X2)+; ]τ(X1)

−
τ(X3)−; B ` τ(X4)

+

AD1a
B ` τ(X4)

+; ]τ(X3)−
∨L

A ∨ B ` ]τ(X1)
−; ]τ(X3)−; τ(X2)+; τ(X4)

+

AD1b
τ(X1)

−; A ∨ B ` ]τ(X3)−; τ(X2)+; τ(X4)
+

AD1b
τ(X1)

−; τ(X3)−; A ∨ B ` τ(X2)+; τ(X4)
+

For ∨R,

τ(premise)D = τ(X1 `a A1; X2)D = τ(X1)
− ` τ(A1; X2)

+

= τ(X1)
− ` τ(A1)

+; τ(X2)
+ = τ(X1)

− ` A1; τ(X2)
+

τ(conclusion)D = τ(X1 `a A1 ∨ A2; X2)D = τ(X1)
− ` τ(A1 ∨ A2; X2)

+

= τ(X1)
− ` τ(A1 ∨ A2)

+; τ(X2)
+ = τ(X1)

− ` A1 ∨ A2; τ(X2)
+

τ(X1)
− ` A1; τ(X2)+

AD2a
τ(X1)

−; ]τ(X2)+ ` A1
WR

τ(X1)
−; ]τ(X2)+ ` A1; A2

∨R
τ(X1)

−; ]τ(X2)+ ` A1 ∨ A2
AD2b

τ(X1)
− ` A1 ∨ A2; τ(X2)+

Weakening A1 instead yields the proof for the case of A2 in the premise of the rule.
For→ L,

τ(premisele f t)D = τ(X1 `a A; X2)D = τ(X1)
− ` τ(A; X2)

+

= τ(X1)
− ` τ(A)+; τ(X2)

+ = τ(X1)
− ` A; τ(X2)

+

τ(premiseright)D = τ(X3; B `a X4)D = τ(X3; B)− ` τ(X4)
+

= τ(X3)
−; τ(B)− ` τ(X4)

+ = τ(X3)
−; B ` τ(X4)

+

τ(conclusion)D = τ(X1; X3; A→ B `a X2; X4)D = τ(X1; X3; A→ B)− ` τ(X2; X4)
+

= τ(X1)
−; τ(X3)

−; A→ B ` τ(X2)
+; τ(X4)

+
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τ(X1)
− ` A; τ(X2)+

AD2a
τ(X1)

−; ]τ(X2)+ ` A
τ(X3)−; B ` τ(X4)

+

AD1a
B ` τ(X4)

+; ]τ(X3)−
→ L

A→ B ` ]τ(X1)
−; ]τ(X3)−; ]]τ(X2)+; τ(X4)

+

AD1b
]τ(X2)+; A→ B ` ]τ(X1)

−; ]τ(X3)−; τ(X4)
+

AD2b
A→ B ` ]τ(X1)

−; ]τ(X3)−; τ(X2)+; τ(X4)
+

AD1b
τ(X1)

−; A→ B ` ]τ(X3)−; τ(X2)+; τ(X4)
+

AD1b
τ(X1)

−; τ(X3)−; A→ B ` τ(X2)+; τ(X4)
+

For→ R

τ(premise)D = τ(X1; A `a B; X2)D = τ(X1; A)− ` τ(B; X2)
+

= τ(X1)
−; τ(A)− ` τ(B)+; τ(X2)

+ = τ(X1)
−; A ` B; τ(X2)

+

τ(conclusion)D = τ(X1 `a A→ B; X2)D = τ(X1)
− ` τ(A→ B; X2)

+

= τ(X1)
− ` τ(A→ B)+; τ(X2)

+ = τ(X1)
− ` A→ B; τ(X2)

+

τ(X1)
−; A ` B; τ(X2)+

AD2a
τ(X1)

−; ]τ(X2)+; A ` B
→ R

τ(X1)
−; ]τ(X2)+ ` A→ B

AD2b
τ(X1)

− ` A→ B; τ(X2)+

The cases for −< rules are similar to ∧ since A−< B =de f A ∧ ¬B.

For −< L,

τ(premise)D = τ(X1; A `a B; X2)D = τ(X1; A)− ` τ(B; X2)
+

= τ(X1)
−; τ(A)− ` τ(B)+; τ(X2)

+ = τ(X1)
−; A ` B; τ(X2)

+

τ(conclusion)D = τ(X1; A−< B `a X2)D = τ(X1; A−< B)− ` τ(X2)
+

= τ(X1)
−; τ(A−< B)− ` τ(X2)

+ = τ(X1)
−; A ∧ ¬B ` τ(X2)

+

τ(X1)
−; A ` B; τ(X2)+

AD2a
τ(X1)

−; A; ]B ` τ(X2)+
AD1a

A; ]B ` ]τ(X1)
−; τ(X2)+

AD1a
]B ` ]A; ]τ(X1)

−; τ(X2)+
¬L

¬B ` ]A; ]τ(X1)
−; τ(X2)+

AD1b
A;¬B ` ]τ(X1)

−; τ(X2)+
∧L

A ∧ ¬B ` ]τ(X1)
−; τ(X2)+

AD1b
τ(X1)

−; A ∧ ¬B ` τ(X2)+
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For −< R,

τ(premisele f t)D = τ(X1 `a A; X2)D = τ(X1)
− ` τ(A; X2)

+

= τ(X1)
− ` τ(A)+; τ(X2)

+ = τ(X1)
− ` A; τ(X2)

+

τ(premiseright)D = τ(X3; B `a X4)D = τ(X3; B)− ` τ(X4)
+

= τ(X3)
−; τ(B)− ` τ(X4)

+ = τ(X3)
−; B ` τ(X4)

+

τ(conclusion)D = τ(X1; X3 `a A−< B; X2; X4)D = τ(X1; X3)
− ` τ(A−< B; X2; X4)

+

= τ(X1)
−; τ(X3)

− ` A ∧ ¬B; τ(X2)
+; τ(X4)

+

τ(X1)
− ` A; τ(X2)+

AD2a
τ(X1)

−; ]τ(X2)+ ` A

τ(X3)−; B ` τ(X4)
+

AD1a
τ(X3)− ` ]B; τ(X4)

+

AD2a
τ(X3)−; ]τ(X4)

+ ` ]B
¬R

τ(X3)−; ]τ(X4)
+ ` ¬B

∧R
τ(X1)

−; τ(X3)−; ]τ(X2)+; ]τ(X4)
+ ` A ∧ ¬B

AD2b
τ(X1)

−; τ(X3)−; ]τ(X2)+ ` A ∧ ¬B; τ(X4)
+

AD2b
τ(X1)

−; τ(X3)− ` A ∧ ¬B; τ(X2)+; τ(X4)
+

The cases for multiplicative rules are similar to those above but without using
weakening and contraction.

For ∗L,

τ(premise)D = τ(Y1, A1, A2 `m Y2)D = τ(Y1, A1, A2)
− ` τ(Y2)

+

= τ(Y1)
−, τ(A1)

−, τ(A2)
− ` τ(Y2)

+ = τ(Y1)
−, A1, A2 ` τ(Y2)

+

τ(conclusion)D = τ(Y1, A1 ∗ A2 `m Y2)D = τ(Y1, A1 ∗ A2)
− ` τ(Y2)

+

= τ(Y1)
−, τ(A1 ∗ A2)

− ` τ(Y2)
+ = τ(Y1)

−, A1 ∗ A2 ` τ(Y2)
+

τ(Y1)
−, A1, A2 ` τ(Y2)+

MD1a
A1, A2 ` [τ(Y1)

−, τ(Y2)+
∗L

A1 ∗ A2 ` [τ(Y1)
−, τ(Y2)+

MD1b
τ(Y1)

−, A1 ∗ A2 ` τ(Y2)+

For ∗R,

τ(premisele f t)D = τ(Y1 `m A, Y2)D = τ(Y1)
− ` τ(A, Y2)

+

= τ(Y1)
− ` τ(A)+, τ(Y2)

+ = τ(Y1)
− ` A, τ(Y2)

+

τ(premiseright)D = τ(Y3 `m B, Y4)D = τ(Y3)
− ` τ(B, Y4)

+

= τ(Y3)
− ` τ(B)+, τ(Y4)

+ = τ(Y3)
− ` B, τ(Y4)

+

τ(conclusion)D = τ(Y1, Y3 `m A ∗ B, Y2, Y4)D = τ(Y1, Y3)
− ` τ(A ∗ B, Y2, Y4)

+

= τ(Y1)
−, τ(Y3)

− ` A ∗ B, τ(Y2)
+, τ(Y4)

+
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τ(Y1)
− ` A, τ(Y2)+

MD2a
τ(Y1)

−, [τ(Y2)+ ` A
τ(Y3)− ` B, τ(Y4)

+

MD2a
τ(Y3)−, [τ(Y4)

+ ` B
∗R

τ(Y1)
−, τ(Y3)−, [τ(Y2)+, [τ(Y4)

+ ` A ∗ B
MD2b

τ(Y1)
−, τ(Y3)−, [τ(Y2)+ ` A ∗ B, τ(Y4)

+

MD2b
τ(Y1)

−, τ(Y3)− ` A ∗ B, τ(Y2)+, τ(Y4)
+

For ∨∗ L

τ(premisele f t)D = τ(Y1, A `m Y2)D = τ(Y1, A)− ` τ(Y2)
+

= τ(Y1)
−, τ(A)− ` τ(Y2)

+ = τ(Y1)
−, A ` τ(Y2)

+

τ(premiseright)D = τ(Y3, B `m Y4)D = τ(Y3, B)− ` τ(Y4)
+

= τ(Y3)
−, τ(B)− ` τ(Y4)

+ = τ(Y3)
−, B ` τ(Y4)

+

τ(conclusion)D = τ(Y1, Y3, A ∨∗ B `m Y2, Y4)D = τ(Y1, Y3, A ∨∗ B)− ` τ(Y2, Y4)
+

= τ(Y1)
−, τ(Y3)

−, A ∨∗ B ` τ(Y2)
+, τ(Y4)

+

τ(Y1)
−, A ` τ(Y2)+

MD1a
A ` τ(Y2)+, [τ(Y1)

−
τ(Y3)−, B ` τ(Y4)

+

MD1a
B ` τ(Y4)

+, [τ(Y3)−
∨∗ L

A ∨∗ B ` [τ(Y1)
−, [τ(Y3)−, τ(Y2)+, τ(Y4)

+

MD1b
τ(Y1)

−, A ∨∗ B ` [τ(Y3)−, τ(Y2)+, τ(Y4)
+

MD1b
τ(Y1)

−, τ(Y3)−, A ∨∗ B ` τ(Y2)+, τ(Y4)
+

For ∨∗ R,

τ(premise)D = τ(Y1 `m A1, A2, Y2)D = τ(Y1)
− ` τ(A1, A2, Y2)

+

= τ(Y1)
− ` τ(A1)

+, τ(A2)
+, τ(Y2)

+ = τ(Y1)
− ` A1, A2, τ(Y2)

+

τ(conclusion)D = τ(Y1 `m A1 ∨∗ A2, Y2)D = τ(Y1)
− ` τ(A1 ∨∗ A2, Y2)

+

= τ(Y1)
− ` τ(A1 ∨∗ A2)

+, τ(Y2)
+ = τ(Y1)

− ` A1 ∨∗ A2, τ(Y2)
+

τ(Y1)
− ` A1, A2, τ(Y2)+

MD2a
τ(Y1)

−, [τ(Y2)+ ` A1, A2
∨∗ R

τ(Y1)
−, [τ(Y2)+ ` A1 ∨∗ A2

MD2b
τ(Y1)

− ` A1 ∨∗ A2, τ(Y2)+

For −∗ L,

τ(premisele f t)D = τ(Y1 `m A, Y2)D = τ(Y1)
− ` τ(A, Y2)

+

= τ(Y1)
− ` τ(A)+, τ(Y2)

+ = τ(Y1)
− ` A, τ(Y2)

+
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τ(premiseright)D = τ(Y3, B `m Y4)D = τ(Y3, B)− ` τ(Y4)
+

= τ(Y3)
−, τ(B)− ` τ(Y4)

+ = τ(Y3)
−, B ` τ(Y4)

+

τ(conclusion)D = τ(Y1, Y3, A−∗ B `m Y2, Y4)D = τ(Y1, Y3, A−∗ B)− ` τ(Y2, Y4)
+

= τ(Y1)
−, τ(Y3)

−, A−∗ B ` τ(Y2)
+, τ(Y4)

+

τ(Y1)
− ` A, τ(Y2)+

MD2a
τ(Y1)

−, [τ(Y2)+ ` A
τ(Y3)−, B ` τ(Y4)

+

MD1a
B ` τ(Y4)

+, [τ(Y3)−
−∗ L

A−∗ B ` [τ(Y1)
−, [τ(Y3)−, [[τ(Y2)+, τ(Y4)

+

MD1b
[τ(Y2)+, A−∗ B ` [τ(Y1)

−, [τ(Y3)−, τ(Y4)
+

MD2b
A−∗ B ` [τ(Y1)

−, [τ(Y3)−, τ(Y2)+, τ(Y4)
+

MD1b
τ(Y1)

−, A−∗ B ` [τ(Y3)−, τ(Y2)+, τ(Y4)
+

MD1b
τ(Y1)

−, τ(Y3)−, A−∗ B ` τ(Y2)+, τ(Y4)
+

For −∗ R

τ(premise)D = τ(Y1, A `m B, Y2)D = τ(Y1, A)− ` τ(B, Y2)
+

= τ(Y1)
−, τ(A)− ` τ(B)+, τ(Y2)

+ = τ(Y1)
−, A ` B, τ(Y2)

+

τ(conclusion)D = τ(Y1 `m A−∗ B, Y2)D = τ(Y1)
− ` τ(A−∗ B, Y2)

+

= τ(Y1)
− ` τ(A−∗ B)+, τ(Y2)

+ = τ(Y1)
− ` A−∗ B, τ(Y2)

+

τ(Y1)
−, A ` B, τ(Y2)+

MD2a
τ(Y1)

−, [τ(Y2)+, A ` B
−∗ R

τ(Y1)
−, [τ(Y2)+ ` A−∗ B

MD2b
τ(Y1)

− ` A−∗ B, τ(Y2)+

The cases for −−× rules are similar to ∗ since A−−× B =de f A∗ ∼ B.

For −−× L,

τ(premise)D = τ(Y1, A `m B, Y2)D = τ(Y1, A)− ` τ(B, Y2)
+

= τ(Y1)
−, τ(A)− ` τ(B)+, τ(Y2)

+ = τ(Y1)
−, A ` B, τ(Y2)

+

τ(conclusion)D = τ(Y1, A−−× B `m Y2)D = τ(Y1, A−−× B)− ` τ(Y2)
+

= τ(Y1)
−, τ(A−−× B)− ` τ(Y2)

+ = τ(Y1)
−, A∗ ∼ B ` τ(Y2)

+
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τ(Y1)
−, A ` B, τ(Y2)+

MD2a
τ(Y1)

−, A, [B ` τ(Y2)+
MD1a

A, [B ` [τ(Y1)
−, τ(Y2)+

MD1a
[B ` [A, [τ(Y1)

−, τ(Y2)+
∼ L

∼ B ` [A, [τ(Y1)
−, τ(Y2)+

MD1b
A,∼ B ` [τ(Y1)

−, τ(Y2)+
∗L

A∗ ∼ B ` [τ(Y1)
−, τ(Y2)+

MD1b
τ(Y1)

−, A∗ ∼ B ` τ(Y2)+

For −−× R,

τ(premisele f t)D = τ(Y1 `m A, Y2)D = τ(Y1)
− ` τ(A, Y2)

+

= τ(Y1)
− ` τ(A)+, τ(Y2)

+ = τ(Y1)
− ` A, τ(Y2)

+

τ(premiseright)D = τ(Y3, B `m Y4)D = τ(Y3, B)− ` τ(Y4)
+

= τ(Y3)
−, τ(B)− ` τ(Y4)

+ = τ(Y3)
−, B ` τ(Y4)

+

τ(conclusion)D = τ(Y1, Y3 `m A−−× B, Y2, Y4)D = τ(Y1, Y3)
− ` τ(A−−× B, Y2, Y4)

+

= τ(Y1)
−, τ(Y3)

− ` A∗ ∼ B, τ(Y2)
+, τ(Y4)

+

τ(Y1)
− ` A, τ(Y2)+

MD2a
τ(Y1)

−, [τ(Y2)+ ` A

τ(Y3)−, B ` τ(Y4)
+

MD1a
τ(Y3)− ` [B, τ(Y4)

+

MD2a
τ(Y3)−, [τ(Y4)

+ ` [B
∼ R

τ(Y3)−, [τ(Y4)
+ `∼ B

∗R
τ(Y1)

−, τ(Y3)−, [τ(Y2)+, [τ(Y4)
+ ` A∗ ∼ B

MD2b
τ(Y1)

−, τ(Y3)−, [τ(Y2)+ ` A∗ ∼ B, τ(Y4)
+

MD2b
τ(Y1)

−, τ(Y3)− ` A∗ ∼ B, τ(Y2)+, τ(Y4)
+

The above derivations have considered every rule in SICBI, thus the inductive case
holds. Therefore the said lemma can be concluded.

Theorem 3.2.2 (Soundness). If a CBI formula F is provable in SICBI (i.e., ∅a `a F is provable
in SICBI), then F is provable in DLCBI (i.e., ∅a ` F is provable in DLCBI).

Proof. From the above lemma, if ∅a `a F is provable in SICBI, then there is a proof of
τ(∅a `a F)D in DLCBI .

According to our translation (cf. Figure 3.5),

τ(∅a `a F)D = τ(∅a)− ` τ(F)+ = ∅a ` F

therefore we have a proof of ∅a ` F in DLCBI .
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3.2.3 Completeness of SICBI

The logical rules and most of structural rules in SICBI are very similar to those in DLCBI ,
if there were not any difference in structures, it would be easy to prove that these two
sets of rules are equivalent. To prove the correspondence between SICBI and DLCBI ,
we introduce another structure translation to convert the display calculus structures
into shallow nested sequent structures. The design principle of this translation is to
simulate display calculus structures in nested sequents with interleaving additive and
multiplicative turnstiles, and ensure that structures in DLCBI can be translated into
equivalent structures in SICBI. The detailed translation is shown in Figure 3.6. It is
straightforward to show that this translation is faithful.

τ(X1 ` X2)s = τ(X1)la `a τ(X2)ra
τ(∅a)la = ∅a τ(∅a)ra = ∅a
τ(∅a)lm = ∅a .a ∅a τ(∅a)rm = ∅a .a ∅a
τ(]X)la = (∅a .a τ(X)ra) .m ∅m τ(]X)ra = ∅m .m (τ(X)la .a ∅a)
τ(]X)lm = ∅a .a τ(X)ra τ(]X)rm = τ(X)la .a ∅a
τ(X1; X2)la = τ(X1)la; τ(X2)la τ(X1; X2)ra = τ(X1)ra; τ(X2)ra
τ(X1; X2)lm = (τ(X1)la; τ(X2)la) .a ∅a τ(X1; X2)rm = ∅a .a (τ(X1)ra; τ(X2)ra)
τ(F)la = F τ(F)ra = F
τ(F)lm = F τ(F)rm = F
τ(∅m)la = ∅m .m ∅m τ(∅m)ra = ∅m .m ∅m
τ(∅m)lm = ∅m τ(∅m)rm = ∅m
τ([X)la = ∅m .m τ(X)rm τ([X)ra = τ(X)lm .m ∅m
τ([X)lm = (∅m .m τ(X)rm) .a ∅a τ([X)rm = ∅a .a (τ(X)lm .m ∅m)
τ(X1, X2)la = (τ(X1)lm, τ(X2)lm) .m ∅m τ(X1, X2)ra = ∅m .m (τ(X1)rm, τ(X2)rm)
τ(X1, X2)lm = τ(X1)lm, τ(X2)lm τ(X1, X2)rm = τ(X1)rm, τ(X2)rm

In the translation, F denotes a formula, and X, X1, X2 are structures.

Figure 3.6: Structure translation from DLCBI to SICBI

We do not deal with negations in this translation, but instead we use A → ⊥
to encode ¬A, and A−∗ ⊥∗ to encode ∼ A. By treating negations as abbreviated
implications, we deal with fewer rules in the proof system, although this is not of
great significance. We assume that the initial sequent to be translated is additive. If
both sides of the initial sequent are multiplicative, the translation will convert it to
Y1 .m ∅m `a ∅m .m Y2, and then we can use .2 rule to get Y1 `m Y2. If only the
right hand side is multiplicative, then the translation will convert the sequent into
X1 `a ∅m .m Y1, we give the following inference:

X1 .a ∅a `m Y1
unit

(X1 .a ∅a), ∅m `m Y1
D1

X1 `a ∅a; (∅m .m Y1)
unit

X1 `a ∅m .m Y1
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The case for multiplicative structure only on the left hand side is similar. So it does
not matter which turnstile we use for the initial sequent, the subsequent translation
will make sure it is converted into a corresponding structure in SICBI. Therefore SICBI
together with the translation in Figure 3.6 can be seen as an intermediate tool to show
that we can encode the display calculus for CBI into a structure with nested interleav-
ing additive and multiplicative turnstiles. In the following we refer to the interderiv-
ability of sequents as equivalence over sequents. We have the following equivalence
relations in our translation:

Lemma 3.2.3. The following equivalence relations hold in our translation from DLCBI se-
quents to SICBI sequents.

τ(X)la; X1 `a X2 = (τ(X)lm .m ∅m); X1 `a X2 τ(X)lm, Y1 `m Y2 = (τ(X)la .a ∅a), Y1 `m Y2

X1 `a X2; τ(X)ra = X1 `a X2; (∅m .m τ(X)rm) Y1 `m Y2, τ(X)rm = Y1 `m Y2, (∅a .a τ(X)ra)

Proof. We only give the proof of the right column here, the left column is symmetric.
That is, we only prove the following holds:

τ(X)lm, Y1 `m Y2

(τ(X)la .a ∅a), Y1 `m Y2

Y1 `m Y2, τ(X)rm

Y1 `m Y2, (∅a .a τ(X)ra)

For the left equivalence, by the definition of structures in DLCBI ,

X ::= F | ∅a | ]X1 | X1; X2 | ∅m | [X1 | X1, X2.

If X = F, then the equivalence is proved by the TmL rule.
For other cases, our translation either translates the premise and the conclusion to

be the same, or to the following form:

X′, Y1 `m Y2

((X′ .m ∅m) .a ∅a), Y1 `m Y2

Then we have the following inference:

X′, Y1 `m Y2
unit

X′, Y1 `m ∅m, Y2
.2

X′ .m ∅m `a Y1 .m Y2
unit

X′ .m ∅m `a ∅a; (Y1 .m Y2)
D2

((X′ .m ∅m) .a ∅a), Y1 `m Y2

Since every rules we used above is reversible, the equivalence is proved. The case
for the last equivalence relation is similar. If X = F, then an application of TmR rule is
sufficient to prove it. For other possibilities, the translation either converts the premise
and the conclusion to the same sequent, or to the following form:

Y1 `m Y2, X′

Y1 `m Y2, (∅a .a (∅m .m X′))
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Then a similar inference can be used to prove the equivalence:

Y1 `m Y2, X′
unit

Y1, ∅m `m Y2, X′
.2

Y1 .m Y2 `a ∅m .m X′
unit

(Y1 .m Y2); ∅a `a ∅m .m X′
D2

Y1 `m Y2, (∅a .a (∅m .m X′))

To help prove the subsequent lemmas and theorems, we need another set of equiv-
alence relations.

Lemma 3.2.4. The following equivalence relations hold in our translation from DLCBI se-
quents to SICBI sequents.

τ(X)la `a F = τ(X)lm `m F F `a τ(X)ra = F `m τ(X)rm

Proof. Since we will only use the backward direction of the equivalence, we will only
prove those here. The other direction is analogous. That is, we prove the following
holds:

τ(X)la `a F
τ(X)lm `m F

F `a τ(X)ra

F `m τ(X)rm

For the left case, we have the following inference:

τ(X)la `a F
unit

τ(X)la; ∅a `a ∅a; F
.1

τ(X)la .a ∅a `m ∅a .a F
Tm R

τ(X)la .a ∅a `m F. . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

τ(X)lm `m F

The case on the right is similar:

F `a τ(X)ra
unit

F; ∅a `a ∅a; τ(X)ra
.1

F .a ∅a `m ∅a .a τ(X)ra
Tm L

F `m ∅a .a τ(X)ra. . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

F `m τ(X)rm

Since the rules we used here are all reversible, it should not be surprising that these
inferences can go both directions.

The following lemma shows that our translation is faithful. That is, a provable
sequent in DLCBI is translated to a corresponding provable sequent in SICBI.
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Lemma 3.2.5. If a sequent X ` Y is provable in DLCBI , then τ(X ` Y)S is provable in SICBI.

Proof. By induction on the depth of derivation.
(i) The base case is that if a sequent can be proved in DLCBI with one step, then we

can find a proof of the translated sequent in SICBI. Applicable rules in DLCBI for this
case are id, >R, >∗R, ⊥L, and ⊥∗L.

For id,
τ(P ` P)S = τ(P)la `a τ(P)ra = P `a P

which can be proved by the ida rule in SICBI.
For >R,

τ(∅a ` >)S = τ(∅a)la `a τ(>)ra = ∅a `a >

Which can be proved by the >R rule in SICBI.
For >∗R,

τ(∅m ` >∗)S = τ(∅m)la `a τ(>∗)ra = ∅m .m ∅m `a >∗

>∗R
∅m `m >∗

unit
∅m, ∅m `m ∅m,>∗

.2

∅m .m ∅m `a ∅m .m >∗
Ta R

∅m .m ∅m `a >∗

For ⊥L,
τ(⊥ ` ∅a)S = τ(⊥)la `a τ(∅a)ra = ⊥ `a ∅a

Which can be proved directly by ⊥L in SICBI.
For ⊥∗L,

τ(⊥∗ ` ∅m)S = τ(⊥∗)la `a τ(∅m)ra = ⊥∗ `a ∅m .m ∅m

Then we have the following inference in SICBI on the resultant sequent.
⊥∗L

⊥∗ `m ∅m
unit

⊥∗, ∅m `m ∅m, ∅m .2

⊥∗ .m ∅m `a ∅m .m ∅m
Ta L

⊥∗ `a ∅m .m ∅m

Therefore the base case holds.
(ii) The induction hypothesis is that if by using SICBI we can simulate all proofs in

DLCBI of depth n, then we can also simulate all proofs of depth n + 1. Similar to the
soundness proof, the (n + 1)th step in a proof in DLCBI can only be the application
of one of the rules with nonempty premise, exemplified below left. The induction
hypothesis ensures that we have a proof of τ(premise)S, thus we only need to show
that below right holds in SICBI.
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premise
ρ′

conclusion

τ(premise)S

...
τ(conclusion)S

We prove all the cases for each rules in DLCBI , then we can conclude that the
inductive case holds.

For the cut rule,

τ(premisele f t)S = τ(X ` F)S = τ(X)la `a τ(F)ra = τ(X)la `a F

τ(premiseright)S = τ(F ` Y)S = τ(F)la `a τ(Y)ra = F `a τ(Y)ra

τ(conclusion)S = τ(X ` Y)S = τ(X)la `a τ(Y)ra

τ(X)la `a F F `a τ(Y)ra
cuta

τ(X)la `a τ(Y)ra

We do not consider structural rules that deal with ∅a and ∅m (i.e., ∅aL, ∅aR, ∅mL
and ∅mR) since we assume they are the units for additive sequent and multiplicative
sequent respectively. Similarly, we assume associativity in our definition of structures,
so AAL, AAR, MAL and MAR are ignored. Now we prove the rest of structural rules.

For WL,

τ(premise)S = τ(X ` Z)S = τ(X)la `a τ(Z)ra

τ(conclusion)S = τ(X; Y ` Z)S = τ(X; Y)la `a τ(Z)ra = τ(X)la; τ(Y)la `a τ(Z)ra

τ(X)la `a τ(Z)ra
WL

τ(X)la; τ(Y)la `a τ(Z)ra

For WR,

τ(premise)S = τ(X ` Z)S = τ(X)la `a τ(Z)ra

τ(conclusion)S = τ(X ` Y; Z)S = τ(X)la `a τ(Y; Z)ra = τ(X)la `a τ(Y)ra; τ(Z)ra

τ(X)la `a τ(Z)ra
WR

τ(X)la `a τ(Y)ra; τ(Z)ra

For CL,

τ(premise)S = τ(X; X ` Z)S = τ(X; X)la `a τ(Z)ra = τ(X)la; τ(X)la `a τ(Z)ra

τ(conclusion)S = τ(X ` Z)S = τ(X)la `a τ(Z)ra

τ(X)la; τ(X)la `a τ(Z)ra
CL

τ(X)la `a τ(Z)ra
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For CR,

τ(premise)S = τ(X ` Z; Z)S = τ(X)la `a τ(Z; Z)ra = τ(X)la `a τ(Z)ra; τ(Z)ra

τ(conclusion)S = τ(X ` Z)S = τ(X)la `a τ(Z)ra

τ(X)la `a τ(Z)ra; τ(Z)ra
CR

τ(X)la `a τ(Z)ra

We now move on to prove logical rules.
For >L,

τ(premise)S = τ(∅a ` X)S = τ(∅a)la `a τ(X)ra = ∅a `a τ(X)ra

τ(conclusion)S = τ(> ` X)S = τ(>)la `a τ(X)ra = > `a τ(X)ra

∅a `a τ(X)ra
>L

> `a τ(X)ra

For ⊥R,

τ(premise)S = τ(X ` ∅a)S = τ(X)la `a τ(∅a)ra = τ(X)la `a ∅a

τ(conclusion)S = τ(X ` ⊥)S = τ(X)la `a τ(⊥)ra = τ(X)la `a ⊥

τ(X)la `a ∅a
⊥L

τ(X)la `a ⊥

We use F → ⊥ to encode ¬F in SICBI, thus for ¬L

τ(premise)S = τ(]F ` X)S = τ(]F)la `a τ(X)ra = (∅a .a τ(F)ra) .m ∅m `a τ(X)ra

= (∅a .a F) .m ∅m `a τ(X)ra

τ(conclusion)S = τ(¬F ` X)S = τ(¬F)la `a τ(X)ra = F → ⊥ `a τ(X)ra

(∅a .a F) .m ∅m `a τ(X)ra
unit

((∅a .a F) .m ∅m); ∅a `a τ(X)ra
D2

∅a .a F `m ∅m, (∅a .a τ(X)ra)
unit

∅a .a F `m ∅a .a τ(X)ra
.1

∅a; ∅a `a F; τ(X)ra
unit

∅a `a F; τ(X)ra
⊥L

⊥ `a ∅a
→ L

∅a; F → ⊥ `a τ(X)ra; ∅a
unit

F → ⊥ `a τ(X)ra
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For ¬R,

τ(premise)S = τ(X ` ]F)S = τ(X)la `a τ(]F)ra = τ(X)la `a ∅m .m (τ(F)la .a ∅a)

= τ(X)la `a ∅m .m (F .a ∅a)

τ(conclusion)S = τ(X ` ¬F)S = τ(X)la `a τ(¬F)ra = τ(X)la `a F → ⊥

τ(X)la `a ∅m .m (F .a ∅a)
unit

τ(X)la `a ∅a; (∅m .m (F .a ∅a))
D1

(τ(X)la .a ∅a), ∅m `m F .a ∅a
unit

τ(X)la .a ∅a `m F .a ∅a
.1

τ(X)la; F `a ∅a; ∅a
unit

τ(X)la; F `a ∅a
⊥R

τ(X)la; F `a ⊥
→ R

τ(X)la `a F → ⊥

For ∧L,

τ(premise)S = τ(F; G ` X)S = τ(F; G)la `a τ(X)ra = τ(F)la; τ(G)la `a τ(X)ra

= F; G `a τ(X)ra

τ(conclusion)S = τ(F ∧ G ` X)S = τ(F ∧ G)la `a τ(X)ra = F ∧ G `a τ(X)ra

F; G `a τ(X)ra
∧L

F; F ∧ G `a τ(X)ra
∧L

F ∧ G; F ∧ G `a τ(X)ra
CL

F ∧ G `a τ(X)ra

For ∧R,

τ(premisele f t)S = τ(X ` F)S = τ(X)la `a τ(F)ra = τ(X)la `a F

τ(premiseright)S = τ(Y ` G)S = τ(Y)la `a τ(G)ra = τ(Y)la `a G

τ(conclusion)S = τ(X; Y ` F ∧ G)S = τ(X; Y)la `a τ(F ∧ G)ra

= τ(X)la; τ(Y)la `a F ∧ G

τ(X)la `a F τ(Y)la `a G
∧R

τ(X)la; τ(Y)ra `a F ∧ G

For ∨L

τ(premisele f t)S = τ(F ` X)S = τ(F)la `a τ(X)ra = F `a τ(X)ra
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τ(premiseright)S = τ(G ` Y)S = τ(G)la `a τ(Y)ra = G `a τ(Y)ra

τ(conclusion)S = τ(F ∨ G ` X; Y)S = τ(F ∨ G)la `a τ(X; Y)ra

= F ∨ G `a τ(X)ra; τ(Y)ra

F `a τ(X)ra G `a τ(Y)ra
∨L

F ∨ G `a τ(X)ra; τ(Y)ra

For ∨R,

τ(premise)S = τ(X ` F; G)S = τ(X)la `a τ(F; G)ra = τ(X)la `a τ(F)ra; τ(G)ra

= τ(X)la `a F; G

τ(conclusion)S = τ(X ` F ∨ G)S = τ(X)la `a τ(F ∨ G)ra = τ(X)la `a F ∨ G

τ(X)la `a F; G
∨R

τ(X)la `a F; F ∨ G
∨R

τ(X)la `a F ∨ G; F ∨ G
CR

τ(X)la `a F ∨ G

For→ L,

τ(premisele f t)S = τ(X ` F)S = τ(X)la `a τ(F)ra = τ(X)la `a F

τ(premiseright)S = τ(G ` Y)S = τ(G)la `a τ(Y)ra = G `a τ(Y)ra

τ(conclusion)S = τ(F → G ` ]X; Y)S = τ(F → G)la `a τ(]X; Y)ra

= τ(F → G)la `a τ(]X)ra; τ(Y)ra

= F → G `a (∅m .m (τ(X)la .a ∅a)); τ(Y)ra

G `a τ(Y)ra

τ(X)la `a F
unit

∅a; τ(X)la `m F; ∅a
.1

∅a .a F `m τ(X)la .a ∅a
unit

(∅a .a F), ∅m `m τ(X)la .a ∅a
D1

∅a `a F; (∅m .m (τ(X)la .a ∅a))
→ L

∅a; F → G `a (∅m .m (τ(X)la .a ∅a)); τ(Y)ra
unit

F → G `a (∅m .m (τ(X)la .a ∅a)); τ(Y)ra

For→ R,

τ(premise)S = τ(X; F ` G)S = τ(X; F)la `a τ(G)ra = τ(X)la; τ(F)la `a τ(G)ra

= τ(X)la; F `a G

τ(conclusion)S = τ(X `a F → G)S = τ(X)la `a τ(F → G)ra

= τ(X)la `a F → G
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τ(X)la; F `a G
→ R

τ(X)la `a F → G

Multiplicative rules are significantly more complicated to prove since we translate
all structures to be additive initially. The following deals with the cases for multiplica-
tive rules.

For >∗L,

τ(premise)S = τ(∅m ` X)S = τ(∅m)la `a τ(X)ra = ∅m .m ∅m `a τ(X)ra

τ(conclusion)S = τ(>∗ ` X)S = τ(>∗)la `a τ(X)ra = >∗ `a τ(X)ra

∅m .m ∅m `a τ(X)ra
unit

(∅m .m ∅m); ∅a `a τ(X)ra
D2

∅m `m ∅m, (∅a .a τ(X)ra)
>∗L

>∗ `m ∅m, (∅a .a τ(X)ra)
D2

(>∗ .m ∅m); ∅a `a τ(X)ra
unit

>∗ .m ∅m `a τ(X)ra
Ta L

>∗ `a τ(X)ra

For ⊥∗R,

τ(premise)S = τ(X ` ∅m)S = τ(X)la `a τ(∅m)ra = τ(X)la `a ∅m .m ∅m

τ(conclusion)S = τ(X ` ⊥∗)S = τ(X)la `a τ(⊥∗)ra = τ(X)la `a ⊥∗

τ(X)la `a ∅m .m ∅m
unit

τ(X)la `a ∅a; (∅m .m ∅m)
D1

(τ(X)la .a ∅a), ∅m `m ∅m
⊥∗R

(τ(X)la .a ∅a), ∅m `m ⊥∗
D1

τ(X)la `a ∅a; (∅m .m ⊥∗)
unit

τ(X)la `a ∅m .m ⊥∗
Ta R

τ(X)la `a ⊥∗

We use F−∗ ⊥∗ to encode ∼ F, thus for the ∼ L rule,

τ(premise)S = τ([F ` X)S = τ([F)la `a τ(X)ra = ∅m .m τ(F)rm `a τ(X)ra

= ∅m .m F `a τ(X)ra

τ(conclusion)S = τ(∼ F ` X)S = τ(∼ F)la `a τ(X)ra = F−∗ ⊥∗ `a τ(X)ra
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∅m .m F `a τ(X)ra
unit

(∅m .m F); ∅a `a τ(X)ra
D1

∅m `m F, (∅a .a τ(X)ra)
⊥∗L

⊥∗ `m ∅m
−∗ L

∅m, F−∗ ⊥∗ `m ∅m, (∅a .a τ(X)ra)
unit

F−∗ ⊥∗ `m ∅m, (∅a .a τ(X)ra)
D2

((F−∗ ⊥∗) .m ∅m); ∅a `a τ(X)ra
unit

(F−∗ ⊥∗) .m ∅m `a τ(X)ra
Ta L

F−∗ ⊥∗ `a τ(X)ra

For ∼ R,

τ(premise)S = τ(X ` [F)S = τ(X)la `a τ([F)ra = τ(X)la `a τ(F)lm .m ∅m

= τ(X)la `a F .m ∅m

τ(conclusion)S = τ(X `∼ F)S = τ(X)la `a τ(∼ F)ra = τ(X)la `a F−∗ ⊥∗

τ(X)la `a F .m ∅m
unit

τ(X)la `a ∅a; (F .m ∅m)
D1

(τ(X)la .a ∅a), F `m ∅m
⊥∗R

(τ(X)la .a ∅a), F `m ⊥∗
unit

(τ(X)la .a ∅a), ∅m, F `m ⊥∗
−∗ R

(τ(X)la .a ∅a), ∅m `m F−∗ ⊥∗
D1

τ(X)la `a ∅a; (∅m .m (F−∗ ⊥∗))
unit

τ(X)la `a ∅m .m (F−∗ ⊥∗)
Ta R

τ(X)la `a F−∗ ⊥∗

For ∗L,

τ(premise)S = τ(F, G ` X)S = τ(F, G)la `a τ(X)ra

= (τ(F)lm, τ(G)lm) .m ∅m `a τ(X)ra = (F, G) .m ∅m `a τ(X)ra

τ(conclusion)S = τ(F ∗ G ` X)S = τ(F ∗ G)la `a τ(X)ra = F ∗ G `a τ(X)ra

(F, G) .m ∅m `a τ(X)ra
unit

((F, G) .m ∅m); ∅a `a τ(X)ra
D2

F, G `m ∅m, (∅a .a τ(X)ra)
∗L

F ∗ G `m ∅m, (∅a .a τ(X)ra)
D2

((F ∗ G) .m ∅m); ∅a `a τ(X)ra
unit

(F ∗ G) .m ∅m `a τ(X)ra
Ta L

F ∗ G `a τ(X)ra
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For ∗R,

τ(premisele f t)S = τ(X ` F)S = τ(X)la `a τ(F)ra = τ(X)la `a F

τ(premiseright)S = τ(Y ` G)S = τ(Y)la `a τ(G)ra = τ(Y)la `a G

τ(conclusion)S = τ(X, Y ` F ∗ G)S = τ(X, Y)la `a τ(F ∗ G)ra

= (τ(X)lm, τ(Y)lm) .m ∅m `a F ∗ G

τ(Y)la `a G. . . . . . . . . . . . . . . . . Lemma 3.2.4

τ(Y)lm `m G
τ(X)la `a F. . . . . . . . . . . . . . . . . Lemma 3.2.4

τ(X)lm `m F
∗R

τ(X)lm, τ(Y)lm `m F ∗ G
unit

τ(X)lm, τ(Y)lm, ∅m `m ∅m, F ∗ G
.2

(τ(X)lm, τ(Y)lm) .m ∅m `a ∅m .m (F ∗ G)
Ta R

(τ(X)lm, τ(Y)lm) .m ∅m `a F ∗ G

For ∨∗ L,

τ(premisele f t)S = τ(F ` X)S = τ(F)la `a τ(X)ra = F `a τ(X)ra

τ(premiseright)S = τ(G ` Y)S = τ(G)la `a τ(Y)ra = G `a τ(Y)ra

τ(conclusion)S = τ(F ∨∗ G ` X, Y)S = τ(F ∨∗ G)la `a τ(X, Y)ra

= F ∨∗ G `a ∅m .m (τ(X)rm, τ(Y)rm)

G `a τ(Y)ra. . . . . . . . . . . . . . . . . Lemma 3.2.4

G `m τ(Y)rm

F `a τ(X)ra. . . . . . . . . . . . . . . . . Lemma 3.2.4

F `m τ(X)rm
∨∗ L

F ∨∗ G `m τ(X)rm, τ(Y)rm
unit

F ∨∗ G, ∅m `m ∅m, τ(X)rm, τ(Y)rm
.2

(F ∨∗ G) .m ∅m `a ∅m .m (τ(X)rm, τ(Y)rm)
Ta L

F ∨∗ G `a ∅m .m (τ(X)rm, τ(Y)rm)

For ∨∗ R,

τ(premise)S = τ(X ` F, G)S = τ(X)la `a τ(F, G)ra

= τ(X)la `a ∅m .m (τ(F)rm, τ(G)rm) = τ(X)la `a ∅m .m (F, G)

τ(conclusion)S = τ(X ` F ∨∗ G)S = τ(X)la `a τ(F ∨∗ G)ra = τ(X)la `a F ∨∗ G
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τ(X)la `a ∅m .m (F, G)
unit

τ(X)la `a ∅a; (∅m .m (F, G))
D1

(τ(X)la .a ∅a), ∅m `m F, G
∨∗ R

(τ(X)la .a ∅a), ∅m `m F ∨∗ G
D1

τ(X)la `a ∅a; (∅m .m (F ∨∗ G))
unit

τ(X)la `a ∅m .m (F ∨∗ G)
Ta R

τ(X)la `a F ∨∗ G

For −∗ L,

τ(premisele f t)S = τ(X ` F)S = τ(X)la `a τ(F)ra = τ(X)la `a F

τ(premiseright)S = τ(G ` Y)S = τ(G)la `a τ(Y)ra = G `a τ(Y)ra

τ(conclusion)S = τ(F−∗ G ` [X, Y)S = τ(F−∗ G)la `a τ([X, Y)ra

= F−∗ G `a ∅m .m (τ([X)rm, τ(Y)rm)

= F−∗ G `a ∅m .m (∅a .a (τ(X)lm .m ∅m), τ(Y)rm)

τ(X)la `a F. . . . . . . . . . . . . . . . . Lemma 3.2.4

τ(X)lm `m F
unit

∅m, τ(X)lm `m F, ∅m
.2

∅m .m F `a τ(X)lm .m ∅m
unit

(∅m .m F); ∅a `a τ(X)lm .m ∅m
D2

∅m `m F, (∅a .a (τ(X)lm .m ∅m))

G `a τ(Y)ra. . . . . . . . . . . . . . . . . Lemma 3.2.4

G `m τ(Y)rm
−∗ L

F−∗ G, ∅m `m (∅a .a (τ(X)lm .m ∅m)), τ(Y)rm
unit

F−∗ G, ∅m `m ∅m, (∅a .a (τ(X)lm .m ∅m)), τ(Y)rm
.2

(F−∗ G) .m ∅m `a ∅m .m (∅a .a (τ(X)lm .m ∅m), τ(Y)rm)
Ta L

F−∗ G `a ∅m .m (∅a .a (τ(X)lm .m ∅m), τ(Y)rm)

For −∗ R,

τ(premise)S = τ(X, F ` G)S = τ(X, F)la `a τ(G)ra = (τ(X)lm, τ(F)lm) .m ∅m `a G

= (τ(X)lm, F) .m ∅m `a G

τ(conclusion)S = τ(X ` F−∗ G)S = τ(X)la `a τ(F−∗ G)ra

= τ(X)la `a F−∗ G
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(τ(X)lm, F) .m ∅m `a G
Ta R

(τ(X)lm, F) .m ∅m `a ∅m .m G
.2

τ(X)lm, ∅m, F `m G, ∅m
unit

τ(X)lm, ∅m, F `m G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

(τ(X)la .a ∅a), ∅m, F `m G
−∗ R

(τ(X)la .a ∅a), ∅m `m F−∗ G
D1

τ(X)la `a ∅a; (∅m .m (F−∗ G))
unit

τ(X)la `a ∅m .m (F−∗ G)
Ta R

τ(X)la `a F−∗ G

Since we assume commutativity for structures in SICBI, (almost) half of the display
rules in DLCBI can be neglected. Further, AD3b, AD3a, MD3b, and MD3a can be seen
as special cases with multiple applications of others. Therefore We only have to prove
the cases for AD1b, AD2b, MD1b, and MD2b, and show that they are invertible.

For AD1b,

τ(premise)S = τ(X ` ]Y; Z)S = τ(X)la `a τ(]Y; Z)ra = τ(X)la `a τ(]Y)ra; τ(Z)ra

= τ(X)la `a (∅m .m (τ(Y)la .a ∅a)); τ(Z)ra

τ(conclusion)S = τ(Y; X ` Z)S = τ(Y; X)la `a τ(Z)ra = τ(Y)la; τ(X)la `a τ(Z)ra

τ(X)la `a τ(Z)ra; (∅m .m (τ(Y)la .a ∅a))
unit

τ(X)la; ∅a `a τ(Z)ra; (∅m .m (τ(Y)la .a ∅a))
.1

τ(X)la .a τ(Z)ra `m ∅a .a (∅m .m (τ(Y)la .a ∅a))
unit

τ(X)la .a τ(Z)ra `m ∅m, (∅a .a (∅m .m (τ(Y)la .a ∅a)))
D2

((τ(X)la .a τ(Z)ra) .m ∅m); ∅a `a ∅m .m (τ(Y)la .a ∅a)
unit

(τ(X)la .a τ(Z)ra) .m ∅m `a ∅m .m (τ(Y)la .a ∅a)
.2

(τ(X)la .a τ(Z)ra), ∅m `m ∅m, (τ(Y)la .a ∅a)
unit

τ(X)la .a τ(Z)ra `m τ(Y)la .a ∅a
.1

τ(Y)la; τ(X)la `a ∅a; τ(Z)ra
unit

τ(Y)la; τ(X)la `a τ(Z)ra

The case for AD2b is completely dual:

τ(premise)S = τ(X; ]Y ` Z)S = τ(X; ]Y)la `a τ(Z)ra = τ(X)la; τ(]Y)la `a τ(Z)ra

= τ(X)la; ((∅a .a τ(Y)ra) .m ∅m) `a τ(Z)ra

τ(conclusion)s = τ(X ` Z; Y)S = τ(X)la `a τ(Z; Y)ra = τ(X)la `a τ(Z)ra; τ(Y)ra
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((∅a .a τ(Y)ra) .m ∅m); τ(X)la `a τ(Z)ra
unit

((∅a .a τ(Y)ra) .m ∅m); τ(X)la `a ∅a; τ(Z)ra
.1

((∅a .a τ(Y)ra) .m ∅m) .a ∅a `m τ(X)la .a τ(Z)ra
unit

(((∅a .a τ(Y)ra) .m ∅m) .a ∅a), ∅m `m τ(X)la .a τ(Z)ra
D1

(∅a .a τ(Y)ra) .m ∅m `a ∅a; (∅m .m (τ(X)la .a τ(Z)ra))
unit

(∅a .a τ(Y)ra) .m ∅m `a ∅m .m (τ(X)la .a τ(Z)ra)
.2

(∅a .a τ(Y)ra), ∅m `m ∅m, (τ(X)la .a τ(Z)ra)
unit

∅a .a τ(Y)ra `m τ(X)la .a τ(Z)ra
.1

τ(X)la; ∅a `a τ(Z)ra; τ(Y)ra
unit

τ(X)la `a τ(Z)ra; τ(Y)ra

For MD1b,

τ(premise)S = τ(X ` [Y, Z)S = τ(X)la `a τ([Y, Z)ra

= τ(X)la `a ∅m .m (τ([Y)rm, τ(Z)rm)

= τ(X)la `a ∅m .m ((∅a .a (τ(Y)lm .m ∅m)), τ(Z)rm)

τ(conclusion)S = τ(Y, X ` Z)S = τ(Y, X)la `a τ(Z)ra = (τ(Y)lm, τ(X)lm) .m ∅m `a τ(Z)ra

τ(X)la `a ∅m .m ((∅a .a (τ(Y)lm .m ∅m)), τ(Z)rm)
unit

τ(X)la `a ∅a; (∅m .m ((∅a .a (τ(Y)lm .m ∅m)), τ(Z)rm))
D1

(τ(X)la .a ∅a), ∅m `m (∅a .a (τ(Y)lm .m ∅m)), τ(Z)rm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

τ(X)lm, ∅m `m (∅a .a (τ(Y)lm .m ∅m)), τ(Z)rm
.2

τ(X)lm .m τ(Z)rm `a ∅m .m (∅a .a (τ(Y)lm .m ∅m))
unit

τ(X)lm .m τ(Z)rm `a ∅a; (∅m .m (∅a .a (τ(Y)lm .m ∅m)))
D1

((τ(X)lm .m τ(Z)rm) .a ∅a), ∅m `m ∅a .a (τ(Y)lm .m ∅m)
unit

(τ(X)lm .m τ(Z)rm) .a ∅a `m ∅a .a (τ(Y)lm .m ∅m)
.1

(τ(X)lm .m τ(Z)rm); ∅a `a ∅a; (τ(Y)lm .m ∅m)
unit

τ(X)lm .m τ(Z)rm `a τ(Y)lm .m ∅m
.2

τ(Y)lm, τ(X)lm `m ∅m, τ(Z)rm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

τ(Y)lm, τ(X)lm `m ∅m, (∅a .a τ(Z)ra)
D2

((τ(Y)lm, τ(X)lm) .m ∅m); ∅a `a τ(Z)ra
unit

(τ(Y)lm, τ(X)lm) .m ∅m `a τ(Z)ra

It is dual for MD2b,

τ(premise)S = τ(X, [Y ` Z)S = τ(X, [Y)la `a τ(Z)ra = (τ(X)lm, τ([Y)lm) .m ∅m `a τ(Z)ra

= (τ(X)lm, ((∅m .m τ(Y)rm) .a ∅a)) .m ∅m `a τ(Z)ra

τ(conclusion)s = τ(X ` Z, Y)S = τ(X)la `a τ(Z, Y)ra = τ(X)la `a ∅m .m (τ(Z)rm, τ(Y)rm)
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(τ(X)lm, ((∅m .m τ(Y)rm) .a ∅a)) .m ∅m `a τ(Z)ra
unit

((τ(X)lm, ((∅m .m τ(Y)rm) .a ∅a)) .m ∅m); ∅a `a τ(Z)ra
D2

τ(X)lm, ((∅m .m τ(Y)rm) .a ∅a) `m ∅m, (∅a .a τ(Z)ra). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

τ(X)lm, ((∅m .m τ(Y)rm) .a ∅a) `m ∅m, τ(Z)rm
.2

((∅m .m τ(Y)rm) .a ∅a) .m ∅m `a τ(X)lm .m τ(Z)rm
unit

(((∅m .m τ(Y)rm) .a ∅a) .m ∅m); ∅a `a τ(X)lm .m τ(Z)rm
D2

(∅m .m τ(Y)rm) .a ∅a `m ∅m, (∅a .a (τ(X)lm .m τ(Z)rm))
unit

(∅m .m τ(Y)rm) .a ∅a `m ∅a .a (τ(X)lm .m τ(Z)rm)
.1

(∅m .m τ(Y)rm); ∅a `a ∅a; (τ(X)lm .m τ(Z)rm)
unit

∅m .m τ(Y)rm `a τ(X)lm .m τ(Z)rm
.2

τ(X)lm, ∅m `m τ(Z)rm, τ(Y)rm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 3.2.3

(τ(X)la .a ∅a), ∅m `m τ(Z)rm, τ(Y)rm
D1

τ(X)la `a ∅a; (∅m .m (τ(Z)rm, τ(Y)rm))
unit

τ(X)la `a ∅m .m (τ(Z)rm, τ(Y)rm)

All the rules we use to prove the display rules are reversible (including the lemmas
used), thus these display rules are also reversible.

We have proved that no matter which rule is used in the (n + 1)th step of the
derivation in DLCBI , we can always simulate the derivation in SICBI, thus the inductive
case is proved.

We may translate two equivalent structures in DLCBI to structures in different
forms in SICBI, but the translated structures should agree on their provability.

Lemma 3.2.6. If two structures in DLCBI are equivalent by the structural rules in DLCBI , then
they will either be translated to the same nested sequent in SICBI or the results of translation
are inter-derivable in SICBI.

Proof. The cases where two structures in DLCBI are equivalent by weakening, contrac-
tion, and display postulates are proved in Lemma 3.2.5. Now the remaining cases are
the equivalences by associativity rules, commutativity rules and unit rules.

The cases of associativity rules and commutativity rules follow directly by applying
the translation.

Equivalence by additive unit rules in DLCBI follow directly by translating as well,
for multiplicative units, Lemma 3.2.3 is sufficient for the proof.

Finally, we are ready to state the completeness theorem for SICBI. The completeness
is shown w.r.t. the display calculus DLCBI , as the latter is proven complete for CBI.

Theorem 3.2.7 (Completeness). If a formula F is provable in DLCBI (i.e., ∅a ` F is provable
in DLCBI), then F is provable in SICBI (i.e., ∅a `a F is provable in SICBI).
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Proof. Since ∅a ` F is provable in DLCBI , then by using Lemma 3.2.5, τ(∅a ` F)S is
provable in SICBI. By our translation, we have:

τ(∅a ` F)S = τ(∅a)la `a τ(F)ra = ∅a `a F

therefore we have a proof of ∅a `a F in SICBI.

3.2.4 Display Property of SICBI

At the end of Section 2.3 we briefly discussed the display property for Brotherston’s
calculi, including DLCBI . This property describes the ability to “display” structures
in the sequent by using display postulates, it is fundamental for display calculi, and
it is also enjoyed by our shallow nested sequent calculus. In the following we focus
on displaying nested sequents rather than arbitrary structures, since our rules can be
applied on the structures as long as the sequent they belong to is displayed to the
top level. To show the display property of the shallow system SICBI, we need three
lemmas, as shown below.

The first lemma deals with the cases where a structure in a simple context needs
to be displayed.

Lemma 3.2.8. For any simple context Σ[], any nested sequent structures Z1 and Z2, any
nested sequent X1 .a X2 (Y1 .m Y2 resp.), there exist structures W1 and W2 such that the
sequent W1; X1 `a X2; W2 (W1, Y1 `m Y2, W2 resp.) is derivable from either of Σ[X1 .a

X2], Z1 `m Z2 and Z1 `m Σ[X1 .a X2], Z2 (Σ[Y1 .m Y2]; Z1 `a Z2 and Z1 `a Σ[Y1 .m Y2]; Z2

resp.) by using only D1/D2 rules. The reverse direction also holds.

Proof. By induction on the size of context Σ[].

• Base case: if Σ[] = [].

– for X1 .a X2, we have the following inference if Σ[] is on the left hand side.

∅a; X1 `a X2; (Z1 .m Z2)
D1

(X1 .a X2), Z1 `m Z2

thus W1 = ∅a and W2 = Z1 .m Z2. If Σ[] is on the right hand side, then

(Z1 .m Z2); X1 `a X2; ∅a
D2

Z1 `m (X1 .a X2), Z2

thus W1 = Z1 .m Z2 and W2 = ∅a.

– for Y1 .m Y2, if Σ[] is on the left hand side, then

∅m, Y1 `m Y2, (Z1 .a Z2)
D2

(Y1 .m Y2); Z1 `a Z2
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so W1 = ∅m and W2 = Z1 .a Z2. If Σ[] is on the right hand side, then

(Z1 .a Z2), Y1 `m Y2, ∅m
D1

Z1 `a (Y1 .m Y2); Z2

so W1 = Z1 .a Z2 and W2 = ∅m.

• Inductive cases:

– if Σ[] = Σ′[]; W, as a legitimate nested sequent structure, the sequent nested
inside can only be multiplicative. Then we can apply the induction hypoth-
esis on Σ′[] as shown below.

W ′1, Y1 `m Y2, W ′2
... IH

Σ′[Y1 .m Y2]; W; Z1 `a Z2

The case where Σ[] is on the right hand side is symmetric.

W ′1, Y1 `m Y2, W ′2
... IH

Z1 `a Σ′[Y1 .m Y2]; W; Z2

– if Σ[] = Σ′[], W, then the sequent nested inside must be additive. Therefore
we apply the induction hypothesis to Σ′[] similarly.

W ′1; X1 `a X2; W ′2
... IH

Σ′[X1 .a X2], W, Z1 `m Z2

The cases where Σ[] is on the right hand side is symmetric.

W ′1; X1 `a X2; W ′2
... IH

Z1 `m Σ′[X1 .a X2], W, Z2

The reserve direction holds because we only use D1 and D2 rules in this proof,
both of these rules are reversible.

The second lemma considers displaying a structure in a positive context.

Lemma 3.2.9. For any positive context Σ+[], any nested sequent structures Z1 and Z2, any
nested sequent X1 .a X2, there exist structures W1 and W2 such that the sequent W1; X1 `a

X2; W2 is derivable from one of the following sequents using only D1/D2 rules:

1. Σ[X1 .a X2], Z1 `m Z2
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2. Σ[X1 .a X2]; Z1 `a Z2

3. Z1 `m Σ[X1 .a X2], Z2

4. Z1 `a Σ[X1 .a X2]; Z2

and for any nested sequent Y1 .m Y2, the sequent W1, Y1 `m Y2, W2 is derivable from one
of the following sequents using only D1/D2 rules:

1. Σ[Y1 .m Y2], Z1 `m Z2

2. Σ[Y1 .m Y2]; Z1 `a Z2

3. Z1 `m Σ[Y1 .m Y2], Z2

4. Z1 `a Σ[Y1 .m Y2]; Z2.

Proof. By induction on the size of context Σ[].

• Base case:

– For X1 .a X2, the context Σ[] can only be of the form U .m V, []. Let us go
through the four cases in the lemma.

1. This case cannot occur (the resultant sequent is not well-defined).
2. We have the following inference:

(U .m V, (Z1 .a Z2)); X1 `a X2; ∅a
D2

U `m V, (X1 .a X2), (Z1 .a Z2)
D2

(U .m V, (X1 .a X2)); Z1 `a Z2

then W1 = U .m V, (Z1 .a Z2), and W2 = ∅a.
3. This case cannot occur.
4. We have the following inference:

((Z1 .a Z2), U .m V); X1 `a X2; ∅a
D2

(Z1 .a Z2), U `m V, (X1 .a X2)
D1

Z1 `a (U .m V, (X1 .a X2)); Z2

then W1 = (Z1 .a Z2), U .m V and W2 = ∅a.

– For Y1 .m Y2, the context Σ[] can only be of the form U .a V; []. We have the
following for the four cases in the lemma:

1. We have the following inference:

(U .a V; (Z1 .m Z2)), Y1 `m Y2, ∅m
D1

U `a V; (Y1 .m Y2); (Z1 .m Z2)
D1

(U .a V; (Y1 .m Y2)), Z1 `m Z2

then W1 = U .a V; (Z1 .m Z2) and W2 = ∅m.
2. In this case structure cannot occur.
3. We have the following inference:
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((Z1 .m Z2); U .a V), Y1 `m Y2, ∅m
D1

(Z1 .m Z2); U `a V; (Y1 .m Y2)
D2

Z1 `m (U .a V; (Y1 .m Y2)), Z2

then W1 = (Z1 .m Z2); U .a V and W2 = ∅m.
4. This case cannot occur.

• Inductive cases:

– For X1 .a X2:

* If Σ[] = Σ′[], W or Σ[] = Σ′[]; W, then Σ′[] must be positive. So we can
apply the induction hypothesis directly as in Lemma 3.2.8.

* If Σ[] = Σ′[] .a U, then Σ′[] must be positive, thus we can apply the
induction hypothesis on Σ′[], the four cases in the lemma are shown as
follows.
1. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

∅a; Σ′[X1 .a X2] `a U; (Z1 .m Z2)
D1

(Σ′[X1 .a X2] .a U), Z1 `m Z2

2. This case cannot occur.
3. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

(Z1 .m Z2); Σ′[X1 .a X2] `a U
D2

Z1 `m Z2, (Σ′[X1 .a X2] .a U)

4. This case cannot occur.

* If Σ[] = Σ′[] .m U, then Σ′[] must be positive, thus we can apply the
induction hypothesis on Σ′[].
1. This case cannot occur.
2. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

∅m, Σ′[X1 .a X2] `m U, (Z1 .a Z2)
D2

(Σ′[X1 .a X2] .m U); Z1 `a Z2

3. This case cannot occur.
4. We have the following inference:
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W ′1; X1 `a X2; W ′2
... IH

(Z1 .a Z2), Σ′[X1 .a X2] `m U
D1

Z1 `a Z2; (Σ′[X1 .a X2] .m U)

* If Σ[] = U .a Σ′[], then Σ′[] must be positive. It cannot be simple be-
cause then the structure will not be well-defined. So we can apply the
induction hypothesis on Σ′[]. The four cases run as below.
1. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

U `a Σ′[X1 .a X2]; (Z1 .m Z2)
D1

(U .a Σ′[X1 .a X2]), Z1 `m Z2

2. This case cannot occur.
3. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

(Z1 .m Z2); U `a Σ′[X1 .a X2]; ∅a
D2

Z1 `m Z2, (U .a Σ′[X1 .a X2])

4. This case cannot occur.

* If Σ[] = U .m Σ′[], then Σ′[] can only be positive or a simple context.
The case where Σ′[] is a simple context is proved in Lemma 3.2.8. If Σ′[]
is positive, then we can apply the induction hypothesis as follows.
1. This case cannot occur.
2. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

U `m Σ′[X1 .a X2], (Z1 .a Z2)
D2

(U .m Σ′[X1 .a X2]); Z1 `a Z2

3. This case cannot occur.
4. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

(Z1 .a Z2), U `m Σ′[X1 .a X2], ∅m
D1

Z1 `a Z2; (U .m Σ′[X1 .a X2])

– For Y1 .m Y2, the proof is analogous to the above cases, since we do not
operate on the inside sequent.
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* If Σ[] = Σ′[], W or Σ[] = Σ′[]; W, then Σ′[] must be positive. So we can
apply the induction hypothesis directly as in Lemma 3.2.8.

* If Σ[] = Σ′[] .a U, then Σ′[] must be positive, thus we can apply the
induction hypothesis on Σ′[].
1. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

∅a; Σ′[Y1 .m Y2] `a U; (Z1 .m Z2)
D1

(Σ′[Y1 .m Y2] .a U), Z1 `m Z2

2. In this case the structure is not well-defined.
3. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .m Z2); Σ′[Y1 .m Y2] `a U
D2

Z1 `m Z2, (Σ′[Y1 .m Y2] .a U)

4. This case cannot occur.

* If Σ[] = Σ′[] .m U, then Σ′[] must be positive, thus we can apply the
induction hypothesis on Σ′[].
1. This case cannot occur.
2. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

∅m, Σ′[Y1 .m Y2] `m U, (Z1 .a Z2)
D2

(Σ′[Y1 .m Y2] .m U); Z1 `a Z2

3. This case cannot occur.
4. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .a Z2), Σ′[Y1 .m Y2] `m U
D1

Z1 `a Z2; (Σ′[Y1 .m Y2] .m U)

* If Σ[] = U .a Σ′[], then Σ′[] must be either positive or a simple context.
The case where it is a simple context is handled in Lemma 3.2.8. For
the case where it is positive, we can apply the induction hypothesis as
follows.
1. We have the following inference:
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W ′1, Y1 `m Y2, W ′2
... IH

U `a Σ′[Y1 .m Y2]; (Z1 .m Z2)
D1

(U .a Σ′[Y1 .m Y2]), Z1 `m Z2

2. This case cannot occur
3. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .m Z2); U `a Σ′[Y1 .m Y2]; ∅a
D2

Z1 `m Z2, (U .a Σ′[Y1 .m Y2])

4. This case cannot occur.

* If Σ[] = U .m Σ′[], then Σ′[] can only be positive. It cannot be simple
because then the structure will not be well-defined. So we can apply
the induction hypothesis on Σ′[].
1. This case cannot occur.
2. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

U `m Σ′[Y1 .m Y2], (Z1 .a Z2)
D2

(U .m Σ′[Y1 .m Y2]); Z1 `a Z2

3. This case cannot occur.
4. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .a Z2), U `m Σ′[Y1 .m Y2], ∅m
D1

Z1 `a Z2; (U .m Σ′[Y1 .m Y2])

The reverse direction works because we only use D1/D2 rules in the above proof, and
they are both reversible.

The last lemma shows the ability to display a structure in a negative context.

Lemma 3.2.10. For any negative context Σ−[], any nested sequent structures Z1 and Z2, any
nested sequent X1 .a X2, there exist structures W1 and W2 such that the sequent W1; X1 `a

X2; W2 is derivable from one of the following sequents using only D1/D2 rules:

1. Σ[X1 .a X2], Z1 `m Z2

2. Σ[X1 .a X2]; Z1 `a Z2

3. Z1 `m Σ[X1 .a X2], Z2
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4. Z1 `a Σ[X1 .a X2]; Z2

and for any nested sequent Y1 .m Y2, the sequent W1, Y1 `m Y2, W2 is derivable from one of the
following sequents using only D1/D2 rules:

1. Σ[Y1 .m Y2], Z1 `m Z2

2. Σ[Y1 .m Y2]; Z1 `a Z2

3. Z1 `m Σ[Y1 .m Y2], Z2

4. Z1 `a Σ[Y1 .m Y2]; Z2.

Proof. By induction on the size of context Σ[].

• Base case:

– For X1 .a X2, the context Σ[] can only be of the form V, [] .m U. We analyse
the four cases as follows.

1. The structure in is case is not a nested sequent structure.
2. We have the following inference:

∅a; X1 `a X2; (V .m U, (Z1 .a Z2))
D1

V, (X1 .a X2) `m U, (Z1 .a Z2)
D2

(V, (X1 .a X2) .m U); Z1 `a Z2

then W1 = ∅a, and W2 = (V .m U, (Z1 .a Z2)).
3. The structure cannot occur.
4. We have the following inference:

∅a; X1 `a X2; ((Z1 .a Z2), V .m U)
D1

(Z1 .a Z2), V, (X1 .a X2) `m U
D1

Z1 `a (V, (X1 .a X2) .m U); Z2

then W1 = ∅a and W2 = ((Z1 .a Z2), V .m U).

– For Y1 .m Y2, the context Σ[] can only be of the form V; [] .a U, thus the four
cases are as follows.

1. We have the following inference:

∅m, Y1 `m Y2, (V .a U; (Z1 .m Z2))
D2

V; (Y1 .m Y2) `a U; (Z1 .m Z2)
D1

(V; (Y1 .m Y2) .a U), Z1 `m Z2

then W1 = ∅m and W2 = V .a U; (Z1 .m Z2).
2. This case cannot occur.
3. We have the following inference:

∅m, Y1 `m Y2, ((Z1 .m Z2); V .a U)
D2

(Z1 .m Z2); V; (Y1 .m Y2) `a U
D2

Z1 `m (V; (Y1 .m Y2) .a U), Z2
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then W1 = ∅m and W2 = (Z1 .m Z2); V .a U.

4. The structure in this case cannot occur.

• Inductive cases:

– For X1 .a X2:

* If Σ[] = Σ′[], W or Σ[] = Σ′[]; W, then Σ′[] must be negative. So we
can apply the induction hypothesis directly exactly the same as in
Lemma 3.2.8.

* If Σ[] = Σ′[] .a U, then Σ′[] must be negative. It cannot be simple
because then the structure would not be well-defined. Thus we can
apply the induction hypothesis on Σ′[], the four cases are shown below.

1. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

∅a; Σ′[X1 .a X2] `a U; (Z1 .m Z2)
D1

(Σ′[X1 .a X2] .a U), Z1 `m Z2

2. This case cannot occur.

3. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

(Z1 .m Z2); Σ′[X1 .a X2] `a U
D2

Z1 `m Z2, (Σ′[X1 .a X2] .a U)

4. This case cannot occur.

* If Σ[] = Σ′[] .m U, then Σ′[] can only be negative or a simple context.
The latter is covered in Lemma 3.2.8. For the former case, we can apply
the induction hypothesis on Σ′[]. The following are for the four cases:

1. This case cannot occur.

2. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

∅m, Σ′[X1 .a X2] `m U, (Z1 .a Z2)
D2

(Σ′[X1 .a X2] .m U); Z1 `a Z2

3. This case cannot occur.

4. We have the following inference:
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W ′1; X1 `a X2; W ′2
... IH

(Z1 .a Z2), Σ′[X1 .a X2] `m U
D1

Z1 `a Z2; (Σ′[X1 .a X2] .m U)

* If Σ[] = U .a Σ′[], then Σ′[] must be negative. So we apply the induction
hypothesis on Σ′[], giving the following four cases:
1. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

U `a Σ′[X1 .a X2]; (Z1 .m Z2)
D1

(U .a Σ′[X1 .a X2]), Z1 `m Z2

2. This case cannot occur.
3. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

(Z1 .m Z2); U `a Σ′[X1 .a X2]; ∅a
D2

Z1 `m Z2, (U .a Σ′[X1 .a X2])

4. This case cannot occur.

* If Σ[] = U .m Σ′[], then Σ′[] can only be negative, then we can apply the
induction hypothesis as follows for each case:
1. This case cannot occur.
2. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

U `m Σ′[X1 .a X2], (Z1 .a Z2)
D2

(U .m Σ′[X1 .a X2]); Z1 `a Z2

3. This case cannot occur.
4. We have the following inference:

W ′1; X1 `a X2; W ′2
... IH

(Z1 .a Z2), U `m Σ′[X1 .a X2], ∅m
D1

Z1 `a Z2; (U .m Σ′[X1 .a X2])

– For Y1 .m Y2, the proof is analogous to the above cases, detailed below.

* If Σ[] = Σ′[], W or Σ[] = Σ′[]; W, then Σ′[] must be positive. So we
can apply the induction hypothesis directly exactly the same as in
Lemma 3.2.8.
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* If Σ[] = Σ′[] .a U, then Σ′[] must be either negative or a simple context.
The latter is handled in Lemma 3.2.8. For the former case we apply the
induction hypothesis on Σ′[] as follows for each subcase:
1. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

∅a; Σ′[Y1 .m Y2] `a U; (Z1 .m Z2)
D1

(Σ′[Y1 .m Y2] .a U), Z1 `m Z2

2. This case cannot occur.
3. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .m Z2); Σ′[Y1 .m Y2] `a U
D2

Z1 `m Z2, (Σ′[Y1 .m Y2] .a U)
4. This case cannot occur.

* If Σ[] = Σ′[] .m U, then Σ′[] must be negative, otherwise the structure
would not be well-defined. Thus we can apply the induction hypothesis
on Σ′[].
1. This case cannot occur.
2. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

∅m, Σ′[Y1 .m Y2] `m U, (Z1 .a Z2)
D2

(Σ′[Y1 .m Y2] .m U); Z1 `a Z2

3. This case cannot occur.
4. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .a Z2), Σ′[Y1 .m Y2] `m U
D1

Z1 `a Z2; (Σ′[Y1 .m Y2] .m U)

* If Σ[] = U .a Σ′[], then Σ′[] must be negative, we can apply the induction
hypothesis as follows.
1. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

U `a Σ′[Y1 .m Y2]; (Z1 .m Z2)
D1

(U .a Σ′[Y1 .m Y2]), Z1 `m Z2
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2. This case cannot occur.

3. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .m Z2); U `a Σ′[Y1 .m Y2]; ∅a
D2

Z1 `m Z2, (U .a Σ′[Y1 .m Y2])

4. This case cannot occur.

* If Σ[] = U .m Σ′[], then Σ′[] can only be negative. So we can apply the
induction hypothesis on Σ′[] when the structures are well-defined.

1. This case cannot occur.

2. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

U `m Σ′[Y1 .m Y2], (Z1 .a Z2)
D2

(U .m Σ′[Y1 .m Y2]); Z1 `a Z2

3. This case cannot occur.

4. We have the following inference:

W ′1, Y1 `m Y2, W ′2
... IH

(Z1 .a Z2), U `m Σ′[Y1 .m Y2], ∅m
D1

Z1 `a Z2; (U .m Σ′[Y1 .m Y2])

The reverse direction works because we only use D1/D2 rules in the above proof, and
they are both reversible.

Finally, we can state the display property of SICBI as in immediate result of the
above lemmas.

Theorem 3.2.11 (Display Property of SICBI). Given any context Σ[], any nested sequent
X1 .a X2 (Y1 .m Y2 resp.), there exist structures W1 and W2 such that W1; X1 `a X2; W2

(W1, Y1 `m Y2, W2 resp.) is derivable from Σ[X1 .a X2] (Σ[Y1 .m Y2] resp.) by using only
D1/D2 rules, and vice versa.

Proof. Lemma 3.2.8 to 3.2.10 suffice to prove this.

The next step, as in Postniece’s work [83], is to develop a calculus with local reason-
ing and is able to transfer information between additive and multiplicative sequents.
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3.3 DICBI: Towards Deep Inference for CBI

In this section we present a deep inference nested sequent calculus based on the shal-
low inference system SICBI in the previous section. Unfortunately, we have found
numerous problems with our deep system that are hard to conquer. We discuss these
problems and the incompleteness of our deep inference system.

3.3.1 Inference Rules in DICBI

Recall that in the shallow system, X1 `a X2 and Y1 `m Y2 denote nested shallow se-
quents, where X1, X2 are additive structures, and Y1, Y2 are multiplicative structures.
All the inference rules can only be applied on the top level turnstile. In the deep sys-
tem, nested deep sequents are defined as X1 .a X2 and Y1 .m Y2. The definitions of
polarities, structures, sequents, formulae and contexts remain the same. A rule in the
deep system is additive if its conclusion is additive, otherwise the rule is multiplica-
tive2. Inference rules can be applied to any nested sequents in the deep system, thus
we can zoom in on the structure to look at a sequent without explicitly displaying it.
The rules for identity, constants, and additive logical connectives are shown in Fig-
ure 3.7; multiplicative logical rules are in Figure 3.8; propagation rules are shown in
Figure 3.9. We refer to this inference system as DICBI.

The rules for additive connectives now have weakening and contraction built in.
Thus the ∧R rule, for example, copies the context to both premises. The cases for
multiplicative connectives are much more complicated. The ∗R1 rule, for example,
splits the structure in the context and only sends a part of the structure to the left
premise, and sends the rest of the structure and the whole context to the right premise.

The propagation rules are even more complex compared to the deep nested se-
quent calculus for BiInt, because our nested sequents have interleaving flavours of
additives and multiplicatives. Generally speaking, the additive structure and the mul-
tiplicative structure cannot communicate with each other, but there are a few special
cases when one side of a nested sequent is the structural unit. For example, the rules
TaL and TaR says that A .m ∅m (resp. ∅m .m A) on the left (resp. right) hand side of a
nested sequent is equivalent to A, thus we are safe to copy A to the left (resp. right)
hand side of the upper level .a sequent, building in contraction. On the other hand,
the rules TmL and TmR work similarly, but forbid contraction of the multiplicative
structure and have weakening of additive structures built in. Moving formulae from
an additive (resp. multiplicative) sequent to another additive (resp. multiplicative)
sequent, usually with a different flavour sequent level in between, is less restricted.
The rules Pa1 and Pa2 copy additive structures from one sequent to the other sequent.
Correspondingly, we can cut-and-paste multiplicative structures from one sequent to

2This reading may be counter-intuitive when we later introduce interaction rules, but this concept is
not important there.
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Identity and logical constants:

ida
Σ[X1; A .a A; X2]

idm
A .m A

⊥L
Σ[X1;⊥ .a X2]

Σ[X1 .a X2]
⊥R

Σ[X1 .a ⊥; X2]

Σ[X1 .a X2]
>L

Σ[X1;> .a X2]

>R
Σ[X1 .a >; X2]

⊥∗L
⊥∗ .m ∅m

Σ[Y1 .m Y2]
⊥∗R

Σ[Y1 .m ⊥∗, Y2]

Σ[Y1 .m Y2]
>∗L

Σ[Y1,>∗ .m Y2]
>∗R

∅m .m >∗

Additive Logical rules:

Σ[X1; A ∧ B; A; B .a X2]
∧L

Σ[X1; A ∧ B .a X2]

Σ[X1 .a A ∧ B; A; X2] Σ[X1 .a A ∧ B; B; X2]
∧R

Σ[X1 .a A ∧ B; X2]

Σ[X1 .a A ∨ B; A; B; X2]
∨R

Σ[X1 .a A ∨ B; X2]

Σ[X1; A ∨ B; A .a X2] Σ[X1; A ∨ B; B .a X2]
∨L

Σ[X1; A ∨ B .a X2]

Σ[X1; A .a B; A→ B; X2]
→ R

Σ[X1 .a A→ B; X2]

Σ−[X1; A−< B; A .a B; X2]
−< L

Σ[X1; A−< B .a X2]

Σ[X1; A→ B .a A; X2] Σ[X1; A→ B; B .a X2]
→ L

Σ[X1; A→ B .a X2]

Σ[X1 .a A; A−< B; X2] Σ[X1; B .a A−< B; X2]
−< R

Σ[X1 .a A−< B; X2]

Figure 3.7: Axioms and additive logical rules in DICBI.

the other sequent, as shown in rules Pm1 and Pm2. The rules Pa3 and Pa4 copy formu-
lae from an additive sequent to an upper level additive sequent. Note that we only
move a formula from a sequent to the same side of another sequent. There are also
many other propagation rules we can think of, but we shall stop here for the moment
and show the soundness of the existing rules first. Notice that the rules Pa1, Pa2, Pm1
do not have context, which means these rules are not genuine deep inference rules.
We will discuss this issue in the soundness proof.

3.3.2 Soundness of DICBI

We prove the soundness of DICBI by showing that its inference rules are valid with
respect to the shallow system SICBI. In the theorem below we denote the DICBI sequent
by Π and the corresponding SICBI sequent by Π′.

Theorem 3.3.1 (Soundness). For any nested sequent structures X1, X2, Y1, and Y2, if `DICBI

Π : X1 .a X2 then `SICBI Π′ : X1 `a X2; if `DICBI Π : Y1 .m Y2 then `SICBI Π′ : Y1 `m Y2.

Proof. We show that each deep inference rule in DICBI is derivable in SICBI. The context
in a deep rule can only be simple, positive, or negative. If the context is either positive
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Multiplicative Logical rules:

Σ[Y1, A, B .m Y2]
∗L

Σ[Y1, A ∗ B .m Y2]

Y1 .m A, Y3 Σ[Y2 .m B, Y4]
∗R1

Σ[Y1, Y2 .m A ∗ B, Y3, Y4]

Y1, A .m Y3 Σ[Y2, B .m Y4]
∨∗ L1

Σ[Y1, Y2, A ∨∗ B .m Y3, Y4]

Σ[Y1 .m A, Y3] Y2 .m B, Y4
∗R2

Σ[Y1, Y2 .m A ∗ B, Y3, Y4]

Σ[Y1, A .m Y3] Y2, B .m Y4
∨∗ L2

Σ[Y1, Y2, A ∨∗ B .m Y3, Y4]

Σ[Y1 .m A, B, Y2]
∨∗ R

Σ[Y1 .m A ∨∗ B, Y2]

Y1 .m A, Y3 Σ[Y2, B .m Y4]
−∗ L1

Σ[Y1, Y2, A−∗ B .m Y3, Y4]

Σ[Y1, A .m B, Y2]
−∗ R

Σ[Y1 .m A−∗ B, Y2]

Σ[Y1 .m A, Y3] Y2, B .m Y4
−∗ L2

Σ[Y1, Y2, A−∗ B .m Y3, Y4]

Y1 .m A, Y3 Σ[Y2, B .m Y4]
−−× R1

Σ[Y1, Y2 .m A−−× B, Y3, Y4]

Σ[Y1, A .m B, Y2]
−−× L

Σ[Y1, A−−× B .m Y2]

Σ[Y1 .m A, Y3] Y2, B .m Y4
−−× R2

Σ[Y1, Y2 .m A−−× B, Y3, Y4]

Figure 3.8: Multiplicative logical rules in DICBI.

Propagation rules:

Σ[X1; A; (A .m ∅m) .a X2]
Ta L

Σ[X1; (A .m ∅m) .a X2]

Σ[X1 .a A; (∅m .m A); X2]
Ta R

Σ[X1 .a (∅m .m A); X2]

Σ[Y1, A .m Y2]
Tm L

Σ[Y1, (X1; A .a X2) .m Y2]

Σ[Y1 .m A, Y2]
Tm R

Σ[Y1 .m (X1 .a A; X2), Y2]

(X1; A .a B; X2) .m (X3; A .a B; X4)
Pa1

(X1 .a X2) .m (X3; A .a B; X4)

(X1; A .a B; X2) .m (X3; A .a B; X4)
Pa2

(X1; A .a B; X2) .m (X3 .a X4)

Σ[X1; A .a B; X2; (∅m .m (X3; A .a B; X4))]
Pa3

Σ[X1 .a X2; (∅m .m (X3; A .a B; X4))]

Σ[X1; A .a B; X2; (∅m .m (X3; A .a B; X4))]
Pa4

Σ[X1; A .a B; X2; (∅m .m (X3 .a X4))]

(Y1, A .m B, Y2) .a (Y3 .m Y4)
Pm1

(Y1 .m Y2) .a (Y3, A .m B, Y4)

Σ[Y1, A .m B, Y2, (∅a .a (Y3 .m Y4))]
Pm2

Σ[Y1 .m Y2, (∅a .a (Y3, A .m B, Y4))]

Figure 3.9: Propagation rules in DICBI.

or negative, then we use the display property of the shallow system to display the
sequent and prove the rule. The case where the context is just simple follows similarly.

Suppose an additive unary rule ρ and a multiplicative unary rule ρ′ are respectively
of the form

Σ[U .a Z]
ρ

Σ[V .a W]
and Σ[U .m Z]

ρ′

Σ[V .m W]

By the display property, ρ and ρ′ can be displayed to the following forms respec-
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tively:

P; U `a Z; Q
P; V `a W; Q

and P, U `m Z, Q
P, V `m W, Q

Since the context Σ[] in the premise and the conclusion are exactly the same, by using
the same sequence of D1/D2 rule applications, we will get the same structures P and
Q in the premise and in the conclusion.

If the unary rule is not a zero-premise rule, then it is reduced to show that the
following hold respectively:

U `a Z
V `a W

and U `m Z
V `m W

on the condition that the reduced derivations do not involve display rules in SICBI.
This is because the other unary rules in SICBI do not change or use the context at all,
so the derivations without the context P, Q can be used as the derivations with the
context, one simply needs to add the context in every sequent.

Now we show the cases for each rule.
For ida, the displayed form can be proved by just applying the corresponding rule

in SICBI and then using the display property of SICBI.

ida
P; X1; A `a A; X2; Q. . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1; A `a A; X2]

For ⊥L,

⊥L
⊥ `a ∅a WL&WR multiple times

P; X1;⊥ `a X2; Q. . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1;⊥ `a X2]

For >R,

>R
∅a `a > WL&WR multiple times

P; X1 `a >; X2; Q. . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1 `a >; X2]

The rules ⊥R, >L, idm, ⊥∗L, ⊥∗R, >∗L, >∗R can all be proved by direct appli-
cations of corresponding rules as they are either of exactly the same form or can be
reduced to the same form as in the shallow system.

For ∧L, the reduced form is proved as follows.

X1; A ∧ B; A; B `a X2
∧L

X1; A ∧ B; A; A ∧ B `a X2
∧L

X1; A ∧ B; A ∧ B; A ∧ B `a X2
CL 2 times

X1; A ∧ B `a X2

For ∧R,
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Σ[X1 `a A ∧ B; A; X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1 `a A ∧ B; A; X2; Q

Σ[X1 `a A ∧ B; B; X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1 `a A ∧ B; B; X2; Q

∧R
P; P; X1; X1 `a A ∧ B; A ∧ B; A ∧ B; X2; X2; Q; Q

CL&CR multiple times
P; X1 `a A ∧ B; X2; Q. . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1 `a A ∧ B; X2]

For ∨L, the reduced form is proved as follows.

Σ[X1; A ∨ B; A `a X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; A ∨ B; A `a X2; Q

Σ[X1; A ∨ B; B `a X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; A ∨ B; B `a X2; Q

∨L
P; P; X1; X1; A ∨ B; A ∨ B; A ∨ B `a X2; X2; Q; Q

CL&CR multiple times
P; X1; A ∨ B `a X2; Q. . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1; A ∨ B `a X2]

For ∨R, the reduced form is proved as follows.

X1 `a A ∨ B; A; B; X2
∨R

X1 `a A ∨ B; A ∨ B; B; X2
∨R

X1 `a A ∨ B; A ∨ B; A ∨ B; X2
CR 2 times

X1 `a A ∨ B; X2

For→ L,

Σ[X1; A→ B `a A; X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; A→ B `a A; X2; Q

Σ[X1; A→ B; B `a X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; A→ B; B `a X2; Q

→ L
P; P; X1; X1; A→ B; A→ B; A→ B `a X2; X2; Q; Q

CL&CR multiple times
P; X1; A→ B `a X2; Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1; A→ B `a X2]

For→ R, the reduced form is proved as follows.

X1; A `a B; A→ B; X2
→ R

X1 `a A→ B; A→ B; X2
CR

X1 `a A→ B; X2

For −< L, the reduced form is proved as follows.

X1; A−< B; A `a B; X2 −< L
X1; A−< B; A−< B `a X2

CL
X1; A−< B `a X2

For −< R

Σ[X1 `a A; A−< B; X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1 `a A; A−< B; X2; Q

Σ[X1; B `a A−< B; X2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; B `a A−< B; X2; Q

−< R
P; P; X1; X1 `a A−< B; A−< B; A−< B; X2; X2; Q; Q

CL&CR multiple times
P; X1 `a A−< B; X2; Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1 `a A−< B; X2]
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For ∗L, the displayed form can be reduced to the same form as in the shallow
system.

Y1, A, B `m Y2
∗L

Y1, A ∗ B `m Y2

For ∗R1,

Y1 `m A, Y3

Σ[Y2 `m B, Y4]. . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y2 `m B, Y4, Q

∗R1
P, Y1, Y2 `m A ∗ B, Y3, Y4, Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1, Y2 `m A ∗ B, Y3, Y4]

For ∨∗ L1,

Y1, A `m Y3

Σ[Y2, B `m Y4]. . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y2, B `m Y4, Q

∨∗ L1
P, Y1, Y2, A ∨∗ B `m Y3, Y4, Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1, Y2, A ∨∗ B `m Y3, Y4]

The cases for ∗R2 and ∨∗ L2 are similar to the above.
For ∨∗ R, the reduced form can be proved by directly applying the corresponding

rule in SICBI.

Y1 `m A, B, Y2
∨∗ R

Y1 `m A ∨∗ B, Y2

For −∗ L1,

Y1 `m A, Y3

Σ[Y2, B `m Y4]. . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y2, B `m Y4, Q

−∗ L
P, Y1, Y2, A−∗ B `m Y3, Y4, Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1, Y2, A−∗ B `m Y3, Y4]

For −∗ L2, the proof is analogous.

Σ[Y1 `m A, Y3]. . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y1 `m A, Y3, Q Y2, B `m Y4

−∗ L
P, Y1, Y2, A−∗ B `m Y3, Y4, Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1, Y2, A−∗ B `m Y3, Y4]

For −∗ R, the reduced form can be proved by directly applying the corresponding
rule in SICBI.

Y1, A `m B, Y2
∨∗ R

Y1 `m A−∗ B, Y2

For −−× L, the reduced form can be proved by directly applying the corresponding
rule in SICBI.



§3.3 DICBI: Towards Deep Inference for CBI 83

Y1, A `m B, Y2 −−× L
Y1, A−−× B `m Y2

For −−× R1,

Y1 `m A, Y3

Σ[Y2, B `m Y4]. . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y2, B `m Y4, Q

−−× R
P, Y1, Y2 `m A−−× B, Y3, Y4, Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1, Y2 `m A−−× B, Y3, Y4]

For −−× R2,

Σ[Y1 `m A, Y3]. . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y1 `m A, Y3, Q Y2, B `m Y4

−−× R
P, Y1, Y2 `m A−−× B, Y3, Y4, Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1, Y2 `m A−−× B, Y3, Y4]

For TaL, the reduced form can be proved as follows.

X1; A; (A .m ∅m) `a X2
Ta L

X1; (A .m ∅m); (A .m ∅m) `a X2
CL

X1; (A .m ∅m) `a X2

For TaR, the proof is analogous.

X1 `a A; (∅m .m A); X2
Ta R

X1 `a (∅m .m A); (∅m .m A); X2
CR

X1 `a (∅m .m A); X2

For TmL and TmR the reduced form is exactly the same as in the shallow system,
thus a direct application of corresponding rules is enough.

The other propagation rules cannot be proved by simply showing a derivation for
the reduced form, because their derivations in SICBI may involve display rules that
manipulate the surrounding context. For Pa1, the following derivation is fine, but a
derivation with contexts in the conclusion will be stuck at the topmost .1 application.

(X1; A .a B; X2) `m (X3; A .a B; X4)
D1

X1; A `a X2; B; (∅m .m (X3; A .a B; X4))
.1

(X1 .a X2) `m (A .a B; (∅m .m (X3; A .a B; X4)))
D2

((X1 .a X2) .m ∅m); A `a B; (∅m .m (X3; A .a B; X4))
D1

(((X1 .a X2) .m ∅m); A .a B) `m (X3; A .a B; X4)
.1

((X1 .a X2) .m ∅m); X3; A; A `a B; B; X4
CL&CR

((X1 .a X2) .m ∅m); X3; A `a B; X4
D2

(X1 .a X2) `m (X3; A .a B; X4)

For Pa2 the proof is analogous to Pa1.



84 Nested Sequents and Deep Inference for BI Logics

(X1; A .a B; X2) `m (X3; A .a B; X4)
D2

((X1; A .a B; X2) .m ∅m); A; X3 `a B; X4
.1

(((X1; A .a B; X2) .m ∅m); A .a B) `m (X3 .a X4)
D1

((X1; A .a B; X2) .m ∅m); A `a B; (∅m .m (X3 .a X4))
D2

(X1; A .a B; X2) `m (A .a B; (∅m .m (X3 .a X4)))
.1

X1; A; A `a B; B; X2; (∅m .m (X3 .a X4))
CL&CR

X1; A `a B; X2; (∅m .m (X3 .a X4))
D1

(X1; A .a B; X2) `m (X3 .a X4)

For Pa3, the context P, Q in the conclusion actually does not matter.

Σ[X1; A `a B; X2; (∅m .m (X3; A .a B; X4))]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; A `a B; X2; (∅m .m (X3; A .a B; X4)); Q

.1

(P; X1 .a X2; Q) `m (A .a B; (∅m .m (X3; A .a B; X4)))
D2

((P; X1 .a X2; Q) .m ∅m); A `a B; (∅m .m (X3; A .a B; X4))
D1

(((P; X1 .a X2; Q) .m ∅m); A .a B) `m (X3; A .a B; X4)
.1

((P; X1 .a X2; Q) .m ∅m); X3; A; A `a B; B; X4
CL&CR

((P; X1 .a X2; Q) .m ∅m); X3; A `a B; X4
D2

(P; X1 .a X2; Q) `m (X3; A .a B; X4)
D1

P; X1 `a X2; (∅m .m (X3; A .a B; X4)); Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1 `a X2; (∅m .m (X3; A .a B; X4))]

For Pa4, the proof is analogous.

Σ[X1; A `a B; X2; (∅m .m (X3; A .a B; X4))]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P; X1; A `a B; X2; (∅m .m (X3; A .a B; X4)); Q

D1

(P; X1; A .a B; X2; Q) `m (X3; A .a B; X4)
D2

((P; X1; A .a B; X2; Q) .m ∅m); X3; A `a B; X4
.1

(((P; X1; A .a B; X2; Q) .m ∅m); A .a B) `m (X3 .a X4)
D1

((P; X1; A .a B; X2; Q) .m ∅m); A `a B; (∅m .m (X3 .a X4))
D2

(P; X1; A .a B; X2; Q) `m (A .a B; (∅m .m (X3 .a X4)))
.1

P; X1; A; A `a B; B; X2; (∅m .m (X3 .a X4)); Q
CL&CR

P; X1; A `a B; X2; (∅m .m (X3 .a X4)); Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[X1; A `a B; X2; (∅m .m (X3 .a X4))]

The rules Pm1 and Pm2 can be proved similarly without using contraction. If we
had allowed context in the conclusion of Pm1, we would have to use weakening to
discard the context, in that case we will need to present two separation rules because
weakening is not reversible. For Pm2, having context is not an issue. For Pm1, the proof
runs as follows:
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(Y1, A .m B, Y2) `a (Y3 .m Y4)
D2

Y1, A `m B, Y2, (∅a .a (Y3 .m Y4))
.2

(Y1 .m Y2) `a (A .m B, (∅a .a (Y3 .m Y4)))
D1

((Y1 .m Y2) .a ∅a), A `m B, (∅a .a (Y3 .m Y4))
D2

(((Y1 .m Y2) .a ∅a), A .m B) `a (Y3 .m Y4)
.2

((Y1 .m Y2) .a ∅a), Y3, A `m B, Y4
D1

(Y1 .m Y2) `a (Y3, A `m B, Y4)

The reverse direction is proved by the revertibility of the rules used in the above proof.
For Pm2, the proof runs as below.

Σ[Y1, A `m Y2, B, (∅a .a (Y3 .m Y4))]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
P, Y1, A `m Y2, B, (∅a .a (Y3 .m Y4)), Q

.2

(P, Y1 .m Y2, Q) `a (A .m B, (∅a .a (Y3 .m Y4)))
D1

((P, Y1 .m Y2, Q) .a ∅a), A `m B, (∅a .a (Y3 .m Y4))
D2

(((P, Y1 .m Y2, Q) .a ∅a), A .m B) `a (Y3 .m Y4)
.2

((P, Y1 .m Y2, Q) .a ∅a), Y3, A `m B, Y4
D1

(P, Y1 .m Y2, Q) `a (Y3, A `m B, Y4)
D2

P, Y1 `m Y2, (∅a .a (Y3, A `m B, Y4)), Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 3.2.11
Σ[Y1 `m Y2, (∅a .a (Y3, A `m B, Y4))]

The reverse direction is proved by the revertibility of the rules in the above proof.
We conclude that DICBI is sound since every rule in DICBI is derivable from SICBI,

which is already proven sound.

3.3.3 Incompleteness of DICBI

A key to prove the completeness of the deep nested sequent system is to show that the
display rules in the shallow nested sequent system are admissible in the deep system,
therefore we only need the propagation rules to transfer formulae and do not have
to display any structure. However, to show this, we need to prove that for any rule
in the deep system, if the premise can be rearranged to another form using a display
rule in the shallow system, then the rearranged conclusion by that display rule can be
derived from the rearranged premise using existing rules in the deep system.

Another important issue is the “distribution lemma” as in DBiInt: provability of
Σ[(X .Y), (Z .W)] implies provability of Σ[X, Z .Y, W]. This lemma is essential when
proving the admissibility of contraction in DBiInt, but in our setting, it is not obvious
that such a property holds. By the construction of our nested sequents, the distribution
lemma in our setting can be described as: if Σ[(Y1 .m Y2); (Y3 .m Y4)] is provable then
Σ[Y1, Y3 .m Y2, Y4] is provable; another case is: if Σ[(X1 .a X2), (X3 .a X4)] is provable
then Σ[X1; X3 .a X2; X4] is provable. Neither of these two cases are straightforward.
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When proving the above properties we find that our propagation rules in DICBI are
not sufficient. For example, propagation rules in Figure 3.10 are just some of the rules
we could think of. From these rules, we can go further and consider what could hap-
pen if a deeper nested structure needs to be displayed in the shallow inference system,
which may require a formula to be transferred from/to a deeper nested sequent in
the deep system. Some of these cases are shown in Figure 3.11. But the problem does
not stop there, we have to add new rules one after another to show the cases when an
even deeper nested structure gets displayed, and there seems to be no end in doing so.
That is, there are always new rules that cannot be derived by existing rules. Some of
the rules we came up with do not support deep inference. They are only sound if no
context is around, this is another reason why we do not consider our deep inference
system as being successful.

Propagation rules:

X1 .a A; X2
Ta Lt

(X1 .a X2) .m A
X1; A .a X2

Ta Rt
A .m (X1 .a X2)

Y1 .m A, Y2
Tm Lt

Σ[X1; (Y1 .m Y2) .a A; X2]

Y1, A .m Y2
Tm Rt

Σ[X1; A .a (Y1 .m Y2); X2]

Σ[((X1; A .a X2) .m ∅m); X3; A .a X4]
Pa9

Σ[((X1 .a X2) .m ∅m); X3; A .a X4]

Σ[((X1 .a A; X2) .m ∅m); X3 .a A; X4]
Pa10

Σ[((X1 .a X2) .m ∅m); X3 .a A; X4]

Σ[((X1; A .a X2) .m ∅m); X3; A .a X4]
Pa11

Σ[((X1; A .a X2) .m ∅m); X3 .a X4]

Σ[((X1 .a A; X2) .m ∅m); X3 .a A; X4]
Pa12

Σ[((X1 .a A; X2) .m ∅m); X3 .a X4]

Σ[((Y1, A .m Y2) .a ∅a), Y3 .m Y4]
Pm9

Σ[(X1; (Y1 .m Y2) .a X2), Y3, A .m Y4]

Σ[((Y1 .m A, Y2) .a ∅a), Y3 .m Y4]
Pm10

Σ[(X1; (Y1 .m Y2) .a X2), Y3 .m A, Y4]

Σ[((Y1 .m Y2) .a ∅a), Y3, A .m Y4]
Pm11

Σ[(X1; (Y1, A .m Y2) .a X2), Y3 .m Y4]

Σ[((Y1 .m Y2) .a ∅a), Y3 .m A, Y4]
Pm12

Σ[(X1; (Y1 .m A, Y2) .a X2), Y3 .m Y4]

Figure 3.10: Deep inference nested sequents calculus DICBI for CBI part 3

Even worse, we have to develop other rules that handle the cases where an additive
formula falls in a multiplicative sequent and vice versa. We call this type of rule inter-
action rules. Some examples of interaction rules are given in Figure 3.12. Typically, we
need to convert such formulae into one or more structures to maintain the interleaving
nature of the nested sequents. This type of rule read like logical rules, but often result
in structures instead of formulae in the premise(s), although the structures are just
proxies to the corresponding formulae.

Similar to the case of propagation rules, it seems that we can always think of new
interaction rules that apply on a formula in the conclusion, but split the context in
different ways, e.g., distribute a subformula to a deeper level nested sequent. This
situation usually happens on binary multiplicative rules that require splitting context,
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Additional Propagation rules:

Σ[X1; A .a ((∅a .a (A .m ∅m)) .m ∅m); X2]
Ta Ln

Σ[X1 .a ((∅a .a (A .m ∅m)) .m ∅m); X2]

Σ[X1; (∅m .m ((∅m .m A) .a ∅a)) .a A; X2]
Ta Rn

Σ[X1; (∅m .m ((∅m .m A) .a ∅a)) .a X2]

Σ[Y1, A .m Y2]
Tm Ln

Σ[Y1 .m ((∅m .m (A .a ∅a)) .a ∅a), Y2]

Σ[Y1 .m A, Y2]
Tm Rn

Σ[Y1, (∅a .a ((∅a .a A) .m ∅m)) .m Y2]

(X1; A .a X2), (∅a .a (A .m ∅m)) .m ∅m
Ta Lnd

(X1 .a X2), (∅a .a (A .m ∅m)) .m ∅m

∅m .m ((∅m .m A) .a ∅a), (X1 .a A; X2)
Ta Rnd

∅m .m ((∅m .m A) .a ∅a), (X1 .a X2)

Y1, A .m Y2
Tm Lnd

Σ[X1; (Y1 .m Y2); (∅m .m (A .a ∅a)) .a X2]

Y1 .m A, Y2
Tm Rnd

Σ[X1 .a ((∅a .a A) .m ∅m); (Y1 .m Y2); X2]

Figure 3.11: Deep inference nested sequents calculus DICBI for CBI part 4

as shown in Figure 3.13.
As a consequence, our attempt to obtain a nested sequent calculus to solve theo-

rem proving for BI logics is not successful, the technical difficulty comes in when we
analyse how additive sequents interact with multiplicative sequents, which is related
to the over complicated structure of sequent we are considering. But our effort in
this chapter is not in vain. Learning about what we cannot do is just as important as
discovering what we can do. Instead of giving up, we wonder if there is a simple and
natural way to express the interaction between the additive part and the multiplicative
part of BI logics and to reason about the formulae in these logics. This question leads
us to a new direction to attack our problem, as will be detailed in the next chapter.
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Interaction rules:

⊥Li
Σ[Y1,⊥ .m Y2]

Σ[Y1 .m (∅a .a ⊥), Y2]
⊥Ri

Σ[Y1 .m ⊥, Y2]

Σ[X1; (⊥∗ .m ∅m) .a X2]
⊥∗Li

Σ[X1;⊥∗ .a X2]

Σ[X1 .a (∅m .m ⊥∗); X2]
⊥∗Ri

Σ[X1 .a ⊥∗; X2]

Σ[Y1, (> .a ∅a) .m Y2]
>Li

Σ[Y1,> .m Y2]

>Ri
Σ[Y1 .m >, Y2]

Σ[X1; (>∗ .m ∅m) .a X2]
>∗Li

Σ[X1;>∗ .a X2]

Σ[X1 .a (∅m .m >∗); X2]
>∗Ri

Σ[X1 .a >∗; X2]

Σ[Y1, (A; B .a ∅a) .m Y2]
∧Li

Σ[Y1, A ∧ B .m Y2]

Σ[Y1 .m A, Y2] Σ[Y1 .m B, Y2]
∧Ri

Σ[Y1 .m A ∧ B, Y2]

Σ[Y1, A .m Y2] Σ[Y1, B .m Y2]
∨Li

Σ[Y1, A ∨ B .m Y2]

Σ[Y1 .m (∅a .a A; B), Y2]
∨Ri

Σ[Y1 .m A ∨ B, Y2]

Σ[Y1, (∅a .a A) .m Y2] Σ[Y1, B .m Y2]
→ Li

Σ[Y1, A→ B .m Y2]

Σ[Y1 .m (A .a B), Y2]
→ Ri

Σ[Y1 .m A→ B, Y2]

Σ[Y1, (A .a B) .m Y2]
−< Li

Σ[Y1, A−< B .m Y2]

Σ[Y1, (∅a .a A) .m Y2] Σ[Y1, B .m Y2]
−< Ri

Σ[Y1 .m A−< B, Y2]

Σ[X1; (A, B .m ∅m) .a X2]
∗Li

Σ[X1; A ∗ B .a X2]

∅m .m A Σ[X1 .a B; X2]
∗Ri1

Σ[X1 .a A ∗ B; X2]

A .m ∅m Σ[X1; B .a X2]
∨∗ Li1

Σ[X1; A ∨∗ B .a X2]

Σ[X1 .a (∅m .m A, B); X2]
∨∗ Ri

Σ[X1 .a A ∨∗ B; X2]

Σ[X1; (∅m .m A) .a X2] B .m ∅m
−∗ Li1

Σ[X1; A−∗ B .a X2]

Σ[X1 .a (A .m B); X2]
−∗ Ri

Σ[X1 .a A−∗ B; X2]

∅m .m A Σ[X1; B .a X2]
−∗ Li2

Σ[X1; A−∗ B .a X2]

Σ[X1; (∅m .m A) .a X2] B .m ∅m
−−× Ri1

Σ[X1 .a A−−× B; X2]

Σ[X1; (A .m B) .a X2]
−−× Li

Σ[X1; A−−× B .a X2]

∅m .m A Σ[X1; B .a X2]
−−× Ri2

Σ[X1 .a A−−× B; X2]

Figure 3.12: Deep inference nested sequents calculus DICBI for CBI part 5
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Additional Interaction rules:

Σ[X1; (Y1, Y2 .m ∅m); (((Y1 .m ∅m) .a A), Y2 .m ∅m) .a A ∗ B; X2] Y2 .m B
∗Ri2

Σ[X1; (Y1, Y2 .m ∅m) .a A ∗ B; X2]

Σ[X1; A ∨∗ B .a (∅m .m Y2, (A .a (∅m .m Y1))); (∅m .m Y1, Y2); X2] B .m Y2
∨∗ Li2

Σ[X1; A ∨∗ B .a (∅m .m Y1, Y2); X2]

Σ[X1; A−∗ B .a (((Y1 .m ∅m) .a A) .m Y2); (Y1 .m Y2); X2] B .m Y2
−∗ Li3

Σ[X1; A−∗ B .a (Y1 .m Y2); X2]

Y1 .m A Σ[X− 1; A−∗ B .a (Y1 .m (B .a (∅m .m Y2))); (Y1 .m Y2); X2]
−∗ Li4

Σ[X1; A−∗ B .a (Y1 .m Y2); X2]

Σ[X1; (Y1 .m Y2); (((Y1 .m ∅m) .a A) .m Y2) .a A−−× B; X2] B .m Y2
−−× Ri3

Σ[X1; (Y1 .m Y2) .a A−−× B; X2]

Y1 .m A Σ[X1; (Y1 .m Y2); (Y1 .m (B .a (∅m .m Y2))) .a A−−× B; X2]
−−× Ri4

Σ[X1; (Y1 .m Y2) .a A−−× B; X2]

((Y1 .m ∅m) .a A), Y2 .m (X1; (Y1, Y2 .m ∅m) .a A ∗ B; X2) Y2 .m B
∗Ri3

Y1, Y2 .m (X1 .a A ∗ B; X2)

(X1; A ∨∗ B .a (∅m .m Y1, Y2); X2) .m (A .a (∅m .m Y1)), Y2 B .m Y2
∨∗ Li3

(X1; A ∨∗ B .a X2) .m Y1, Y2

(X1; A−∗ B .a (Y1 .m Y2); X2), ((Y1 .m ∅m) .a A) .m Y2 B .m Y2
−∗ Li5

(X1; A−∗ B .a X2), Y1 .m Y2

Y1 .m A (X1; A−∗ B .a (Y1 .m Y2); X2), Y1 .m (B .a (∅m .m Y2))
−∗ Li6

(X1; A−∗ B .a X2), Y1 .m Y2

((Y1 .m ∅m) .a A) .m Y2, (X1; (Y1 .m Y2) .a A−−× B; X2) B .m Y2
−−× Ri5

Y1 .m Y2, (X1 .a A−−× B; X2)

Y1 .m A Y1 .m (B .a (∅m .m Y2)), (X1; (Y1 .m Y2) .a A−−× B; X2)
−−× Ri6

Y1 .m Y2, (X .a A−−× B; X2)

Figure 3.13: Deep inference nested sequents calculus DICBI for CBI part 6



90 Nested Sequents and Deep Inference for BI Logics

3.4 Park et al.’s Nested Sequent Calculus for BBI

After we moved on to solve theorem proving for BI logics in a new direction, Jonghyun
Park and Sungwoo Park published their nested sequent calculus SBBI for BBI and
proved it’s soundness and completeness [77]. The structure of their nested sequents,
unlike ours, does not have different flavours of turnstiles, thus naturally does not
impose an interleaving structure of additive sequents and multiplicative sequents.
Instead, their nested sequents only have an additive flavour sequent, called “world
sequent”, and express the multiplicative structures using ∅m, (W, W) and a special
construction W〈W〉, where W is a world sequent. Multiplicative structures are only
allowed in the antecedent of a sequent. These are formally defined as follows:

World Sequent W ::= Γ⇒B ∆
Truth Context Γ ::= · | Γ; S

Falsehood Context ∆ ::= · | ∆; A
World State S ::= A | ∅m | W, W | W〈W〉

The · can be seen as the additive unit ∅a. Their clever construction of sequents reflects
the ternary relation in BBI semantics as follows: a world sequent gives the true and
false formulae in a world; a sequent Γ; (W1, W2) ⇒B ∆ means that the current world
w0 has two children w1 and w2, denoted by the world sequents W1 and W2 respectively,
thus R(w1, w2, w0) holds; a sequent Γ; W1〈W2〉 ⇒B ∆ says that the current world w0

has a sibling w1 represented by the world sequent W1, and w0, w1 have a common
parent w2 represented by the world sequent W2, so R(w0, w1, w2) holds. The above
are formally described as below, where 
s is a forcing relation between worlds and
structures in SBBI :

w 
S W1, W2 iff ∃w1, w2 s.t. R(w1, w2, w) and w1 
S W1 and w2 
S W2

w 
S W1〈W2〉 iff ∃w1, w2 s.t. R(w, w1, w2) and w1 
W1 and w2 
S W2

One can readily see the similarity between their structural connective “,” and the
logical connective ∗; although W〈W〉 does not exactly resemble −∗ , it does provide a
way to reason about −∗ since we can now talk about sibling and parent. However, we
point out that Park et al.’s following observations on BBIND [77, page 2] are incorrect:

1. A node can have multiple parent nodes, but each parent node deter-
mines a unique sibling node. Hence no node can have two parent
nodes with the same sibling node.

2. A node can have multiple child nodes, but each child node determines
another unique child node. Hence we can divide all child nodes into
groups of two sibling nodes.

Observation 1 is the claim that partial-determinism holds and Observation 2 is the
claim that cancellativity holds, but neither of these properties hold for BBIND, which
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is what their nested sequent calculus is designed for. Interestingly, as will be shown in
Section 6.5, Park et al.’s prover BBeye could not prove the formula (18) which is valid
if partial-determinism (Observation 1) holds.

Their nested sequent calculus SBBI has structural rules such as weakening, contrac-
tion, exchange. Their logical rules for additive connectives (∧,∨,→,¬) are ordinary.
The tricky part is their multiplicative rules and structural rules that “display” struc-
tures. The rules for ∗ are as expected:

Γ; (A⇒B ·), (B⇒B ·)⇒B ∆
∗L

Γ; A ∗ B⇒B ∆
Γ1 ⇒B ∆1; A Γ2 ⇒B ∆2; B

∗R
(Γ1 ⇒B ∆1), (Γ2 ⇒B ∆2)⇒B A ∗ B

The rules for −∗ make use of the W〈W〉 structure in the following way:

Γ1 ⇒B ∆1; A Γ2; B⇒B ∆2 −∗ L
(Γ1 ⇒B ∆1)〈Γ2 ⇒B ∆2〉; A−∗ B⇒B ·

Γ; (A⇒B ·)〈· ⇒B B〉 ⇒B ∆
−∗ R

Γ⇒B ∆; A−∗ B

They have the following rule to shuffle structures and “display” their sequents:

Γ; W1, (W2, W3 ⇒B ·)⇒B ∆
EA

Γ; (W1, W2 ⇒B ·), W3 ⇒B ∆
Γ1; (Γ2 ⇒B ∆2), (∅m ⇒B ·)⇒B ∆1

∅mU&∅M D

Γ1; Γ2 ⇒B ∆1; ∆2

Γc1; (Γc2 ⇒B ∆c2)〈Γ⇒B ∆〉 ⇒B ∆c1
TC

Γ; (Γc1 ⇒B ∆c1), (Γc2 ⇒B ∆c2)⇒B ∆
Γp; (Γ⇒B ∆), (Γs ⇒B ∆s)⇒B ∆p

TP
Γ; (Γs ⇒B ∆s)〈Γp ⇒B ∆p〉 ⇒B ∆

Their nested sequent calculus is a shallow inference system, so inference rules can
only be applied on the top level sequent. Park et al. showed that their system SBBI is
sound and complete with respect to the Hilbert system for BBI (cf. Section 2.2) and
display calculus for BBI (cf. Section 2.3). They also proved a cut-elimination theorem
for SBBI . We do not know if their incorrect observations are reflected in their proof
system. They went on to give a more proof search friendly system based on SBBI ,
called CSBBI , which is also a shallow inference system, but build in weakening and
contraction. As a result, weakening and contraction are admissible in CSBBI , although
it does have explicit rules to copy structures and even sequents, such as the rule EAC ,
which is intricate and can hardly be presented in one line. They discussed several
tactics for proof search. Some of their tactics are found useful later in our systems.

More interestingly, they showed that their rules for “displaying” structures in
CSBBI can be eliminated by labelling formulae with the corresponding worlds, ex-
plicitly expressing the ternary relation in the sequent, and allowing inference rules
to be applied on any nested sequents, therefore supporting deep inference. Coinci-
dentally, our independent work goes in the direction of labelled sequent calculus, not
only expressing ternary relational atoms and labelled formulae in the sequent, but also
supporting direct reasoning about ternary relational atoms via rules that capture the
semantics of the ternary relation. In our system the inference rules are much simpler,
and a derivation for the same formula is usually shorter than that in CSBBI . We will
give the details about our labelled calculus in the coming chapter.
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Chapter 4

Labelled Sequent Calculus and
Proof Search for BBI

Nested sequent calculi for BI logics are not trivial to design. Even Park et al.’s suc-
cessful proof system requires very complicated rules to manipulate structures [77].
To avoid the complication caused by the mixture of additive and multiplicative struc-
tures, we take a cue from labelled sequent calculus for modal logics and develop a
labelled sequent calculus for BBI directly instead of detouring through CBI. There are
two reasons we do not consider CBI here: first, in labelled sequents we do not care
about duality of connectives; and second, BBI is the basis of our objective separa-
tion logic after all. The idea is simple: put the semantics in the sequent and reason
about them. The independent research from Park et al., as discussed in Section 3.4,
also suggests that labelling formulae and expressing the ternary relation explicitly is
a promising angle. Their final labelled proof system, however, does not manipulate
the ternary relation directly, but still uses the structural rules for nested sequents to
transfer information between worlds. Our sequent rules further build in the properties
of the ternary relation in the semantics, resulting in a much simpler and more natural
labelled sequent calculus.

Reynolds said in 2002 that classical separation logic was based on BBI when the
exact semantics of BBI were not given. We now know that the original BBI corresponds
to the non-deterministic monoidal semantics, but actually the BBI used in the heap
model of separation logic is more specific and it restricts that the monoids are partial,
and satisfy a number of other properties such as indivisible unit: the empty resource
cannot be split into non-empty resources. For various reasons, some people, e.g., Park
et al., seeking proof methods for the assertion language of separation logic start by
looking at BBIND, partly because its Hilbert system and display calculus have already
been established. This chapter also focuses on BBI with non-deterministic semantics
because theorem proving for BBIND is of proof theoretical interest. Compared to the
nested sequent calculi discussed in the previous chapter, our labelled calculus has
great extensibility and flexibility of which we will take advantage in later chapters to
handle other variants of BBI that satisfy some necessary properties in separation logic.
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We give our labelled sequent calculus in Section 4.1 where we also show its sound-
ness and completeness for BBI, followed by a cut-elimination proof in Section 4.2. We
then consider proof search using labelled sequents in Section 4.3, 4.4 and 4.5. Exper-
iments and implementation are shown in Section 4.6. We discuss the contribution of
this chapter and related work in Section 4.7.

The material contained in this chapter is an extension of a conference paper by
Hóu, Tiu, and Goré [53].

4.1 LSBBI: A Labelled Sequent Calculus for BBI

Recall the syntax and semantics of BBI from Section 2.1.2. Our labelled sequent calcu-
lus is designed to simulate the reasoning of semantics using sequents. We explicitly
use relational atoms in the sequent. Our structural rules are not like the ones in a tradi-
tional sequent calculus, but rather like Negri’s modal rules [72]. Compared to Negri’s
labelled calculi for modal logics, our approach has two main differences. Firstly, the
semantics of modal logics employ binary relations, whereas the semantics of BI logics
use ternary relations. As a consequence, instead of using binary relational atoms in
the calculus, we naturally build in a ternary relation structure in our calculus, and our
structural rules manipulate ternary relational atoms. Secondly, some conditions in BBI
semantics require unifying equivalent labels. To capture this, we use explicit global
label substitutions in some structural rules. This technique is not used in the labelled
calculi for modal logics.

4.1.1 Inference Rules in LSBBI

We now give the details of our labelled sequent calculus with some discussion on how
it is related to the semantics.

The labelled sequent calculus for BBI employs a ternary relation of worlds that is
based on a non-deterministic monoid structure, à la Galmiche et al. [36].

We assume an infinite set LVar of label variables, and a label constant ε such that
ε 6∈ LVar. The latter is a syntactic counterpart of the ε world in the semantics. We shall
mainly use lower case letters to range over the set L of all labels, i.e, L = LVar ∪ {ε}.
A labelled formula is an expression of the form x : A, where x is a label and A is
a formula. A relational atom is an expression of the form (x, y . z), where x, y and
z are labels. The relational atom (x, y . z) encodes the ternary relation R(x, y, z) in
the semantics. Given a relational frame (M, R, ε), the intended interpretations of
labels are worlds inM, and the intended interpretation of the symbol . is the ternary
relation R in the model. The interpretations of labelled formulae and relational atoms
in the semantics are dependent on the interpretation of labels. The latter is given by
a mapping ρ : {ε} ∪ LVar → M, with ρ(ε) = ε. That is, we fix the interpretation
of the label constant ε to be the world ε in the semantics. This, however, does not
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forbid mapping a label variable to the world ε. So in the following, when we say “an
arbitrary label variable w ∈ LVar”, we mean that w can be mapped to any world in
the semantics. Given such a mapping ρ, a labelled formula w : A is true iff ρ(w) 
 A,
and a relational atom (x, y . z) is true iff R(ρ(x), ρ(y), ρ(z)) holds.

A sequent is of the form Γ ` ∆, where Γ and ∆ are structures, defined formally via:

Γ ::= w : A | (x, y . z) | Γ; Γ ∆ ::= w : A | ∆; ∆

Note that relational atoms do not occur in the succedent ∆. In our definition of se-
quents, the structural connective “;” in the antecedent means (additive) “and” whereas
in the succedent it means (additive) “or”. We assume implicitly that ‘;’ is associative
and commutative. However, there is a subtlety in this interpretation of ‘;’. Unlike
traditional Gentzen sequents, a labelled sequent Γ ` ∆ does not in general correspond
to a formula

∧
Γ → ∨

∆. This is because the interpretation of a labelled formula is
dependent on the interpretation of the label it is attached to. If, however, all formulas
in Γ are attached to the same label, then the Γ corresponds to the formula

∧
Γ.

Our use of ‘;’ as the structural connective in labelled sequents is slightly different
from the traditional (labelled) sequent notation where “,” is used as the structural con-
nective, but our notation is consistent with sequent systems for the family of Bunched
Implication (BI) logics, where “;” is the additive structural connective, and “,” is used
to denote the multiplicative structural connective. The multiplicative structural con-
nective is not explicitly presented in our sequent notation, but as we shall see later, it
is encoded implicitly in the relational atoms.

The inference rules of our labelled system LSBBI are shown in Figure 4.1, where we
use p as a proposition, A, B are formulae, w, x, y, z are in the set LVar ∪ {ε} of labels, ε

is the label constant.

Definition 4.1.1 (Principal formula and relational atom). The formula shown explicitly in
the conclusion of each rule is the principal formula. The relational atom shown explicitly in the
conclusion of each rule is the principal relational atom.

Our inference rules are designed to capture the semantics of BBI (cf. end of Sec-
tion 2.1.2). For example, reading upwards, the left rule for ∗ considers the situation
where the formula A ∗ B is true in z, this involves an existential condition in the se-
mantics:

∃a, b s.t. (a, b . z) holds and a 
 A and b 
 B.

As in the sequent calculus for classical logic, we create fresh labels for existentially
quantified variables. Therefore ∗L creates a premise containing a new relational atom
(x, y . z) where x, y are fresh, and makes A true in x and B true in y. The ∗R rule
considers the case where the formula A ∗ B is false in z, by negating the semantics of
∗, we obtain that

∀a, b, if (a, b . z) holds, then a 6
 A or b 6
 B.
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Identity and Cut:

id
Γ; w : p ` w : p; ∆

Γ ` x : A; ∆ Γ′; x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Logical Rules:

⊥L
Γ; w : ⊥ ` ∆

Γ[ε/w] ` ∆[ε/w]
>∗L

Γ; w : >∗ ` ∆
>R

Γ ` w : >; ∆
>∗R

Γ ` ε : >∗; ∆

Γ; w : A; w : B ` ∆
∧L

Γ; w : A ∧ B ` ∆
Γ ` w : A; ∆ Γ ` w : B; ∆

∧R
Γ ` w : A ∧ B; ∆

Γ ` w : A; ∆ Γ; w : B ` ∆
→ L

Γ; w : A→ B ` ∆
Γ; w : A ` w : B; ∆

→ R
Γ ` w : A→ B; ∆

(x, y . z); Γ; x : A; y : B ` ∆
∗L

Γ; z : A ∗ B ` ∆
(x, y . z); Γ; x : A ` z : B; ∆

−∗ R
Γ ` y : A−∗ B; ∆

(x, y . z); Γ ` x : A; z : A ∗ B; ∆ (x, y . z); Γ ` y : B; z : A ∗ B; ∆
∗R

(x, y . z); Γ ` z : A ∗ B; ∆

(x, y . z); Γ; y : A−∗ B ` x : A; ∆ (x, y . z); Γ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z); Γ; y : A−∗ B ` ∆

Structural Rules:

(y, x . z); (x, y . z); Γ ` ∆
E

(x, y . z); Γ ` ∆
(u, w . z); (y, v . w); (x, y . z); (u, v . x); Γ ` ∆

A
(x, y . z); (u, v . x); Γ ` ∆

(x, ε . x); Γ ` ∆
U

Γ ` ∆
(x, w . x); (y, y . w); (x, y . x); Γ ` ∆

AC
(x, y . x); Γ ` ∆

(ε, w′ . w′); Γ[w′/w] ` ∆[w′/w]
Eq1

(ε, w . w′); Γ ` ∆
(ε, w′ . w′); Γ[w′/w] ` ∆[w′/w]

Eq2
(ε, w′ . w); Γ ` ∆

Side conditions:
In >∗L, Eq1 and Eq2, w 6= ε.
In ∗L and −∗ R, x and y are label variables that do not occur in the conclusion.
In A and AC, the label w does not occur in the conclusion.

Figure 4.1: The labelled sequent calculus LSBBI for Boolean BI.

Therefore ∗R checks existing relational atoms in the conclusion, and when (x, y . z)
is found for any labels x and y, the rule creates two premises for A being false in x
and B being false in y respectively. The rules for −∗ are analogous: the −∗ L rule uses
an existing relational atom in the conclusion as −∗ L involves an universal condition;
and the −∗ R rule creates a new relational atom with fresh labels since it involves an
existential condition. Similarly, in rules A, AC, the label w must be fresh in the premise,
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id
· · · ; w2 : r ` w2 : r; · · ·

id
· · · ; w1 : q ` w1 : q; · · ·

∗R
(w2, w1 . w0); (ε, w1 . w1); (w1, w2 . w0); ε : p; ε : >∗; w1 : q; w2 : r ` w0 : r ∗ q

E
(ε, w1 . w1); (w1, w2 . w0); ε : p; ε : >∗; w1 : q; w2 : r ` w0 : r ∗ q

Eq1

(ε, w4 . w1); (w1, w2 . w0); ε : p; ε : >∗; w4 : q; w2 : r ` w0 : r ∗ q
>∗L

(w3, w4 . w1); (w1, w2 . w0); w3 : p; w3 : >∗; w4 : q; w2 : r ` w0 : r ∗ q
∧L

(w3, w4 . w1); (w1, w2 . w0); w3 : p ∧>∗; w4 : q; w2 : r ` w0 : r ∗ q
∗L× 2

w0 : ((p ∧>∗) ∗ q) ∗ r ` w0 : r ∗ q
→ R

` w0 : (((p ∧>∗) ∗ q) ∗ r)→ (r ∗ q)

Figure 4.2: An example derivation for (((p ∧>∗) ∗ q) ∗ r)→ (r ∗ q) in LSBBI.

as it also encodes an existential condition. Note that the rule AC is a special case of
the rule A where the two relational atoms are the same. AC is required to guarantee
the admissibility of contraction, as will be shown in the proof of Lemma 4.2.8.

In the rule >∗L, there is an operation of global substitution [ε/x] in the premise.
A substitution Γ[y/x] is defined in the usual way: simultaneously replace every oc-
currence of x in Γ by y, where x ∈ LVar and y ∈ LVar ∪ {ε}. The structural rules
Eq1 and Eq2 also involve substitutions. Both of them are needed since substituting for
the label constant ε is forbidden. That is, if the principal relational atom is (ε, ε . w),
then we can only use the rule Eq2 to replace every w by ε, but we cannot use the Eq1

rule to replace every ε by w. The case where Eq2 cannot be used is symmetric. We
sometimes may write (Γ ` ∆)[y/x] for globally replacing every x by y in the entire
sequent. Explicit substitution in the rules is a major novelty in our labelled sequent
calculus, it makes derivations shorter in general, although it may also cause difficulties
when analysing proof search methods.

The additive rules (⊥L, >R, ∧L, ∧R, → L, → R) and the multiplicative rules (>∗L,
>∗R, ∗L, ∗R, −∗ L, −∗ R) respectively deal with the additive/ multiplicative connec-
tives. The zero-premise rules are those with no premises (id, ⊥L, >R, >∗R).

We adopt a traditional (LK) style cut rule with context splitting. This helps give
a clearer view of the use of weakening and contraction admissibility in our cut-
elimination proof.

Figure 4.2 shows an example derivation in LSBBI, where we omit the unimportant
parts, and use r × n if a rule r is applied n times. To prove a formula, we start (at
the bottom) by labelling the formula with an arbitrary label variable w, then try to
apply the rules in LSBBI backwards. A sequent is provable/derivable if every branch in
the backward proof search can be closed by using a zero-premise rule.

The fact that weakening and contraction are forbidden in the multiplicative frag-
ment of BBI is reflected in our calculus as follows. The rules ∗L and −∗ R create new
relational atoms when moving from conclusions to premises, so ` x : (p ∗ p) → p is
not derivable. In any cut-free derivation for any formula, a relational atom of the form
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(w, w . w) where w 6= ε can never be created. We will show later that LSBBI is sound,
so the labelled sequent ` x : p→ (p ∗ p) is also not derivable in LSBBI.

Definition 4.1.2 (Sequent Validity). A sequent Γ ` ∆ in LSBBI is valid if for all (M, R, ε),
v and ρ, if every member of Γ is true then so is some member of ∆.

Note that BBI-validity of a formula A corresponds to the validity of the sequent
` x : A, where x is an arbitrary label variable. This correspondence is also adopted in
other work for BBI [62, 77] and CBI [17], but is stronger than that used in the sequent
calculus LBI for BI1 [84], in which a formula A is valid iff ∅m ` A is provable, where
∅m is the multiplicative structural unit. For example, ∅m ` >∗ is provable in LBI, but
the sequent ` x : >∗ is not provable (although the sequent ` ε : >∗ is provable) in
LSBBI. Translated to our setting, validity of a formula A in BI would correspond to
provability of ` ε : A.

4.1.2 Soundness of LSBBI

The soundness proof reasons about the falsifiability of sequents, as defined below.

Definition 4.1.3 (Sequent Falsifiability). A sequent Γ ` ∆ in LSBBI is falsifiable if there
exist some (M, R, ε), v and ρ, such that every relational atom and labelled formula in Γ is true
and every labelled formula in ∆ is false, where: (1) w : A is true iff ρ(w) 
 A; (2) w : A is
false iff ρ(w) 6
 A; and (3) (x, y . z) is true iff R(ρ(x), ρ(y), ρ(z)) holds.

Theorem 4.1.1 (Soundness). For any label w ∈ LVar and any BBI formula F, if ` w : F is
derivable in LSBBI, then F is valid in BBIND.

Proof. Note first that w ∈ LVar implies that w cannot be the label constant ε, although
it can be mapped to the world ε. To prove the soundness of LSBBI, we show that each
rule preserves falsifiability upwards, as this is a more natural direction in terms of
backward proof search. Therefore to prove that a rule is sound, we need to show that
if the conclusion is falsifiable, then at least one of the premises is falsifiable (usually in
the same choice of v, ρ, andM). We show the case for each rule as below.

id Since there is no premise in this rule, we simply need to show that the conclusion
is not falsifiable.

Suppose the sequent Γ; w : P ` w : P; ∆ is falsifiable, then Γ must be true and
ρ(w) 
 A and ρ(w) 6
 A and ∆ must be false. However, ρ(w) 
 A and ρ(w) 6
 A
cannot hold at the same time for any (M, ., ε), v and ρ, so we have a contradic-
tion, thus this sequent is not falsifiable.

1Since BI is defined from a proof theoretic perspective, the validity of BI formulae is defined by
sequent validity in LBI.
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cut Suppose the conclusion Γ; Γ′ ` ∆; ∆′ is falsifiable in some model, given any world
x from this model and any formula A, either A is true in x or A is false in x. If
the former case is true, then the right premise is falsifiable in the same model; if
the latter case is true, then the left premise is falsifiable in the same model.

⊥L We only need to show that the conclusion is not falsifiable, which is because ⊥
cannot be true in any world.

>∗L Assume Γ; w : >∗ ` ∆ is falsifiable, then Γ is true and ρ(w) 
 >∗ and ∆ is false.

From the semantics of >∗ we know that ρ(w) 
 >∗ iff ρ(w) = ε. Therefore by
choosing the same ρ, v, andM for the premise, replacing every w by ε in Γ and
∆ preserves their valuations, as we know that ρ(ε) = ε. That is, Γ[ε/w] must be
true and ∆[ε/w] must be false. So the premise is falsifiable.

>R The conclusion cannot be falsifiable because > cannot be false in any world.

>∗R The conclusion cannot be falsifiable because >∗ cannot be false in the world ε.

∧L Suppose the conclusion is falsifiable, which means A ∧ B is true in w for some
model. By the semantics of ∧, both A and B are true in w, therefore the premise
is falsifiable in the same model.

∧R Suppose the conclusion is falsifiable, so A ∧ B is false in w in some model. Then
either A is false in w or B is false in w (or both). For the former case, the left
premise is falsifiable in the same model; for the latter case, the right premise is
falsifiable in the same model.

→ L Suppose A → B is true in w in some model that falsifies the conclusion, then
either A is false in w or B is true in w (or both). For the former case, the left
premise is falsifiable in the same model; for the latter case, the right premise is
falsifiable in the same model.

→ R Suppose there is a model that falsifies the conclusion and A → B is false in w
in that model. Then it must be the case that A is true in w and B is false in w,
therefore the premise is falsifiable in the same model.

∗L Assume the conclusion is falsifiable, so under some v, ρ,M, we have that Γ is true
and ρ(z) 
 A ∗ B and ∆ is false.

From the semantics of A ∗ B, we know that ∃a, b s.t. R(a, b, ρ(z)) and a 
 A and
b 
 B. So we can choose a mapping ρ′ with ρ′ = (x 7→ a) ∪ (y 7→ b) ∪ ρ. Since
x and y are fresh, they should not affect mappings in ρ for labels that occur in
the conclusion. If ρ already has mappings for x, y, we can safely override these
mappings. Then, under ρ′, the following hold: (x, y . z) is true and Γ is true and
ρ′(x) 
 A and ρ′(y) 
 B and ∆ is false. Thus the premise is falsifiable in the
same model with the label mapping ρ′.
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∗R Assume under some v, ρ, andM, (x, y . z) is true and Γ is true and ρ(z) 6
 A ∗ B
and ∆ is false.

The semantics of A ∗ B yields the following:

ρ(z) 6
 A ∗ B⇔ ¬(∃a, b. (R(a, b, ρ(z)) and a 
 A and b 
 B))

⇔ ∀a, b. (R(a, b, ρ(z)) doesn′t hold or a 6
 A or b 6
 B)

If we pick the same set of v, ρ,M for the premises, however, in both premises of
the ∗R rule the relational atom (x, y . z) already exists, which means ρ(x), ρ(y) .
ρ(z) holds. So the possibility is only that either ρ(x) 6
 A or ρ(y) 6
 B. Assume
the former one holds, then the left premise is falsifiable, otherwise the right
premise is falsifiable.

−∗ L Suppose (x, y . z) is true and Γ is true and ρ(y) 
 A−∗ B and ∆ is false for some
v, ρ, M. By the semantics of −∗ , for any a, b such that R(a, ρ(y), b), a 6
 A or
b 
 B. Since R(ρ(x), ρ(y), ρ(z)) is true, we know that ρ(x) 6
 A or ρ(z) 
 B. For
the former case, the left premise is falsifiable in the same model; for the latter
case, the right premise is falsifiable in the same model.

−∗ R Suppose the conclusion is falsifiable for some v, ρ,M, where ρ(y) 6
 A−∗ B. By
negating the semantics, we have the following:

ρ(y) 6
 A−∗ B⇔ ¬(∀a, b.((R(a, ρ(y), b) and a 
 A) implies b 
 B))

⇔ ¬(∀a, b.(¬(R(a, ρ(y), b) and a 
 A) or b 
 B))

⇔ ∃a, b.((R(a, ρ(y), b) and a 
 A) and b 6
 B)

Suppose the worlds a, b respectively makes A true and makes B false and the
relation R(a, ρ(y), b) holds. Let us choose a mapping ρ′ that extends ρ with
{(x 7→ a), (z 7→ b)}. Since x, y do not occur in the conclusion, the mappings
of them do not conflict with mappings for labels in the conclusion. Thus in this
model with the label mapping ρ′, we have ρ′(x) 
 A and ρ′(z) 6
 B, which means
that the premise is falsifiable.

E Suppose the conclusion is falsifiable, so R(ρ(x), ρ(y), ρ(z)) holds in some model. By
commutativity, R(ρ(y), ρ(x), ρ(z)) also holds, thus the premise is also falsifiable
in the same model.

A Suppose the conclusion is falsifiable, thus there is a model that makes R(ρ(x), ρ(y), ρ(z))
and R(ρ(u), ρ(v), ρ(x)) true. By associativity, there is some world a such that
R(ρ(u), a, ρ(z)) and R(ρ(y), ρ(v), a) are true. Let us extend ρ with (w 7→ a) and
let the result be ρ′, this should not affect existing mappings for labels occur in
the conclusion. Then the extended model withM, v, ρ′ falsifies the premise.
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AC This is just a special case of the rule A where the two principal relational atoms
are the same. The soundness is proved by the above argument.

U Suppose the conclusion is falsifiable in some M, v, ρ. If the label x occurs in the
conclusion, then by identity, R(ρ(x), ε, ρ(x)) holds, thus the premise is falsifiable
in the same model. If x does not occur in the conclusion, we just need to extend
the model with it as follows: M′ =M∪ {a} and ρ′ = ρ ∪ {(a 7→ x)}, where a
does not occur inM. Again by identity, R(ρ(x), ε, ρ(x)) holds. Now the premise
is falsifiable in the model withM′, ρ′, and the same choice of valuation v.

Eq1/Eq2 Suppose the conclusion is falsifiable in some model where R(ε, ρ(w), ρ(w′))
holds. By commutativity and identity, ρ(w) = ρ(w′) in this model, thus the
relation R(ε, ρ(w′), ρ(w′)) holds. Moreover, globally replacing every ρ(w) with
ρ(w′) does not change the falsifiability of the sequent. So the premise is falsifiable
in the same model. The case for Eq2 can be argued the same way.

4.1.3 Completeness of LSBBI

Although not explicitly shown, our labelled sequent calculus LSBBI is able to deal with
other classical logical connectives such as ∨ and ¬. The rules for these connectives can
be derived from existing rules in LSBBI via ¬A ≡ A → ⊥ and A ∨ B ≡ ¬(¬A ∧ ¬B).
We give the derived rules for these connectives as below, these rules will be used in
the derivations in this section.

Γ ` w : A; ∆
¬L

Γ; w : ¬A ` ∆
Γ; w : A ` ∆

¬R
Γ ` w : ¬A; ∆

Γ; w : A ` ∆ Γ; w : B ` ∆
∨L

Γ; w : A ∨ B ` ∆
Γ ` w : A; w : B; ∆

∨R
Γ ` w : A ∨ B; ∆

We prove the completeness of LSBBI by showing that every derivation of a formula
in the Hilbert system for BBI (cf. Section 2.2) can be translated to a derivation in LSBBI,
possibly using the cut rule. That is, a formula A is translated to the labelled sequent
` w : A.

Theorem 4.1.2 (Completeness). For any label w ∈ LVar and any BBI formula F, if F is
valid in BBIND, then ` w : F is derivable in LSBBI.

Proof. Again, it is not possible for the label variable w to be the label constant ε. As the
Hilbert system for BBI is complete, there is a derivation Π of F in the Hilbert system.
We show that one can construct an LSBBI derivation Π′ of the sequent ` w : F, for any
label w 6= ε. It is enough to show that each axiom and each rule of the Hilbert system
can be derived. Please refer to Section 2.2 for the Hilbert system for BBI. The axiom
A→ (B→ A) can be proved as follows:
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id
w : A; w : B ` w : A

→ R
w : A ` w : B→ A

→ R
` w : A→ (B→ A)

The proof for axiom A→ (A ∨ B) runs as below.
id

w : A ` w : A; w : B
∨R

w : A ` w : A ∨ B
→ R

` w : A→ (A ∨ B)

The axiom B→ (A ∨ B) can be proved similar as above.
The axiom (A ∧ B)→ A is shown as follows:

id
w : A; w : B ` w : A

∧L
w : A ∧ B ` w : A

→ R
` w : (A ∧ B)→ A

The axiom (A∧ B)→ B can be proven by the same routine. Next we give a derivation
for the axiom A→ (B→ (A ∧ B)) as below.

id
w : A; w : B ` w : B

id
w : A; w : B ` w : A

∧R
w : A; w : B ` w : A ∧ B

→ R
w : A ` w : B→ (A ∧ B)

→ R
` w : A→ (B→ (A ∧ B))

The axiom (A→ (B→ C))→ ((A→ B)→ (A→ C)) is proved as follows:

id
w : A→ (B→ C); w : A ` w : A; w : C w : A→ (B→ C); w : B; w : A ` w : C

→ L
w : A→ (B→ C); w : A→ B; w : A ` w : C

→ R
w : A→ (B→ C); w : A→ B ` w : A→ C

→ R
w : A→ (B→ C) ` w : (A→ B)→ (A→ C)

→ R
` w : (A→ (B→ C))→ ((A→ B)→ (A→ C))

The top right premise can be derived as below:

id
· · · ; w : A ` w : A; · · ·

id
w : B; · · · ` w : B; · · ·

id
w : C; · · · ` w : C

→ L
w : B→ C; w : B; w : A ` w : C

→ L
w : A→ (B→ C); w : B; w : A ` w : C

The proof for the axiom (A→ C)→ ((B→ C)→ ((A ∨ B)→ C)) runs as follows:

w : B→ C; w : A ∨ B ` w : A; w : C
id

w : C; w : B→ C; w : A ∨ B ` w : C
→ L

w : A→ C; w : B→ C; w : A ∨ B ` w : C
→ R

w : A→ C; w : B→ C ` w : (A ∨ B)→ C
→ R

w : A→ C ` w : (B→ C)→ ((A ∨ B)→ C)
→ R

` w : (A→ C)→ ((B→ C)→ ((A ∨ B)→ C))
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where the derivation for the left premise is shown below:

id
· · · ; w : A ` w : A; · · ·

id
w : B ` w : B; · · ·

id
w : C; · · · ` · · · ; w : C

→ L
w : B→ C; w : B ` w : A; w : C

∨L
w : B→ C; w : A ∨ B ` w : A; w : C

The proof for the axiom ⊥ → A is trivial:

⊥L
w : ⊥ ` w : A

→ R
` w : ⊥ → A

The proof for the double negation elimination axiom is also easy:

id
w : A ` w : A

¬R
` w : ¬A; w : A

¬L
w : ¬¬A ` w : A

→ R
` w : (¬¬A)→ A

The deduction rule of modus ponens can be proved by the cut rule, assuming that
each premise of modus ponens can be derived.

` w : A→ B

` w : A
id

w : A ` w : A; w : B
cut

` w : A; w : B
id

w : B ` w : B
→ L

w : A→ B ` w : B
cut

` w : B

The two open branches are derivable since their end sequents are exactly the premises
of the modus ponens rule.

Now let us continue with the axioms and deduction rules in the multiplicative
fragment. The axiom A→ (>∗ ∗ A) is proven via the following derivation:

>∗R
· · · ` ε : >∗; · · ·

id
· · · ; w : A ` w : A; · · ·

∗R
(ε, w . w); · · · ; w : A ` w : >∗ ∗ A

E
(w, ε . w); w : A ` w : >∗ ∗ A

U
w : A ` w : >∗ ∗ A

→ R
` w : A→ (>∗ ∗ A)

The axiom (>∗ ∗ A)→ A can be derived as follows:

id
(ε, w . w); w : A ` w : A

Eq1

(ε, w2 . w); w2 : A ` w : A
>∗L

(w1, w2 . w); w1 : >∗; w2 : A ` w : A
∗L

w : >∗ ∗ A ` w : A
→ R

` w : (>∗ ∗ A)→ A

We give a derivation for the axiom (A ∗ B)→ (B ∗ A) as below.
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id
· · · ; w2 : B ` w2 : B; · · ·

id
· · · ; w1 : A ` w1 : A; · · ·

∗R
(w2, w1 . w); · · · ; w1 : A; w2 : B ` w : B ∗ A

E
(w1, w2 . w); w1 : A; w2 : B ` w : B ∗ A

∗L
w : A ∗ B ` w : B ∗ A

→ R
` w : (A ∗ B)→ (B ∗ A)

The proof for the axiom (A ∗ (B ∗ C))→ ((A ∗ B) ∗ C) runs as below.
id

· · · ; w1 : A ` w1 : A; · · ·
id

· · · ; w3 : B ` w3 : B; · · ·
∗R

· · · ; (w1, w3 . w5); w1 : A; w3 : B ` w5 : A ∗ B; · · ·
id

· · · ; w4 : C ` w4 : C; · · ·
∗R

· · · ; (w5, w4 . w); (w1, w3 . w5); w1 : A; w3 : B; w4 : C ` w : (A ∗ B) ∗ C
E

· · · ; (w4, w5 . w); (w1, w3 . w5); w1 : A; w3 : B; w4 : C ` w : (A ∗ B) ∗ C
A

(w2, w1 . w); · · · ; (w4, w3 . w2); w1 : A; w3 : B; w4 : C ` w : (A ∗ B) ∗ C
E× 2

(w1, w2 . w); (w3, w4 . w2); w1 : A; w3 : B; w4 : C ` w : (A ∗ B) ∗ C
∗L

(w1, w2 . w); w1 : A; w2 : (B ∗ C) ` w : (A ∗ B) ∗ C
∗L

w : A ∗ (B ∗ C) ` w : (A ∗ B) ∗ C
→ R

` w : (A ∗ (B ∗ C))→ ((A ∗ B) ∗ C)

Suppose there is a derivation in the Hilbert system for BBI using the deduction
rule ∗ as below:

Π1

` A→ C
Π2

` B→ D ∗
` (A ∗ B)→ (C ∗ D)

We give a derivation in LSBBI as below, assuming as the induction hypotheses that the
two premises can be derived.

` w1 : A→ C

id
· · · ; w1 : A ` w1 : A; · · · (w1, w2 . w); · · · ; w2 : B; w1 : C ` w : C ∗ D

→ L
(w1, w2 . w); w1 : A; w2 : B; w1 : A→ C ` w : C ∗ D

cut
(w1, w2 . w); w1 : A; w2 : B ` w : C ∗ D

∗L
w : A ∗ B ` w : C ∗ D

→ R
` w : (A ∗ B)→ (C ∗ D)

where the rightmost branch is derived as follows:

` w2 : B→ D

id
· · · ; w2 : B ` w2 : B; · · · (w1, w2 . w); · · · ; w2 : D; w1 : C ` w : C ∗ D

→ L
(w1, w2 . w); · · · ; w2 : B; w2 : B→ D; w1 : C ` w : C ∗ D

cut
(w1, w2 . w); · · · ; w2 : B; w1 : C ` w : C ∗ D

and the rightmost branch of the above derivation can be proved as below:
id

· · · ; w1 : C ` w1 : C; · · ·
id

· · · ; w2 : D ` w2 : D; · · ·
∗R

(w1, w2 . w); · · · ; w2 : D; w1 : C ` w : C ∗ D

Now the only two open branches can be proved by the induction hypotheses.
Next consider the rule −∗ 1, suppose Π is the derivation:
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Π1

A→ (B−∗ C)
−∗ 1

(A ∗ B)→ C

We start a backwards proof search from the end sequent as follows:

Π′1
` w1 : A→ (B−∗ C)

Π2

(w1, w2 . w); w1 : A→ (B−∗ C); w1 : A; w2 : B ` w : C
cut

(w1, w2 . w); w1 : A; w2 : B ` w : C
∗L

w : A ∗ B ` w : C
→ R

` w : (A ∗ B)→ C

where Π′1 comes from Π1 via the induction hypothesis, Π2 is shown as below, where
Γ = {(w1, w2 . w); w1 : A; w2 : B}).

id
Γ ` w1 : A

id
Γ; w1 : B−∗ C ` w2 : B

id
Γ; w1 : B−∗ C; w : C ` w : C

−∗ L
Γ; w1 : B−∗ C ` w : C

→ L
Γ; w1 : A→ (B−∗ C) ` w : C

Finally, suppose there is a derivation in the Hilbert system using the rule −∗ 2 as
below:

Π
` (A ∗ B)→ C

−∗ 2
` A→ (B−∗ C)

Assuming as the induction hypothesis that the premise (A ∗ B) → C is derivable in
LSBBI, we give the following derivation for the end sequent:

` w2 : (A ∗ B)→ C (w1, w . w2); w : A; w1 : B; w2 : (A ∗ B)→ C ` w2 : C
cut

(w1, w . w2); w : A; w1 : B ` w2 : C
−∗ R

w : A ` w : B−∗ C
→ R

` w : A→ (B−∗ C)

where the right branch runs as follows:

id
· · · ; w1 : B ` w1 : B; · · ·

id
· · · ; w : A ` w : A; · · ·

(w1, w . w2); w : A; w1 : B ` w2 : A ∗ B; · · ·
id

· · · ; ; w2 : C ` w2 : C
→ L

(w1, w . w2); w : A; w1 : B; w2 : (A ∗ B)→ C ` w2 : C

The only open branch can be derived by the induction hypothesis.

Corollary 4.1.3 (Formula validity). For any label variable w ∈ LVar and any BBI formula
F, the formula F is valid in BBIND iff ` w : F is derivable in LSBBI.
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Proof. The “if” direction comes from the soundness proof (of Theorem 4.1.1); the
“only-if” direction follows from the completeness proof (of Theorem 4.1.2) because
when we prove a formula F, we derive ` w : F for an arbitrary label variable w.
Thus F is true at any world for any valuation v, mapping ρ, and relational frame
(M, R, ε).

4.2 Cut-elimination for LSBBI

This section proves the cut-elimination theorem for our labelled sequent calculus. The
general proof outlined here is similar to the cut-elimination proof for labelled systems
for modal logic [72], i.e., we start by proving a substitution lemma for labels, followed
by proving the invertibility of inference rules, weakening admissibility, and contraction
admissibility, before proceeding to the main cut-elimination proof. As there are many
case analyses in these proofs, we only outline the important parts here.

Given a derivation Π, its height ht(Π) is defined as the length of the longest branch
in Π. We first show that weakening individual labelled formula or relational atom is
admissible.

Lemma 4.2.1. For all structures Γ, ∆, labelled formula w : A, and relational atom (x, y . z),
if Γ ` ∆ is derivable, then the following sequents can be derived within the same height:

Γ; w : A ` ∆ Γ ` w : A; ∆ (x, y . z); Γ ` ∆.

Proof. By induction on ht(Π). Since id, ⊥L, >R, and >∗R all have weakening built
in, the base case trivially holds. For the inductive cases, the only nontrivial case is for
∗L and −∗ R, where new labels have to be introduced. These labels can be systemat-
ically renamed to make sure that they do not clash with the labels in the weakened
formula/relational atom. This technique is also used in the proof of Lemma 4.2.2.

The substitution lemma shows that provability is preserved under arbitrary substi-
tutions of labels. When proving this lemma, we will frequently use the fact that, when
applied on a sequent, the sequence (i.e., the order matters) of substitutions [y/x][z/y]
have the same effect as [z/x][z/y], for any label z and any label variables x, y ∈ LVar.

Lemma 4.2.2 (Substitution). For any label variable x ∈ LVar and any label y, if Π is a LSBBI
derivation for the sequent Γ ` ∆ then there is a LSBBI derivation Π′ of the sequent Γ[y/x] `
∆[y/x] where every occurrence of label x is replaced by label y, such that ht(Π′) ≤ ht(Π).

Proof. By induction on ht(Π).
(Base case) If ht(Π) = 0, then the only applicable rules are id, ⊥L, >R and >∗R. Since
ε cannot be in the domain of a substitution, x 6= ε. If x is not on the principal formula,
then the substitution does not affect the original derivation. Note that since we are not
allowed to substitute for the label ε, the proof for >∗R can only be this case. If x is
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the label of the principal formula, we can still derive the required sequent because the
substitution is global, so id, if used in the original derivation, can still be used in the
new derivation; and ⊥L, >R are independent of labels.
(Inductive case) If ht(Π) > 0, then consider the last rule applied in the derivation. We
consider three main cases.

1. Neither x nor y is the label of the principal formula.

(a) Suppose the last rule applied is >∗L, and x 6= w and y 6= w, and Π is the
following derivation:

Π1

Γ′[ε/w] ` ∆[ε/w]
>∗L

Γ′; w : >∗ ` ∆

By the induction hypothesis, there is a derivation Π′1 of Γ′[ε/w][y/x] `
∆[ε/w][y/x] with ht(Π′1) ≤ ht(Π1). Since x and y are different from w, this
sequent is equal to Γ′[y/x][ε/w] ` ∆[y/x][ε/w]. Therefore Π′ is constructed
as follows.

Π′1
Γ′[y/x][ε/w] ` ∆[y/x][ε/w]

>∗L
Γ′[y/x]; w : >∗ ` ∆[y/x]

Obviously ht(Π′) ≤ ht(Π).

(b) If the last rule applied is Eq1, we distinguish the following cases: x is not w
or w′; x = w; x = w′.

i. x 6= w and x 6= w′. The original derivation is as follows.
Π1

(ε, w . w); Γ′[w/w′] ` ∆[w/w′]
Eq1

(ε, w′ . w); Γ′ ` ∆
A. If y 6= w and y 6= w′, by the induction hypothesis, there is a deriva-

tion Π′1 of (ε, w . w); Γ′[w/w′][y/x] ` ∆[w/w′][y/x] with ht(Π′1) ≤
ht(Π1). Since x, y, w, w′ are different labels, this sequent is equal to
(ε, w . w); Γ′[y/x][w/w′] ` ∆[y/x][w/w′]. Thus the derivation Π′ is
constructed as follows.

Π′1
(ε, w . w); Γ′[y/x][w/w′] ` ∆[y/x][w/w′]

Eq1

(ε, w′ . w); Γ′[y/x] ` ∆[y/x]
B. If y = w, this case is similar to Case 1.(b).i.A.
C. Suppose y = w′. We need to derive (ε, y . w); Γ′[y/x] ` ∆[y/x]. If

y 6= ε, we construct Π′ by first applying Eq1 bottom-up:
(ε, w . w); Γ′[y/x][w/y] ` ∆[y/x][w/y]

Eq1

(ε, y . w); Γ′[y/x] ` ∆[y/x]
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Now the premise is equal to (ε, w .w); Γ′[w/y][w/x] ` ∆[w/y][w/x],
and by the induction hypothesis, there is a derivation Π′1 of this se-
quent, with ht(Π′1) ≤ ht(Π1).
If y = ε, then we need to apply Eq2 instead of Eq1:

(ε, ε . ε); Γ′[ε/x][ε/w] ` ∆[ε/x][ε/w]
Eq2

(ε, ε . w); Γ′[ε/x] ` ∆[ε/x]
Note that the sequent (ε, ε . ε); Γ′[ε/x][ε/w] ` ∆[ε/x][ε/w] is the
same as

(ε, ε . ε); Γ′[w/w′][ε/w][ε/x] ` ∆[w/w′][ε/w][ε/x].

So the premise can be proved by two successive applications of the
induction hypothesis to Π1, one using substitution [ε/w] and the
other using substitution [ε/x]. Here we can apply the induction
hypothesis twice to Π1 because substitution does not increase the
height of derivations.

ii. x = w (so w cannot be ε).
A. If y 6= w′, then Π has the form:

Π1

(ε, x . x); Γ′[x/w′] ` ∆[x/w′]
Eq1

(ε, w′ . x); Γ′ ` ∆
By the induction hypothesis we have the following derivation:

Π′1
(ε, y . y); Γ′[x/w′][y/x] ` ∆[x/w′][y/x]

The end sequent is equal to the following:
(ε, y . y); Γ′[y/x][y/w′] ` ∆[y/x][y/w′].

Then by using Eq1, we construct Π′ as follows:
Π′1

(ε, y . y); Γ′[y/x][y/w′] ` ∆[y/x][y/w′]
Eq1

(ε, w′ . y); Γ′[y/x] ` ∆[y/x]
B. If y = w′, then Π has the form:

Π1

(ε, x . x); Γ′[x/y] ` ∆[x/y]
Eq1

(ε, y . x); Γ′ ` ∆
By the induction hypothesis, we have the following derivation:

Π′1
(ε, y . y); Γ′[x/y][y/x] ` ∆[x/y][y/x]

Since in the end sequent we first replace every y by x, then change
every x back to y, the effect is the same as just keeping every y
unchanged and only replace every x by y. Thus the end sequent is
equal to:
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(ε, y . y); Γ′[y/x] ` ∆[y/x]
which is exactly what we need to derive. Therefore we let Π′ = Π′1.
Notice that in this case ht(Π′) < ht(Π).

iii. x = w′.

A. If y 6= w and y 6= ε, the original derivation is as follows.
Π1

(ε, w . w); Γ′[w/x] ` ∆[w/x]
Eq1

(ε, x . w); Γ′ ` ∆
By the induction hypothesis (instead of replacing every x by y, we
now replace every y by w), we have the following derivation:

Π′1
(ε, w . w); Γ′[w/x][w/y] ` ∆[w/x][w/y]

The end sequent is equal to:

(ε, w . w); Γ′[y/x][w/y] ` ∆[y/x][w/y]

Thus Π′ is constructed as follows.
Π′1

(ε, w . w); Γ′[y/x][w/y] ` ∆[y/x][w/y]
Eq1

(ε, y . w); Γ′[y/x] ` ∆[y/x]
B. If y = ε and w 6= ε, we need to derive the following sequent:

(ε, ε . w); Γ′[ε/x] ` ∆[ε/x]
By the induction hypothesis, replacing every w by ε in Π1, then
using the rule Eq2, we get the new derivation:

Π′1
(ε, ε . ε); Γ′[ε/x][ε/w] ` ∆[ε/x][ε/w]

Eq2

(ε, ε . w); Γ′[ε/x] ` ∆[ε/x]
C. If y = w, then the premise of the last rule is exactly what we need

to derive.

(c) If the last rule applied is Eq2, we consider three cases: x 6= w and y 6= w;
x = w; and y = w. These are symmetric to the case where the last rule is
Eq1, already discussed above.

(d) If the last rule in the derivation is any other rule, we can simply apply
the induction hypothesis on the premise(s) using the substitution [y/x] and
then use the same rule to derive the conclusion. The only two cases that
need more care are for ∗L and −∗ R, in the situation where y coincides
with a label to be created in the premise. In these cases, we need to first
apply the induction hypothesis using [y′/y] on the premise where y′ is
fresh and different from y to ensure the freshness of labels created by ∗L
and −∗ R, then apply the induction hypothesis again on the premise using
[y/x], finally apply the corresponding rule to derive the conclusion. Note
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that all structural rules only have this case, as they do not have a principal
formula in the conclusion.

2. y is the label of the principal formula. Most of the cases follow similarly as above,
except for >∗L. In this case the original derivation is as follows.

Π1

Γ′[ε/y] ` ∆[ε/y]
>∗L

Γ′; y : >∗ ` ∆

Our goal is to derive Γ′[y/x]; y : >∗ ` ∆[y/x]. Applying >∗L to it as in backward
proof search, we get

Γ′[y/x][ε/y] ` ∆[y/x][ε/y]

Note that this sequent is equal to Γ′[ε/y][ε/x] ` ∆[ε/y][ε/x], and from the in-
duction hypothesis we know that there is a derivation of this sequent of height
less than or equal to ht(Π).

3. x is the label of the principal formula.

(a) For the additive rules, since the labels stay the same in the premises and
conclusions of the rules, even if the label of the principal formula is replaced
by some other label, we can still apply the induction hypothesis on the
premise, then use the rule to derive the conclusion.
For ∧L,

Π1

Γ′; x : A; x : B ` ∆
∧L

Γ′; x : A ∧ B ` ∆
 

Π′1
Γ′[y/x]; y : A; y : B ` ∆[y/x]

∧L
Γ′[y/x]; y : A ∧ B ` ∆[y/x]

For ∧R,

Π1

Γ′ ` x : A; ∆
Π2

Γ′ ` x : B; ∆
∧R

Γ′ ` x : A ∧ B; ∆
 

Π′1
Γ′[y/x] ` y : A; ∆[y/x]

Π′2
Γ′[y/x] ` y : B; ∆[y/x]

∧R
Γ′[y/x] ` y : A ∧ B; ∆[y/x]

For→ L,

Π1

Γ′ ` x : A; ∆
Π2

Γ′; x : B ` ∆
→ L

Γ′; x : A→ B ` ∆
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Π′1
Γ′[y/x] ` y : A; ∆[y/x]

Π′2
Γ′[y/x]; y : B ` ∆[y/x]

→ L
Γ′[y/x]; y : A→ B ` ∆[y/x]

For→ R,

Π1

Γ′; x : A ` x : B; ∆
→ R

Γ′ ` x : A→ B; ∆
 

Π′1
Γ′[y/x]; y : A ` y : B; ∆[y/x]

→ R
Γ′[y/x] ` y : A→ B; ∆[y/x]

(b) For multiplicative rules that do not produce fresh labels (∗R,−∗ L,>∗L), we
can proceed similarly as in the additive cases, except for the >∗L rule. For
the >∗L rule, suppose the original derivation Π is

Π1

Γ′[ε/x] ` ∆[ε/x]
>∗L

Γ′; x : >∗ ` ∆

If the label x of the principal formula is replaced by some (other) label y,
then we need a derivation of the sequent Γ′[y/x]; y : >∗ ` ∆[y/x]. Using
the >∗L rule, we have:

Γ′[y/x][ε/y] ` ∆[y/x][ε/y]
>∗L

Γ′[y/x]; y : >∗ ` ∆[y/x]

Note that the premise now is equal to Γ′[ε/x][ε/y] ` ∆[ε/x][ε/y], and can
be proved using the induction hypothesis on Π1.
If y = ε, then Π′ is obtained by applying Lemma 4.2.1 to Π1.

(c) For the multiplicative rules that generate fresh labels in the premise (∗L and
−∗ R), if the label of the principal formula is replaced by a label other than
the newly created labels in the rules, then we proceed similarly as in the
additive cases. If the label of the principal formula is replaced by one of the
newly created labels, then we just need to create a different new label in the
new relation.
For ∗L, we have the derivation:

Π1

(y, z . x); Γ′; y : A; z : B ` ∆
∗L

Γ′; x : A ∗ B ` ∆

If x is substituted by y (the case for substituting x to z is symmetric), then
we need a derivation of Γ′[y/x]; y : A ∗ B ` ∆[y/x]. Note that the ∗L rule
requires the relation (y, z . x) to be fresh, so in the original derivation y and
z cannot be in Γ′ or ∆. Therefore by the induction hypothesis we must have
a derivation Π′1 for

(y′, z′ . x); Γ′; y′ : A; z′ : B ` ∆,
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where y′ and z′ are new labels, such that ht(Π′1) ≤ ht(Π1). Applying
the induction hypothesis again to Π′1, we have a derivation Π′′1 for (y′, z′ .
y); Γ′[y/x]; y′ : A; z′ : B ` ∆[y/x], with ht(Π′′1 ) ≤ ht(Π1). Thus the deriva-
tion Π′ is constructed as follows.

Π′′1
(y′, z′ . y); Γ′[y/x]; y′ : A; z′ : B ` ∆[y/x]

∗L
Γ′[y/x]; y : A ∗ B ` ∆[y/x]

The case for −∗ R is similar. suppose Π is:

Π1

(y, x . z); Γ; y : A ` z : B; ∆′
−∗ R

Γ ` x : A−∗ B; ∆′

If x is replaced by y, then we have the following derivation.

Π′1
(y′, y . z′); Γ[y/x]; y′ : A ` z′ : B; ∆′[y/x]

−∗ R
Γ[y/x] ` y : A−∗ B; ∆′[y/x]

If x is replaced by z, then we have the following derivation.

Π′1
(y′, z . z′); Γ[z/x]; y′ : A ` z′ : B; ∆′[z/x]

−∗ R
Γ[z/x] ` z : A−∗ B; ∆′[z/x]

Before we prove the admissibility of weakening, we show some intermediate lem-
mas about weakening of formulae and relational atoms. The next lemma shows that
the labelled formula ε : >∗ in the antecedent of a sequent is not used in any derivation
since there is no rule that can be applied to it, therefore this labelled formula can be
removed without affecting provability.

Lemma 4.2.3. If Γ; ε : >∗ ` ∆ is derivable, then Γ ` ∆ is derivable with the same series of
rule applications.

Proof. By a straightforward induction on the height of derivation n.
(Base case) If n = 0, then Γ; ε : >∗ ` ∆ must be the conclusion of one of id, ⊥L, >R,
>∗R. Note that ε : >∗ in the antecedent cannot be the principal formula of any of
those rules, therefore those rules are applicable to Γ ` ∆ as well.
(Inductive case) If n > 0, consider the last rule in the derivation. It is obvious that
ε : >∗ in the antecedent of a sequent cannot be the principal formula of any rules,
therefore it has to appear in the premise(s) of the last rule application. Thus we can
apply the induction hypothesis on those premise(s) and then use the corresponding
rule to derive Γ ` ∆.
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In general, if a formula is never principal in a derivation, it can obviously be omit-
ted, thus we have the following lemma by the same argument:

Lemma 4.2.4. If w : A is not the principal formula of any rule application in the derivation of
Γ; w : A ` ∆ (Γ ` w : A; ∆ resp.), then there is a derivation of Γ ` ∆ with the same series of
rule applications.

For the same reason, we can replace a formula that is never used in a derivation
by any structure, as stated below.

Lemma 4.2.5. If w : A is not the principal formula of any rule application (w may be changed
in some rule applications with global substitutions) in the derivation of Γ; w : A ` ∆ (Γ ` w :
A; ∆ resp.), then there is a derivation of Γ; Γ′ ` ∆ (Γ ` ∆′; ∆ resp.), and in the new derivation,
the structure Γ (∆ resp.) is not altered except that certain labels in Γ (∆ resp.) are changed by
rule applications with substitutions.

Proof. By induction on the height of derivation n.
(Base case) If n = 0, since w : A is not the principal formula, the substituted sequent is
also the conlcusion of rules id, ⊥L, >R, >∗R. This is the same as the base case of the
proof for Lemma 4.2.3.
(Inductive case) If n > 0, consider the last rule in the derivation. Since w : A is not
the principal formula, for all rules except >∗L, the original derivation has w : A in
the premise(s) of the last rule, therefore we can apply the induction hypothesis on the
premise(s) and then use the rule to get the desired derivation.

For an example of ∧L, suppose w : A is in the antecedent, the original derivation
is converted as follows.

Π
Γ; w : A; x : B; x : C ` ∆

∧L
Γ; w : A; x : B ∧ C ` ∆

 
Π′

Γ; Γ′; x : B; x : C ` ∆
∧L

Γ; Γ′; x : B ∧ C ` ∆

Other cases except >∗L are similar.
If the last rule is >∗L, then we convert the derivation as follows.

Π
Γ[ε/w]; ε : A ` ∆[ε/w]

>∗L
Γ; w : A; w : >∗ ` ∆

 
Π′

Γ[ε/w]; Γ′[ε/w] ` ∆[ε/w]
>∗L

Γ; Γ′; w : >∗ ` ∆

We incorporate two steps here. First, by the induction hypothesis, we have a deriva-
tion of Γ[ε/w]; Γ′ ` ∆[ε/w]. Then by the Substitution Lemma 4.2.2, there is a derivation
Π′ of Γ[ε/w]; Γ′[ε/w] ` ∆[ε/w], from which we can derive the final sequent.

Therefore the only change to Γ′ in the new derivation is that some of its labels
might be changed by the rules >∗L, Eq1, or Eq2.

With the above results, admissibility of weakening is proved by a simple induction
on the height of derivations so we state the lemma without proof.
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Lemma 4.2.6 (Weakening admissibility). If Γ ` ∆ is derivable in LSBBI, then for all struc-
tures Γ′ and ∆′, the sequent Γ; Γ′ ` ∆; ∆′ is derivable with the same height in LSBBI.

Note 4.2.1. The admissibility of general weakening shows that if Γ ` ∆ is derivable, then
Γ; Γ′ ` ∆; ∆′ is derivable. A stronger argument here is that in the derivation of the latter
sequent, Γ′ and ∆′ are never changed except that some labels might be changed by rule appli-
cations with substitutions. This is similar as in Lemma 4.2.5.

Next we show that the inference rules in LSBBI are invertible, in the sense that if the
conclusion of a rule is derivable then the premises are also derivable2.

Lemma 4.2.7 (Invertibility of rules). If Π is a cut-free LSBBI derivation of the conclusion of
a rule then there is a cut-free LSBBI derivation for each premise, with height ≤ ht(Π).

Proof. As the additive rules in LSBBI are exactly the same as those in Negri’s labelled
system for modal logic or G3c (cf. [73]), the proof for them is similar. The main
difference is that the rest of our rules are of different forms. However, as most of our
rules do not modify the side structures, simply by applying the induction hypothesis
and then using the corresponding rule, we get the new derivation. The cases where
the last rule applied is >∗L, Eq1, or Eq2 follow essentially the same, except a global
substitution needs to be considered, but that is of no harm.

Rules E, A, U, AC, ∗R and −∗ L are trivially invertible as the conclusion is a subset of
the premise, and weakening is height-preserving admissible.

To prove the cases for ∗L and −∗ R, we do inductions on the height n of the derivation.
In each case below, it is obvious that each premise is always cut-free derivable with
less or same height as the conclusion.

The case for ∗L is as follows. Suppose the rule instance is as below:

(x, y . z); Γ; x : A; y : B ` ∆
∗L

Γ; z : A ∗ B ` ∆

(Base case) If n = 0, then the conclusion of ∗L is one of the conlucsions of id, ⊥L,
>R, >∗R, notice that the identity rule is restricted to atomic propositions, therefore
the premise of ∗L is also the conclusions of the corresponding axiom rule.
(Inductive case) If n > 0, and the last rule applied is not ∗L or −∗ R, then no fresh
labels are involved, so we can safely apply the induction hypothesis on the premise of
the last rule and then use the rule to get the derivation. If the last rule is ∗L or −∗ R,
but the principal formula is in Γ or ∆, we proceed similarly, and use the Substitution
Lemma 4.2.2 to ensure that the created labels are fresh. If the principal formula is
z : A ∗ B, then the premise of the last rule yields the desired conclusion.

The case for −∗ R follows similarly.

For >∗L, again, we do an induction on the height n of the derivation.

2This lemma is sometimes called the inversion lemma in the literature.
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(Base case) If n = 0, then Γ; x : >∗ ` ∆ is the conclusion of one of id, ⊥L, >R,
>∗R; and x : >∗ cannot be the principal formula. Note that in the first three cases
the principal formulae can be labelled with anything. Since, in the sequent Γ[ε/x] `
∆[ε/x], the label x is uniformly replaced by ε, this sequent can be the conclusion of
the corresponding rule as well. For >∗R, since >∗ on the right hand side can only be
labelled with ε, replacing x to ε does not change its label, thus this case is proved.
(Inductive case) If n > 0, consider the last rule applied in the derivation.

1. If the principal formula or relational atom does not involve the label x, then we
can apply the induction hypothesis directly on the premise of the last rule, then
use the last rule to get the derivation.

2. Otherwise, if the principal formula or relational atom has label x, and the last
rule is not >∗L, we proceed similarly, except replacing the label in the principal
relational atom or formula. The detail is exemplified using ∗L.

For ∗L, we have the following derivation:

Π
(y, z . x); Γ; x : >∗; y : A; z : B ` ∆

∗L
Γ; x : >∗; x : A ∗ B ` ∆

The condition of the rule ∗L guarantees that y and z cannot be in Γ and ∆, so
we do not have to worry if they are identical to x. By applying the induction
hypothesis and then the ∗L rule, we get the following derivation:

Π′

(y, z . ε); Γ[ε/x]; y : A; z : B ` ∆[ε/x]
∗L

Γ[ε/x]; ε : A ∗ B ` ∆[ε/x]

Another way to do this is by using the Substitution Lemma 4.2.2, replacing x
by ε, we get a derivation to the premise that has a redundant ε : >∗, since we
know that this labelled formula on the left hand side does not contribute to the
derivation, we can safely derive the sequent without it using the same inference,
cf. Lemma 4.2.4.

The case where the last rule is −∗ R is similar.

If the last rule is Eq1, we consider the following cases:

(a) The label of >∗ is not in the principal relational atom (i.e., x 6= w and
x 6= w′). The original derivation is as follows.

Π
(ε, w . w); Γ[w/w′]; x : >∗ ` ∆[w/w′]

Eq1

(ε, w′ . w); Γ; x : >∗ ` ∆
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By the induction hypothesis, we have the following derivation:

Π′

(ε, w . w); Γ[w/w′][ε/x] ` ∆[w/w′][ε/x]

Note that since x, w, w′ are all different, the end sequent is equal to the
following:

(ε, w . w); Γ[ε/x][w/w′] ` ∆[ε/x][w/w′]

from which we can use the rule Eq1 and derive (ε, w′ . w); Γ[ε/x] ` ∆[ε/x].

(b) x = w. The original derivation is as follows.

Π
(ε, x . x); Γ[x/w′]; x : >∗ ` ∆[x/w′]

Eq1

(ε, w′ . x); Γ; x : >∗ ` ∆

By the Substitution Lemma, replacing every x by ε in the premise of the last
rule, we get the following derivation:

Π′

(ε, ε . ε); Γ[x/w′][ε/x]; ε : >∗ ` ∆[x/w′][ε/x]

The end sequent is equal to:

(ε, ε . ε); Γ[ε/x][ε/w′]; ε : >∗ ` ∆[ε/x][ε/w′]

By Lemma 4.2.3, ε : >∗ in the antecedent can be omitted. Apply the Eq1 rule
on this sequent without ε : >∗, we finally get (ε, w′ . ε); Γ[ε/x] ` ∆[ε/x].

(c) x = w′. The original derivation is as follows.

Π
(ε, w . w); Γ[w/x]; w : >∗ ` ∆[w/x]

Eq1

(ε, x . w); Γ; x : >∗ ` ∆

By the induction hypothesis, we have the following derivation:

Π′

(ε, ε . ε); Γ[w/x][ε/w] ` ∆[w/x][ε/w]

Now the end sequent is equal to:

(ε, ε . ε); Γ[ε/x][ε/w] ` ∆[ε/x][ε/w]

By using the rule Eq2 on this sequent, we derive (ε, ε . w); Γ[ε/x] ` ∆[ε/x].

The case where the last rule is Eq2 is similar to the case for Eq1.

If the last rule is >∗L, then the derivation to the premise of the last rule yields
the new derivation.

The invertibility of Eq1 and Eq2 follows from the Substitution Lemma, as the re-
verse versions of these two rules are only about globally replacing labels.
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The proof of the admissibility of contraction on additive formulae is similar to
that for classical sequent calculus since the LSBBI rules for these connectives are the
same. In the multiplicative rules, the principal formula is retained in the premise, so
admissibility of contraction on multiplicative formulae follows trivially. We need to
prove that contraction on relational atoms is admissible, as stated in the next lemma.

Lemma 4.2.8. For any structures Γ, ∆, and relational atom (x, y . z): if Π is a cut-free
LSBBI derivation of (x, y . z); (x, y . z); Γ ` ∆, then there is a cut-free LSBBI derivation Π′ of
(x, y . z); Γ ` ∆ with ht(Π′) ≤ ht(Π).

Proof. Let n = ht(Π). The proof is by induction on n. Most structural rules only
have one principal relational atom, so it is easy to show that contraction can permute
through them upwards.
(Base case) If n = 0, then the rule must be one of id, ⊥L, >R, and >∗R. All of
those rules are independent of relational atoms, so the case with only one presence of
contracted relational atom holds as well.

(Inductive case) If n > 0, consider the bottom-most (last) rule.
If the last rule does not involve relations (>∗L, ∧L, ∧R, → L, → R), we use the

induction hypothesis on the premise(s) of this rule and then use that same rule to
derive the sequent with only one relational atom. For each multiplicative connective
rule, the situation is similar, as the relevant relational atom appears in the premises of
these rules.

The structural rules with only one principal relational atom are easily proved to be
closed under contraction.

The case for the rule A needs more care, as it involves two principal relational atoms.
If the two principal relational atoms are different, then the admissibility of contraction
follows similarly as above. But if the principal relational atoms are identical, the
situation is a bit tricky:

Π
(x, w . x); (y, y . w); (x, y . x); (x, y . x); Γ ` ∆

A
(x, y . x); (x, y . x); Γ ` ∆

There is no obvious way to make this case admissible, and this is the reason we
have a special case of the rule A, namely AC. In the rule AC, contraction is absorbed
so that there is only one principal relational atom. The new derivation is as follows.

Π′

(x, w . x); (y, y . w); (x, y . x); Γ ` ∆
AC

(x, y . x); Γ ` ∆

For Eq1 and Eq2, as the principal relational atom is carried to the premise (although
some labels may be changed), so admissibility of contraction on those relational atoms
is obvious.
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The admissibility of contraction on formulae is straightforward. Most of the cases
are analogous to the ones in Negri’s labelled calculus for modal logic [72].

Lemma 4.2.9. For all structures Γ, ∆, and labelled formula w : A, the following holds in
LSBBI:

1. If there is a cut-free derivation Π of Γ; w : A; w : A ` ∆, then there is a cut-free
derivation Π′ of Γ; w : A ` ∆ with ht(Π′) ≤ ht(Π).

2. If there is a cut-free derivation Π of Γ ` w : A; w : A; ∆, then there is a cut-free
derivation Π′ of Γ ` w : A; ∆ with ht(Π′) ≤ ht(Π).

Proof. By simultaneous induction on the height of derivations for the left and right
contraction. Let n = ht(Π).
(Base case) If n = 0, the premise is one of the conclusions of id, ⊥L, >R and >∗R, then
the contracted sequent is also the conclusion of the corresponding rules.
(Inductive case) If n > 0, consider the last rule applied to the premise.

(i) If the contracted formula is not principal in the last rule, then we can apply the
induction hypothesis on the premise(s) of the last rule, then use the same rule to get
the derivation.

(ii) If the contracted formula is the principal formula of the last rule, there are
several cases. For the additive rules the cases are reduced to contraction on smaller
formulae. The resultant sequent has a shorter derivation tree, so we can use the in-
duction hypothesis to obtain contraction admissibility. See [73] for details.

For >∗L, we have the following derivation:

Π
Γ[ε/x]; ε : >∗ ` ∆[ε/x]

>∗L
Γ; x : >∗; x : >∗ ` ∆

Note that the only case where >∗ is useful on the left hand side is when it is
labelled with a world other than ε. Since the substitution [ε/ε] does not do anything
to the sequent, Π can also be the derivation for Γ[ε/x] ` ∆[ε/x], cf. Lemma 4.2.3,
which leads to Γ; x : >∗ ` ∆.

For ∗R and −∗ L, we can apply the induction hypothesis directly on the premise of
the corresponding rule since the rules carry the principal formula into the premise(s).

For ∗L, we have a derivation as follows.

Π
(x, y . z); Γ; z : A ∗ B; x : A; y : B ` ∆

∗L
Γ; z : A ∗ B; z : A ∗ B ` ∆

Apply the Invertibility Lemma 4.2.7 on the premise of ∗L, we have:

Π′

(x, y . z); (x′, y′ . z); Γ; x′ : A; y′ : B; x : A; y : B ` ∆
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The Substitution Lemma 4.2.2 yields a derivation for

(x, y . z); (x, y . z); Γ; x : A; y : B; x : A; y : B ` ∆.

Apply the induction hypothesis twice and admissibility of contraction on relational
atoms on this sequent, we get a derivation for (x, y . z); Γ; x : A; y : B ` ∆. Then apply
∗L on this sequent to get Γ; z : A ∗ B ` ∆.

The case for −∗ R follows similarly. We have a derivation as follows.

Π
(x, y . z); Γ; x : A ` z : B; y : A−∗ B; ∆

−∗ R
Γ ` y : A−∗ B; y : A−∗ B; ∆

The Invertibility of −∗ R in the premise yields:

Π
(x, y . z); (x′, y . z′); Γ; x : A; x′ : A ` z : B; z′ : B; ∆

We obtain (x, y . z); (x, y . z); Γ; x : A; x : A ` z : B; z : B; ∆ by the Substitution
Lemma 4.2.2. Apply the induction hypothesis twice, and the admissibility of contrac-
tion on relations (Lemma 4.2.8) on this sequent to get (x, y . z); Γ; x : A ` z : B; ∆.
Finally, apply −∗ R to derive Γ ` y : A−∗ B; ∆ in the nth step.

We can now state the admissibility of contraction in LSBBI, which is a direct result
of the above lemmas.

Lemma 4.2.10 (Contraction admissibility). If Γ; Γ ` ∆; ∆ is derivable in LSBBI, then Γ ` ∆
is derivable with the same height in LSBBI.

Cut Elimination Theorem

We define the cut rank of an application of the cut rule as the pair (| f |, ht(Π1) +
ht(Π2)), where | f | denotes the size of the cut formula (i.e., the number of connectives
in the formula), and ht(Π1), ht(Π2) are the heights of the derivations above the cut
rule, the sum of them is call the cut height. Cut ranks are ordered lexicographically,
where each component of the ranks is ordered according to the ordering > on N .

Theorem 4.2.11 (Cut-admissibility). If Γ ` ∆ is derivable in LSBBI, then it is also derivable
without using the cut rule.

Proof. By induction on the cut ranks of the proof in LSBBI. We show that each applica-
tion of cut can either be eliminated, or be replaced by one or more cut rules of smaller
cut ranks. The argument for termination is similar to the cut-elimination proof for
G3ip [73]. We start to eliminate the topmost cut first, and repeat this procedure until
there is no cut in the derivation. We first show that cut can be eliminated when the cut
height is the lowest, i.e., at least one premise is of height 1. Then we show that the cut
height is reduced in all cases in which the cut formula is not principal in both premises



120 Labelled Sequent Calculus and Proof Search for BBI

of cut. If the cut formula is principal in both premises, then the cut is reduced to
one or more cuts on smaller formulae or shorter derivations. Since atoms cannot be
principal in logical rules, finally we can either reduce all cuts to the case where the cut
formula is not principal in both premises, or reduce those cuts on compound formulae
until their cut heights are minimal and then eliminate those cuts.
(Base case) If at least one premise of the cut rule is id, ⊥L, >R, or >∗R, we consider
the following cases:

1. The left premise of cut is an application of id, and the cut formula is not principal,
then the derivation is transformed as follows.

id
Γ; y : B ` y : B; x : A; ∆

Π
Γ′; x : A ` ∆′

cut
Γ; Γ′; y : B ` y : B; ∆; ∆′

 

id
Γ; Γ′; y : B ` y : B; ∆; ∆′

The same transformation works for ⊥L, >R, >∗R in this case.

2. The left premise of cut is an application of id, and the cut formula is principal,
then the derivation is transformed as follows.

id
Γ; x : A ` x : A; ∆

Π
Γ′; x : A ` ∆′

cut
Γ; Γ′; x : A ` ∆; ∆′

 

Π
Γ′; x : A ` ∆′. . . . . . . . . . . . . . . . . . . . . . . Weakening Lemma 4.2.6

Γ; Γ′; x : A ` ∆; ∆′

3. The left premise of cut is an application of >R, and the cut formula is principal,
then the derivation is transformed as follows.

>R
Γ ` x : >; ∆

Π
Γ′; x : > ` ∆′

cut
Γ; Γ′ ` ∆; ∆′

 

As x : > cannot be a principal formula in the antecedent, by Weakening Lemma 4.2.4
there is a derivation Π′ of Γ′ ` ∆′. The above derivation is transformed to:

Π′

Γ′ ` ∆′. . . . . . . . . . . . . . . . Weakening Lemma 4.2.6

Γ; Γ′ ` ∆; ∆′

The same holds for >∗R.
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4. The right premise of cut is an application of id, ⊥L, >R or >∗R, and the cut
formula is not principal. This case is similar to case 1.

5. The right premise of cut is an application of id, and the cut formula is principal.
This case is similar to case 2.

6. The right premise of cut is an application of ⊥L, and the cut formula is principal.
This case is similar to case 3.

(Inductive case) If both premises are not in one of the base cases, we distinguish three
cases here: the cut formula is not principal in the left premises; the cut formula is only
principal in the left premise; and the cut formula is principal in both premises.

1. The cut formula is not principal in the left premise. Suppose the left premise
ends with a rule r. We permute the cut instance up in the derivation tree to
reduce the cut height.

(a) If r is >∗L, w.l.o.g. we assume the label of the principal formula is y (which
might be equal to x). The original derivation is as follows.

Π1

Γ[ε/y] ` x : A; ∆[ε/y]
>∗L

Γ; y : >∗ ` x : A; ∆
Π2

Γ′; x : A ` ∆′
cut

Γ; Γ′; y : >∗ ` ∆; ∆′

By the Substitution Lemma 4.2.2, there is a derivation Π′2 of Γ′[ε/y]; x : A `
∆′[ε/y]. Thus we can transform the derivation into the following:

Π1

Γ[ε/y] ` x : A; ∆[ε/y]
Π′2

Γ′[ε/y]; x : A ` ∆′[ε/y]
cut

Γ[ε/y]; Γ′[ε/y] ` ∆[ε/y]; ∆′[ε/y]
>∗L

Γ; Γ′; y : >∗ ` ∆; ∆′

If x = y in the original derivation, then the new derivation cuts on ε : A
instead. As substitution is height preserving, the cut height in this case is
reduced as well.

(b) If r is Eq1, and the label x of the principal formula is not equal to w′, the
original derivation is as follows.

Π1

(ε, w . w); Γ[w/w′] ` x : A; ∆[w/w′]
Eq1

(ε, w′ . w); Γ ` x : A; ∆
Π2

Γ′; x : A ` ∆′
cut

(ε, w′ . w); Γ; Γ′ ` ∆; ∆′

This cut is reduced in the same way as the >∗L case, where we get Π′2 from
the Substitution Lemma 4.2.2:
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Π1

(ε, w . w); Γ[w/w′] ` x : A; ∆[w/w′]
Π′2

Γ′[w/w′]; x : A ` ∆′[w/w′]
cut

(ε, w . w); Γ[w/w′]; Γ′[w/w′] ` ∆[w/w′]; ∆′[w/w′]
Eq1

(ε, w′ . w); Γ; Γ′ ` ∆; ∆′

If x = w′, then we cut on w : A instead in the reduced version.

(c) If r is Eq2, the procedure follows similarly as the case for Eq1 above.

(d) If r is a unary inference except for >∗L, Eq1, and Eq2, then the original
derivation is as follows.

Π1

Γ1 ` x : A; ∆1 r
Γ ` x : A; ∆

Π2

Γ′; x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Then we can permute the application of cut upwards as follows.

Π1

Γ1 ` x : A; ∆1

Π2

Γ′; x : A ` ∆′
cut

Γ1; Γ′ ` ∆1; ∆′
r

Γ; Γ′ ` ∆; ∆′

Note that as all our rules except >∗L, Eq1, and Eq2 do not modify side
structures, Γ′ and ∆′ in the premise of r are not changed. The cut rank of
the original cut is (|x : A|, |Π1|+ 1+ |Π2|), whereas the cut rank of the new
cut is (|x : A|, |Π1|+ |Π2|), so the cut height reduces.

(e) If r is a binary inference, we can transform the derivation similarly.

Π1

Γ1 ` x : A; ∆1

Π2

Γ2 ` x : A; ∆2
r

Γ ` x : A; ∆
Π3

Γ′; x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

 

Π1

Γ1 ` x : A; ∆1

Π3

Γ′; x : A ` ∆′
cut

Γ1; Γ′ ` ∆1; ∆′

Π2

Γ2 ` x : A; ∆2

Π3

Γ′; x : A ` ∆′
cut

Γ2; Γ′ ` ∆2; ∆′
r

Γ; Γ′ ` ∆; ∆′

The cut rank of the original cut is (|x : A|, max(|Π1|, |Π2|) + 1 + |Π3|), and
that of the two new cuts are (|x : A|, |Π1|+ |Π3|) and (|x : A|, |Π2|+ |Π3|)
respectively. Thus the cut heights are reduced.

2. The cut formula is only principal in the left premise. We only consider the last
rule in the right branch. The proof of this case is symmetric to that in Case 1.
The cut height is reduced.
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3. The cut formula is principal in both premises. We do a case analysis on the main
connective of the cut formula. If the main connective is additive, then there is no
need to substitute any labels.

For ∧,

Π1

Γ ` x : A; ∆
Π2

Γ ` x : B; ∆
∧R

Γ ` x : A ∧ B; ∆

Π3

Γ′; x : A; x : B ` ∆′
∧L

Γ′; x : A ∧ B ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

 

Π1

Γ ` x : A; ∆

Π2

Γ ` x : B; ∆
Π3

Γ′; x : A; x : B ` ∆′
cut

Γ; Γ′; x : A ` ∆; ∆′
cut

Γ; Γ; Γ′ ` ∆; ∆; ∆′. . . . . . . . . . . . . . . . . . . . . Contraction Lemma 4.2.10

Γ; Γ′ ` ∆; ∆′

For→,

Π1

Γ′; x : A ` x : B; ∆′
→ R

Γ′ ` x : A→ B; ∆′

Π2

Γ ` x : A; ∆
Π3

Γ; x : B ` ∆
→ L

Γ; x : A→ B ` ∆
cut

Γ; Γ′ ` ∆; ∆′

 

Π2

Γ ` x : A; ∆

Π1

Γ′; x : A ` x : B; ∆′
Π3

Γ; x : B ` ∆
cut

Γ; Γ′; x : A ` ∆; ∆′
cut

Γ; Γ; Γ′ ` ∆; ∆; ∆′. . . . . . . . . . . . . . . . . . . . . Contraction Lemma 4.2.10

Γ; Γ′ ` ∆; ∆′

For both ∧ and→, cut is reduced to applications on smaller formulae, therefore
the cut rank of the cut reduces. The cases for ∨ rules are symmetric to ∧ rules.

There is an asymmetry in the rules for >∗. That is, the left rule for >∗ requires
that the label w of >∗ cannot be ε, whereas the right rule for >∗ restricts the label
of >∗ to be ε only. As a consequence, when the cut formula is >∗, it cannot be
the principal formula of both premises at the same time. Therefore the cases for
>∗ are covered in the proof above.

When the main connective of the cut formula is ∗ or −∗ , the case is more com-
plicated. For ∗, we have the following two derivations as the premises of cut:

Π1

(x, y . z); Γ ` x : A; z : A ∗ B; ∆
Π2

(x, y . z); Γ ` y : B; z : A ∗ B; ∆
∗R

(x, y . z); Γ ` z : A ∗ B; ∆



124 Labelled Sequent Calculus and Proof Search for BBI

and

Π3

(x′, y′ . z); Γ′; x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗ B ` ∆′

And the cut rule gives the end sequent (x, y . z); Γ; Γ′ ` ∆; ∆′. The cut rank of
this cut is (|A ∗ B|, 1 + |Π3|+ 1 + max(|Π1|, |Π2|)).
We use several cuts with smaller ranks to derive (x, y . z); Γ; Γ′ ` ∆; ∆′ as follows.

Firstly,

Π1

(x, y . z); Γ ` x : A; z : A ∗ B; ∆

Π3

(x′, y′ . z); Γ′; x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗ B ` ∆′
cut

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′

The cut rank of this cut is (|A ∗ B|, |Π1|+ |Π3|+ 1)), thus is less than that of the
original cut.

The second cut works similarly.

Π2

(x, y . z); Γ ` y : B; z : A ∗ B; ∆

Π3

(x′, y′ . z); Γ′; x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗ B ` ∆′
cut

(x, y . z); Γ; Γ′ ` y : B; ∆; ∆′

The third cut works on a smaller formula.

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′
Π′3

(x, y . z); Γ′; x : A; y : B ` ∆′
cut

(x, y . z); (x, y . z); Γ; Γ′; Γ′; y : B ` ∆; ∆′; ∆′

The cut formula is x : A, thus the cut rank of this cut is less regardless of the
height of the derivations.

Note that in the Π3 branch, the ∗L rule requires that the relation (x′, y′ . z) is
newly created, so x′ and y′ cannot be ε and they cannot be in Γ′ or ∆′. Therefore
we are allowed to use the Substitution Lemma 4.2.2 to get a derivation Π′3 of
(x, y . z); Γ′; x : A; y : B ` ∆′ by just substituting x′ for x and y′ for y.

Finally we cut on another smaller formula y : B.

(x, y . z); Γ; Γ′ ` y : B; ∆; ∆′ (x, y . z); (x, y . z); Γ; Γ′; Γ′; y : B ` ∆; ∆′; ∆′
cut

(x, y . z); (x, y . z); (x, y . z); Γ; Γ; Γ′; Γ′; Γ′ ` ∆; ∆; ∆′; ∆′; ∆′
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The cut rank of this cut is less than the original cut. We then apply the admissi-
bility of contraction (Lemma 4.2.10) to derive (x, y . z); Γ; Γ′ ` ∆; ∆′.

The case for −∗ is similar. The two premises in the original cut are as follows.

Π1

(x′, y . z′); Γ′; x′ : A ` z′ : B; ∆′
−∗ R

Γ′ ` y : A−∗ B; ∆′

and

Π2

(x, y . z); Γ; y : A−∗ B ` x : A; ∆
Π3

(x, y . z); Γ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z); Γ; y : A−∗ B ` ∆

And the cut rule yields the end sequent (x, y . z); Γ; Γ′ ` ∆; ∆′. We use two cuts
on the same formula, but with smaller derivation height.

Π1

(x′, y . z′); Γ′; x′ : A ` z′ : B; ∆′
−∗ R

Γ′ ` y : A−∗ B; ∆′
Π2

(x, y . z); Γ; y : A−∗ B ` x : A; ∆
cut

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′

Π1

(x′, y . z′); Γ′; x′ : A ` z′ : B; ∆′
−∗ R

Γ′ ` y : A−∗ B; ∆′
Π3

(x, y . z); Γ; y : A−∗ B; z : B ` ∆
cut

(x, y . z); Γ; Γ′; z : B ` ∆; ∆′

Then we cut on a smaller formula x : A.

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′
Π′1

(x, y . z); Γ′; x : A ` z : B; ∆′
cut

(x, y . z); (x, y . z); Γ; Γ′; Γ′ ` z : B; ∆; ∆′; ∆′

Again, in the original derivation, x′ and z′ are fresh in the premise of −∗ R rule,
thus by the Substitution Lemma 4.2.2 we can have a derivation Π′1 of the sequent
(x, y . z); Γ′; x : A ` z : B; ∆′, with x′ substituted to x and z′ substituted to z.

Then we cut on z : B.

(x, y . z); (x, y . z); Γ; Γ′; Γ′ ` z : B; ∆; ∆′; ∆′ (x, y . z); Γ; Γ′; z : B ` ∆; ∆′
cut

(x, y . z); (x, y . z); (x, y . z); Γ; Γ; Γ′; Γ′; Γ′ ` ∆; ∆; ∆′; ∆′; ∆′

In the end we use Lemma 4.2.10 (admissibility of contraction) to obtain the re-
quired sequent (x, y . z); Γ; Γ′ ` ∆; ∆′.
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4.3 Localising Structural Rules

As a first step towards designing an effective proof search procedure for LSBBI, we
need to restrict the use of structural rules so that their applications in proof search
are controlled by logical rules, thereby reducing the non-determinism in proof search.
From now on we will assume that the sequents in LSBBI consists of sets rather than
multisets, since we have shown the admissibility of contraction for LSBBI.

Suppose r1, r2 are two rule applications in a derivation where r1 is directly below
r2. We say r1 can permute upwards over r2 when we can switch the order of these two
rule applications. That is, in backwards proof search, we can first apply r2 then apply
r1 on all premises of r2 to obtain a new derivation.

We note the fact that the structural rule applications in LSBBI can permute upwards
over all other rule applications except for id, >∗R, ∗R, and −∗ L. We refer to these four
rules as positive rules, and refer to the other logical rules in LSBBI as negative rules. The
main reason is, all negative rules do not rely on relational atoms.

Lemma 4.3.1. In any LSBBI derivation, the structural rules can permute upwards through
negative rules.

Proof. To prove this lemma, we need to show that if a derivation involves structural
rules, we can always apply them (in the same order) exactly below ∗R and −∗ L,
or below zero-premise rules. We show this by an induction on the height of the
derivation. Since we do not permute structural rules through zero-premise rules, the
proof in the base case and the inductive step are essentially the same. Assuming the
lemma holds up to any derivation of height n− 1, consider a derivation of height n.

1. Permute the application of Eq1 or Eq2 through non-zero-premise logical rules
except for ∗R and −∗ L.

(a) Permute Eq1/Eq2 through additive logical rules is trivial. This is exempli-
fied by ∧L, assuming the label of the principal formula is modified by the
Eq2 application. The case for Eq1 being used is similar. Suppose the original
derivation is as follows.

Π
(ε, w′ . w′); Γ[w′/w]; w′ : A; w′ : B ` ∆[w′/w]

∧L
(ε, w′ . w′); Γ[w′/w]; w′ : A ∧ B ` ∆[w′/w]

Eq2

(ε, w′ . w); Γ; w : A ∧ B ` ∆

The derivation is changed to the following:

Π
(ε, w′ . w′); Γ[w′/w]; w′ : A; w′ : B ` ∆[w′/w]

Eq2

(ε, w′ . w); Γ; w : A; w : B ` ∆
∧L

(ε, w′ . w); Γ; w : A ∧ B ` ∆
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We give another example using Eq2 that is applied below ∧R. The original
derivation runs as below:

Π1

(ε, w′ . w′); Γ[w′/w] ` w′ : A; ∆[w′/w]

Π2

(ε, w′ . w′); Γ[w′/w] ` w′ : B; ∆[w′/w]
∧R

(ε, w′ . w′); Γ[w′/w] ` w′ : A ∧ B; ∆[w′/w]
Eq2

(ε, w′ . w); Γ ` w : A ∧ B; ∆

We can use the following derivation instead:

Π1

(ε, w′ . w′); Γ[w′/w] ` w′ : A; ∆[w′/w]
Eq2

(ε, w′ . w); Γ ` w : A; ∆

Π2

(ε, w′ . w′); Γ[w′/w] ` w′ : B; ∆[w′/w]
Eq2

(ε, w′ . w); Γ ` w : B; ∆
∧R

(ε, w′ . w); Γ ` w : A ∧ B; ∆

The cases for→ L and→ R are similar.

(b) Permute Eq1/Eq2 through >∗L, assuming the label of the principal formula
is w. Here we give a derivation for the case of Eq1 is as follows. The case
for Eq2 is similar.

Π
(ε, ε . ε); Γ[w/w′][ε/w] ` ∆[w/w′][ε/w]

>∗L
(ε, w . w); Γ[w/w′]; w : >∗ ` ∆[w/w′]

Eq1

(ε, w′ . w); Γ; w′ : >∗ ` ∆

We modify the derivation as follows.

Π
(ε, ε . ε); Γ[ε/w′][ε/w] ` ∆[ε/w′][ε/w]

Eq2

(ε, ε . w); Γ[ε/w′] ` ∆[ε/w′]
>∗L

(ε, w′ . w); Γ; w′ : >∗ ` ∆

Notice that the premises of the two derivations below Π are exactly the
same. The application of Eq1 in the original derivation is changed to an
application of Eq2 in the modified derivation. However, this does not break
the proof, as the induction hypothesis ensures that either of them can be
permuted upwards.

(c) Permute Eq1/Eq2 through ∗L or −∗ R. We give here an example of permut-
ing Eq2 through ∗L, assuming the label of principal formula is z, and it is
modified by the Eq2 application. The other cases are similar.

Π
(x, y . ε); (ε, ε . ε); Γ[ε/z]; x : A; y : B ` ∆[ε/z]

∗L
(ε, ε . ε); Γ[ε/z]; ε : A ∗ B ` ∆[ε/z]

Eq2

(ε, ε . z); Γ; z : A ∗ B ` ∆
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Since x and y are fresh labels, they will not be affected by Eq2. Thus the
derivation can be changed to the following:

Π
(x, y . ε); (ε, ε . ε); Γ[ε/z]; x : A; y : B ` ∆[ε/z]

Eq2

(x, y . z); (ε, ε . z); Γ; x : A; y : B ` ∆
∗L

(ε, ε . y); Γ; z : A ∗ B ` ∆

Since Eq1 and Eq2 only globally replace labels, their action can be safely
delayed through all the rules other than ∗R and −∗ L. The applications
of these two rules after the last ∗R or −∗ L will be delayed until the zero-
premise rule is necessary.

2. Permute the applications of E, U, A, or AC through non-zero premise logical
rules other than ∗R and −∗ L. Again, we give some examples, the rest are similar.

(a) Permute E through >∗L, assuming the label of the principal formula is y.
The original derivation runs as follows.

Π
(ε, x . z); (x, ε . z); Γ[ε/y] ` ∆[ε/y]

>∗L
(y, x . z); (x, y . z); Γ; y : >∗ ` ∆

E
(x, y . z); Γ; y : >∗ ` ∆

The new derivation is as follows.

Π
(ε, x . z); (x, ε . z); Γ[ε/y] ` ∆[ε/y]

E
(x, ε . z); Γ[ε/y] ` ∆[ε/y]

>∗L
(x, y . z); Γ; y : >∗ ` ∆

This shows that if the logical rule only does substitution, delaying the struc-
tural rule applications below it makes no difference.

(b) Permute U through ∗L, assuming the label of the principal formula is z.
The original derivation is as follows.

Π
(x, y . z); (z, ε . z); Γ; x : A; y : B ` ∆

∗L
(z, ε . z); Γ; z : A ∗ B ` ∆

U
Γ; z : A ∗ B ` ∆

The new derivation is as follows.

Π
(z, ε . z); (x, y . z); Γ; x : A; y : B ` ∆

U
(x, y . z); Γ; z : A ∗ B ` ∆

∗L
Γ; z : A ∗ B ` ∆
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Since the labels x and y are all fresh labels, it is safe to change the order of
rule applications as above.
Additive logical rules are totally independent of the relational atoms, so
those cases are similar as the one shown above, except that those rules do
not add relational atoms to the sequent.

Now we design a more compact proof system where applications of structural rules
are separated into a special entailment relation for relational atoms and equivalence
of labels. Such a special entailment can be seen as a “condition” in a rule application.
To be specific, since all the structural rule applications can be permuted upwards
through negative rule applications, we would apply negative rules, backwards, as
much as possible in the proof search, and only apply structural rules, backwards,
when they are required by positive rules. In this sense, structural rule applications
are encapsulated in positive rule applications as “conditions” of the form “to apply
this positive rule, some structural rules have to be applied first”. We shall see in the
next section that proof search in this proof system can be separated into two phases:
guessing the shape of the proof tree, and deriving the relational atoms needed. The
latter will be phrased using a constraint system.

In this section we localise the structural rules in two steps: we first deal with Eq1

and Eq2, and then the other structural rules.

4.3.1 Localising Eq1 and Eq2

Allowing substitutions in a proof rule simplifies the cut-elimination proof for LSBBI.
However, for proof search, this creates a problem as Eq1 and Eq2 do not permute
over certain rules that require matching of two labels (e.g., ∗R or −∗ L). Our first
intermediate proof system LSe

BBI aims to remove substitutions from LSBBI. Instead,
the equality between labels is captured via a special entailment relation. To define its
inference rules, we first need a few preliminary definitions.

A structural rule r can be seen as defining a relationR as follows: (G1, θ,V ,G2) ∈ R
iff there is an instance of r such that

• the set of principal relational atoms (cf. Definition 4.1.1) of the instance is G1;
• the substitution applied to the premise of the instance is θ;
• the set of fresh labels created in the premise of the instance is V ; and
• the set of new relational atoms in the premise of the instance is G2.

In the following, we shall write r(G1, θ,V ,G2) to denote that (G1, θ,V ,G2) ∈ R as de-
fined above. For example, we have both U({}, [ ], {x}, {(x, ε . x)}) and U({}, [ ], {}, {(x, ε .
x)}), which are justified respectively by the following instances of U:

(x, ε . x); (a, b . c) ` a : F
U

(a, b . c) ` a : F
(x, ε . x); (x, y . z) ` y : G

U
(x, y . z) ` y : G
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The rule U does not restrict x to be among the labels occuring in the conclusion, so
one can create a new label. Similarly, we have A({(x, y . z), (u, v . x)}, [ ], {w}, {(u, w .
z), (y, v . w)}) which is justified by, e.g., the following instance of A:

(x, y . z); (u, v . x); (u, w . z), (y, v . w); x : F ` y : G
A

(x, y . z); (u, v . x); x : F ` y : G

and Eq1({(e, w . w′)}, [w′/w], { }, { }), which is justified by, e.g.,

(ε, w′ . w′); w′ : F ` w′ : G
Eq1

(ε, w . w′); w : F ` w′ : G

We call r(G1, θ,V ,G2) an abstract instance of the rule r. The set of abstract instances of
structural rules are ranged over by r.

Given a set of relational atoms G, we denote with LV(G) the set of label variables in
G. Let σ be a sequence (list) of abstract instances of structural rules [r1; · · · ; rn]. Given
a set of relational atoms G, the result of the application of σ to G, denoted by S(G, σ),
is defined inductively as follows where @ stands for sequence (list) concatenation:

S(G, σ) =


G if σ = [ ]
S(Gθ ∪ G2, σ′) if G1 ⊆ G, σ = [r(G1, θ,V ,G2)]@σ′ and

LV(G) ∩ V = ∅
undefined otherwise

Given a sequence σ = [r1(G1, θ1,V1,G ′1); · · · ; rn(Gn, θn,Vn,G ′n)] of structural rule
applications, we denote with subst(σ) the composite substitution θ1 ◦ · · · ◦ θn, where
t(θ1 ◦ θ2) means (tθ1)θ2. The intuition is that S(G, σ) is the set of relational atoms after
applying a sequence σ of structural rules on a set G of relational atoms. Since S(G, σ)
is defined based on rule applications in derivations, it is easy to observe that given a
sequent G; Γ ` ∆ in a derivation and a series σ of structural rule applications above
this sequent, S(G, σ) must be defined.

Definition 4.3.1. Let G be a set of relational atoms. The entailment relation G `E (u = v)
holds iff there exists a sequence σ of abstract instances of Eq1 or Eq2 such that S(G, σ) is
defined, and uθ = vθ, where θ = subst(σ).

One can equally define the entailment relation `E as a separated proof system.
However, our emphasis here is to drive all the rule applications by logical rules. Ab-
sorbing some rules in `E and only exposing the substitutions involved in the applica-
tions are handy in later parts of this work.

We now define the proof system LSe
BBI as LSBBI \ {Eq1, Eq2} (i.e., LSBBI without

rules Eq1, Eq2) where certain rules are modified according to Figure 4.3. Note that the
new >∗L rule does not modify any labels, instead, the relational atom (ε, w . ε) in
the premise ensures that the derivability of (w = ε) is preserved. The point of this
intermediate step is to avoid label substitutions in the proof system.

The following theorem states the soundness of LSe
BBI with respect to LSBBI.
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G `E (w1 = w2)
id

Γ; w1 : P ` w2 : P; ∆
(ε, w . ε); Γ ` ∆

>∗L
Γ; w : >∗ ` ∆

G `E (w = ε)
>∗R

Γ ` w : >∗; ∆

(x, y . z′); Γ ` x : A; z : A ∗ B; ∆ (x, y . z′); Γ ` y : B; z : A ∗ B; ∆ G `E (z = z′)
∗R

(x, y . z′); Γ ` z : A ∗ B; ∆

(x, y′ . z); Γ; y : A−∗ B ` x : A; ∆ (x, y′ . z); Γ; y : A−∗ B; z : B ` ∆ G `E (y = y′)
−∗ L

(x, y′ . z); Γ; y : A−∗ B ` ∆

(u, w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆ G `E (x = x′)
A

(x, y . z); (u, v . x′); Γ ` ∆

(x, w . x′); (y, y . w); (x, y . x′); Γ ` ∆ G `E (x = x′)
AC

(x, y . x′); Γ ` ∆

G is the set of relational atoms in the left hand side of the conclusion sequent.
In each rule, the entailment `E is not a premise, but a condition on the rule.

Figure 4.3: The changed rules in LSe
BBI.

Theorem 4.3.2. If there is a derivation Π for a sequent Γ ` ∆ in LSe
BBI, then there is a

derivation Π′ for the same sequent in LSBBI.

Proof. By induction on the height n of Π.

1. Base case: n = 1. In this case the only rule must be a zero-premise rule. If the
rule is ⊥L or >R, then we can use the same rule in LSBBI, since they are the same.
Otherwise, suppose the rule is id, then Π reads as follows.

G `E (w1 = w2)
id

Γ; w1 : P ` w2 : P; ∆

Since G `E (w1 = w2) is true, there is a sequence σ of Eq1, Eq2 applications such
that S(G, σ) is defined and w1θ = w2θ, where θ = subst(σ). Therefore we can
construct Π′ as follows:

id
Γθ; w1θ : P ` w2θ : P; ∆θ

... σ
Γ; w1 : P ` w2 : P; ∆

If the rule is >∗R, suppose Π is:

G `E (w = ε)
>∗R

Γ ` w : >∗; ∆

We construct Π′ similarly, as wθ = ε after the application of σ.
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>∗R
Γθ ` wθ : >∗; ∆θ

... σ
Γ ` w : >∗; ∆

2. Inductive cases: suppose every sequent that is derivable in LSe
BBI with height less

than n is also derivable in LSBBI, consider a LSe
BBI derivation of height n. We do

a case analysis on the bottom rule in the derivation.

(a) If the rule is ∧L, ∧R, → L, → R, ∗L, ∗R, E or U, we can use the same rule
in LSBBI, since nothing is changed.

(b) If the rule is >∗L, then Π must be the following:

Π1

(ε, w . ε); Γ ` ∆
>∗L

Γ; w : >∗ ` ∆

By the induction hypothesis, (ε, w . ε); Γ ` ∆ is derivable in LSBBI. Applying
Lemma 4.2.2 (substitution for labels in LSBBI) with [ε/w], we obtain (ε, ε .
ε); Γ[ε/w] ` ∆[ε/w]. Thus we construct Π′ as follows.

Π′1
(ε, ε . ε); Γ[ε/w] ` ∆[ε/w]

>∗L
(w, ε . w); Γ; w : >∗ ` ∆

U
Γ; w : >∗ ` ∆

(c) If the rule is ∗R, the derivation Π runs as follows.

Π1

(x, y . z′); Γ ` x : A; z : A ∗ B; ∆
Π2

(x, y . z′); Γ ` y : B; z : A ∗ B; ∆
∗R

(x, y . z′); Γ ` z : A ∗ B; ∆

The condition on the ∗R rule is G `E (z = z′). Let σ be the sequence
of Eq1, Eq2 applications such that S(G, σ) is defined and, zθ = z′θ holds,
where θ = subst(σ). Also, by applying the induction hypothesis on Π1 and
Π2, we obtain the LSBBI derivations for each branch respectively. Then with
the help of the substitution lemma (Lem 4.2.2), we get two derivations as
below. Note that we use dotted lines to indicate applications of lemmas.

Π′1
(x, y . z′); Γ ` x : A; z : A ∗ B; ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 4.2.2

(xθ, yθ . z′θ); Γθ ` xθ : A; zθ : A ∗ B; ∆θ

and
Π′2

(x, y . z′); Γ ` y : B; z : A ∗ B; ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 4.2.2
(xθ, yθ . z′θ); Γθ ` yθ : B; zθ : A ∗ B; ∆θ
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Then we can apply ∗R and obtain (xθ, yθ . z′θ); Γ ` zθ : A ∗ B; ∆θ, and by
applying σ we obtain the end sequent as follows.

(xθ, yθ . z′θ); Γ ` zθ : A ∗ B; ∆θ

... σ

(x, y . z′); Γ ` z : A ∗ B; ∆

The case for −∗ L is treated similarly.

(d) If the rule is A, the treatment for the equality entailment is the same. Π is
of the following form:

Π1

(u, w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆ G `E (x = x′)
A

(x, y . z); (u, v . x′); Γ ` ∆

Let S(G, σ) yield xθ = x′θ, where θ = subst(σ), we obtain Π′ as follows.

Π′1
(u, w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 4.2.2

(uθ, wθ . zθ); (yθ, vθ . wθ); (xθ, yθ . zθ); (uθ, vθ . x′θ); Γθ ` ∆θ
A

(xθ, yθ . zθ); (uθ, vθ . x′θ); Γθ ` ∆θ

... σ
(x, y . z); (u, v . x′); Γ ` ∆

The case for AC is similar.
To prove the completeness of LSe

BBI, firstly we add Eq1 and Eq2 in LSe
BBI and show

that the resultant system has the same power as LSBBI. Then we prove the admissibility
of Eq1 and Eq2 in LSe

BBI.

Lemma 4.3.3. If a sequent Γ ` ∆ is derivable in LSBBI, then it is derivable in LSe
BBI +

{Eq1, Eq2}.

Proof. By induction on the height of the LSBBI derivation. Since with Eq1 and Eq2, most
of the other rules become identical, the only non-trivial case is >∗L.

In LSBBI, the derivation runs as follows.
Π

Γ[ε/w] ` ∆[ε/w]
>∗L

Γ; w : >∗ ` ∆

By the induction hypothesis, there is a derivation for Γ[ε/w] ` ∆[ε/w] in LSe
BBI +

{Eq1, Eq2}. Therefore we construct the derivation as follows.

Π′

Γ[ε/w] ` ∆[ε/w]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 4.2.6

(ε, ε . ε); Γ[ε/w] ` ∆[ε/w]
Eq1

(ε, w . ε); Γ ` ∆
>∗L

Γ; w : >∗ ` ∆
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The following lemma is a simple application of the Eq1 rule to show the correspon-
dence between the Eq1 rule and the equivalence relation `E.

Lemma 4.3.4. If G[x/y]; (ε, x . x) `E (w1[x/y] = w2[x/y]) holds then G; (ε, y . x) `E
(w1 = w2) holds. If G[y/x]; (ε, y . y) `E (w1[y/x] = w2[y/x]) holds then G; (ε, y . x) `E
(w1 = w2) holds.

Proof. Let G ′ = G; (ε, y . x) and S(G ′[x/y], σ) yield (w1[x/y]θ = w2[x/y]θ), we show
that G ′ `E (x = y) by the following:

G ′[x/y]θ `E (w1[x/y]θ = w2[x/y]θ)
... σ

G ′[x/y] `E (w1[x/y] = w2[x/y])
Eq1

G; (ε, y . x) `E (x = y)

Although to prove the lemma it suffices to only use the last step. The other case is
symmetric using the rule Eq2.

Now we show that Eq1 is admissible in LSe
BBI.

Lemma 4.3.5. If (ε, x . x); Γ[x/y] ` ∆[x/y] is derivable in LSe
BBI, then (ε, y . x); Γ ` ∆ is

derivable in LSe
BBI. If (ε, y . y); Γ[y/x] ` ∆[y/x] is derivable in LSe

BBI, then (ε, y . x); Γ ` ∆
is derivable in LSe

BBI.

Proof. We show that Eq1 can always permute up through all the rules in LSe
BBI ex-

cept for Eq2, and eventually disappear when it hits the zero-premise rule. Since
Lemma 4.3.1 is sufficient to show the permutations through nagative rules, here we
particularly show the cases for positive rules.

1. First let us show the cases for the zero-premise rules. ⊥L and >R are trivial, as
they are applicable for an arbitrary label. The permutation for id runs as follows,
where G is the set of relational atoms in (ε, y . x); Γ:

G[x/y] `E (w1[x/y] = w2[x/y])
id

(ε, x . x); Γ[x/y]; w1[x/y] : P ` w2[x/y] : P; ∆
Eq1

(ε, y . x); Γ; w1 : P ` w2 : P; ∆

By Lemma 4.3.4, if G[x/y] `E (w1[x/y] = w2[x/y]) then G `E (w1 = w2) (note
that this is because (ε, y . x) ∈ G). Therefore we can apply id directly on the
bottom sequent, and eliminate the Eq1 application.

The case for >∗R is treated similarly.

2. Permute Eq1 through E, assuming the label being replaced is y. The original
derivation is as follows:
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Π
(w, x, .z); (x, w . z); (ε, w . w); Γ[w/y] ` ∆[w/y]

E
(x, w . z); (ε, w . w); Γ[w/y] ` ∆[w/y]

Eq1

(x, y . z); (ε, y . w); Γ ` ∆

The permuted derivation is as follows:

Π
(w, x, .z); (x, w . z); (ε, w . w); Γ[w/y] ` ∆[w/y]

Eq1

(y, x . z); (x, y . z); (ε, y . w); Γ ` ∆
E

(x, y . z); (ε, y . w); Γ ` ∆

3. Premute Eq1 through U, assuming the replaced label is x. Then the derivation
runs as follows:

Π
(w, ε . w); (ε, w . w); Γ[w/x] ` ∆[w/x]

U
(ε, w . w); Γ[w/x] ` ∆[w/x]

Eq1

(ε, x . w); Γ ` ∆

We modify the derivation as follows:

Π
(w, ε . w); (ε, w . w); Γ[w/x] ` ∆[w/x]

Eq1

(x, ε . x); (ε, x . w); Γ ` ∆
U

(ε, x . w); Γ ` ∆

Note that we can also generate (w, ε . w) directly using the U rule, but the effect
is the same.

4. Permute Eq1 through ∗R. Suppose the principal relational atom of Eq1 is not
the same as the one used in ∗R, let G be the set of relational atoms in (ε, w .
w′)(x, y . z′); Γ, the derivation runs as follows. Here we write (Γ ` ∆)[x/y] to
mean replacing every y by x in the entire sequent. The equality entailment is
G[w′/w] `E (z[w′/w] = z′[w′/w]) (to save space, we do not write the constraint
in the derivation).

∗R
((ε, w′ . w′); (x, y . z′); Γ ` z : A ∗ B; ∆)[w′/w]

Eq1

(ε, w . w′); (x, y . z′); Γ ` z : A ∗ B; ∆

The two premises of the ∗R rule application are listed below.

((ε, w′ . w′); (x, y . z′); Γ ` x : A; z : A ∗ B; ∆)[w′/w]
((ε, w′ . w′); (x, y . z′); Γ ` y : B; z : A ∗ B; ∆)[w′/w]
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By Lemma 4.3.4, since G[w′/w] `E (z[w′/w] = z′[w′/w]), and (ε, w . w′) ∈ G,
G `E (z = z′) holds. Therefore we have the following two derivations:

((ε, w′ . w′); (x, y . z′); Γ ` x : A; z : A ∗ B; ∆)[w′/w]
Eq1

(ε, w . w′); (x, y . z′); Γ ` x : A; z : A ∗ B; ∆

and

((ε, w′ . w′); (x, y . z′); Γ ` y : B; z : A ∗ B; ∆)[w′/w]
Eq1

(ε, w . w′); (x, y . z′); Γ ` y : B; z : A ∗ B; ∆

then we use the ∗R rule, where the equality entailment is G `E (z = z′), to obtain
the end sequent (ε, w . w′); (x, y . z′); Γ ` z : A ∗ B; ∆.

If the principal relational atom is used in the ∗R rule, the permutation is analo-
gous. The permutation through −∗ L is similar.

5. Permutation through A. We show the case where the principal relational atom in
Eq1 is not in A. The other cases are similar. The original derivation is as follows:

((ε, w . w); (u, w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆)[w/w′]
A

((ε, w . w); (x, y . z); (u, v . x′); Γ ` ∆)[w/w′]
Eq1

(ε, w′ . w); (x, y . z); (u, v . x′); Γ ` ∆

The condition on the A rule is G[w/w′] `E (x[w/w′] = x′[w/w′]). By Lemma 4.3.4,
G `E (x = x′) holds. Therefore the derivation is transformed into the following:

((ε, w′ . w); (u, w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆)[w/w′]
Eq1

(ε, w′ . w); (u, w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆
A

(ε, w′ . w); (x, y . z); (u, v . x′); Γ ` ∆

The condition on the A rule is G `E (x = x′). The rule AC is treated similarly.

The case for Eq2 is symmetric.
Although we have not showed that Eq1 and Eq2 can permute through each other,

the above proof suffices to show that they can permute through all other rule applica-
tions in LSe

BBI, thus we can eliminate the topmost Eq1 or Eq2 application one by one,
eventually eliminate all Eq1 and Eq2 applications.

Combining the soundness proof (Theorem 4.3.2) and the completeness proof (
Lemma 4.3.3 to Lemma 4.3.5), we obtain the following correspondence between LSBBI
and LSe

BBI:

Theorem 4.3.6. A sequent Γ ` ∆ is derivable in LSBBI if and only if it is derivable in LSe
BBI.
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Now we prove the substitution lemma for the intermediate system LSe
BBI, as this

will be used in some proofs.

Lemma 4.3.7. If G `E (x = y) then for any substitution [s/t], where t 6= ε, G[s/t] `E
(x[s/t] = y[s/t]).

Proof. Let σ be the solution to G `E (x = y) with substitutions φ. We prove this lemma
by induction on the length of σ.

1. Base case, σ is an empty sequence. In this case, the sequence of substitutions φ is
also empty, therefore x = y. As a result, it must be the case that x[s/t] = y[s/t],
so G[s/t] `E (x[s/t] = y[s/t]) trivially holds.

2. Inductive case, assume |σ| = n. Let us look at the bottom rule application in
σ. Assume this rule is Eq1 (the case for Eq2 is symmetric), and the principal
relational atom is (ε, u . v), then σ is as follows:

Gφ `E (xφ = yφ)

... σ′

G ′[v/u]; (ε, v . v) `E (x[v/u] = y[v/u])
Eq1

G ′; (ε, u . v) `E (x = y)

(a) If u = t and v = s, then the premise of the last rule application is already
what we need.

(b) If u = t and v 6= s, we obtain the desired entailment as follows (IH[x/y]
stands for applying the induction hypothesis with the substitution [x/y], we
use double line to mean that the premise and the conclusion are equivalent).

IH[v/s]
G ′[v/u][v/s]; (ε, v . v) `E (x[v/u][v/s] = y[v/u][v/s])

G ′[s/u][v/s]; (ε, v . v) `E (x[s/u][v/s] = y[s/u][v/s])
Eq1

G ′[s/u]; (ε, s . v) `E (x[s/u] = y[s/u])

(c) If u = s, we prove the substituted entailment as follows:

IH[v/t]
G ′[v/u][v/t]; (ε, v . v) `E (x[v/u][v/t] = y[v/u][v/t])

G ′[u/t][v/u]; (ε, v . v) `E (x[u/t][v/u] = y[u/t][v/u])
Eq1

G ′[u/t]; (ε, u . v) `E (x[u/t] = y[u/t])

In this case if v = t, the proof is just a special case of the one above.

(d) If v = t, the case is shown below.
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IH[s/v]
G ′[v/u][s/v]; (ε, s . s) `E (x[v/u][s/v] = y[v/u][s/v])

G ′[s/v][s/u]; (ε, s . s) `E (x[s/v][s/u] = y[s/v][s/u])
Eq1

G ′[s/v]; (ε, u . s) `E (x[s/v] = y[s/v])

(e) If v = s, the proof is as follows:

IH[v/t]
G ′[v/u][v/t]; (ε, v . v) `E (x[v/u][v/t] = y[v/u][v/t])

G ′[v/t][v/u]; (ε, v . v) `E (x[v/t][v/u] = y[v/t][v/u])
Eq1

G ′[v/t]; (ε, u . v) `E (x[v/t] = y[v/t])

(f) If [s/t] and [u/v] are independent, then we can switch the order of substi-
tution, and derive the entailment as follows:

IH[s/t]
G ′[v/u][s/t]; (ε, v . v) `E (x[v/u][s/t] = y[v/u][s/t])

G ′[s/t][v/u]; (ε, v . v) `E (x[s/t][v/u] = y[s/t][v/u])
Eq1

G ′[s/t]; (ε, u . v) `E (x[s/t] = y[s/t])

Since substitution does not break the equality entailment, we can show a substitu-
tion lemma for the system LSe

BBI.

Lemma 4.3.8 (Substitution in LSe
BBI). If there is a derivation for the sequent Γ ` ∆ in LSe

BBI
then there is a derivation of the same height for the sequent Γ[y/x] ` ∆[y/x] in LSe

BBI, where
every occurrence of label variable x ∈ LVar is replaced by label y.

Proof. The proof is basically the same as the one for LSBBI, since there are a lot of
common rules. For the rules that are changed, the case for >∗L is similar to those
cases for additive rules. The proof for the rest of the changed rules are straightforward
with the help of Lemma 4.3.7.

4.3.2 Localising the Rest of the Structural Rules

As a second step, we isolate the other structural rules into a separate entailment rela-
tion, as we did with Eq1 and Eq2, giving another intermediate system LSsf

BBI.

Definition 4.3.2 (Relation Entailment `R). The entailment relation `R has the following
two forms:

1. G `R (w1 = w2) is true iff there is a sequence σ of E, U, A, AC applications so that
S(G, σ) `E (w1 = w2).
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2. G `R (w1, w2 . w3) is true iff there is a sequence σ of E, U, A, AC applications so that
(w′1, w′2 . w′3) ∈ S(G, σ) and the following hold: S(G, σ) `E (w1 = w′1), S(G, σ) `E
(w2 = w′2), and S(G, σ) `E (w3 = w′3).

In each case, we say that σ is a derivation of the entailment relation involved.

The entailment `R is stronger than `E. For example, if G only contains (x, ε . y),
then G 6`E (x = y); but G `R (x = y) by applying E to obtain (ε, x . y), then apply Eq1

or Eq2 on the new relational atom.

G `R (w1 = w2)
id

G||Γ; w1 : P ` w2 : P; ∆
G `R (w = ε)

>∗R
G||Γ ` w : >∗; ∆

S(G, σ)||Γ ` x : A; w : A ∗ B; ∆ S(G, σ)||Γ ` y : B; w : A ∗ B; ∆ G `R (x, y . w)
∗R†

G||Γ ` w : A ∗ B; ∆

S(G, σ)||Γ; w : A−∗ B ` x : A; ∆ S(G, σ)||Γ; w : A−∗ B; z : B ` ∆ G `R (x, w . z)
−∗ L‡

G||Γ; w : A−∗ B ` ∆

†: σ is the derivation of G `R (x, y . w) ‡: σ is the derivation of G `R (x, w . z)
In each rule, the entailment `R is not a premise, but a condition on the rule.

Figure 4.4: Changed rules in LSsf
BBI.

The changed rules in the second intermediate system LSsf
BBI are given in Figure 4.4

where we use a slightly different notation for sequents. We write G||Γ ` ∆ to empha-
size that the left hand side of a sequent is partitioned into two parts: G, which contains
only relational atoms; and Γ, which contains only labelled formulae.

We first show the soundness of LSsf
BBI with respect to LSe

BBI.

Theorem 4.3.9. If there is a derivation Π for a sequent G||Γ ` ∆ in LSsf
BBI, then there is a

derivation Π′ for the sequent G; Γ ` ∆ in LSe
BBI.

Proof. The soundness proof for this system is rather straightforward. To prove this, we
show that each rule in LSsf

BBI is derivable in LSe
BBI. To do this, one just needs to unfold

the structural rule applications into the derivation. For instance, we can simulate the
id rule in LSsf

BBI by using the following rules in LSe
BBI:

S(G, σ) `E (w1 = w2)
id

S(G, σ); Γ; w1 : P ` w2 : P; ∆
... σ

G; Γ; w1 : P ` w2 : P; ∆

The above works because the id rule in LSsf
BBI requires G `R (w1 = w2), which

by definition ensures that S(G, σ) `E (w1 = w2) holds. The case for >∗R works
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similarly. One thing to notice is that the structural rules only add relational atoms
into the current set, so except for the fact that G is becoming a bigger set, all the other
structures in the sequent remain the same after the sequence σ of applications. Let us
examine the simulation of ∗R in LSe

BBI.

S(G, σ); Γ ` x′ : A; w : A ∗ B; ∆ S(G, σ); Γ ` y′ : B; w : A ∗ B; ∆
∗R

S(G, σ); Γ ` w : A ∗ B; ∆
... σ

G; Γ ` w : A ∗ B; ∆

The condition of the ∗R rule is S(G, σ) `E (w = w′). Since the LSsf
BBI rule requires

G `R (x, y . w), which by definition ensures that there is a structural rule derivation σ

such that (x′, y′ . w′) ∈ S(G, σ), we have:

S(G, σ) `E (x = x′)
S(G, σ) `E (y = y′)
S(G, σ) `E (w = w′)

The last relation entailment is enough to guarantee that the ∗R rule is applicable.
To restore each branch, we need Lemma 4.3.8 (Substitution lemma for LSe

BBI). Let
us look at the left branch. By the first relation entailment, there is a sequence σ′ of
Eq1, Eq2 applications so that xθ = x′θ. So we can construct a proof for the left branch
as follows.

S(G, σ); Γ ` x : A; w : A ∗ B; ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Substitution Lemma 4.3.8
S(G, σ)θ; Γθ ` xθ : A; wθ : A ∗ B; ∆θ

S(G, σ)θ; Γθ ` x′θ : A; wθ : A ∗ B; ∆θ

... σ′

S(G, σ); Γ ` x′ : A; w : A ∗ B; ∆

Now the top sequent is the left premise of the ∗R rule in LSsf
BBI. The case for the

right premise is symmetric. Therefore we can simulate the ∗R rule in LSsf
BBI by using a

derivation in LSe
BBI.

The case for −∗ L is analogous. The other rules are the same as in LSe
BBI, thus we

conclude that the rules in LSsf
BBI are sound.

The completeness proof runs the same as in LSe
BBI: if we add the structural rules E,

U, A, AC in LSsf
BBI, then it becomes a superset of LSe

BBI. Then we prove that these rules
are admissible in LSsf

BBI by showing that they can permute through the rules ∗R, −∗ L,
id, and >∗R.

First of all, let us show that when we add E, U, A, AC (from LSe
BBI) to LSsf

BBI, its
rules can simulate those ones in LSe

BBI. As most of the rules are identical, the key part
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is to show the relation entailment is as powerful as the equality entailment. This is
“built-in” the definition, so there is no surprise.

Lemma 4.3.10. If G `E (w1 = w2), then G `R (w1 = w2).

Proof. Let σ be an empty list of E, U, A, AC rule applications, then S(G, σ) = G and
G `E (w1 = w2). Therefore by definition G `R (w1 = w2).

If we change `R to `E in LSsf
BBI, every rule is the same as the one in LSe

BBI. Therefore
LSsf

BBI + E + U + A + AC is at least as powerful as LSe
BBI.

Lemma 4.3.11. The rules E, U, A, and AC are admissible in LSsf
BBI.

Proof. We show that the said rules can permute upwards through id, >∗R, ∗R and
−∗ L, the other cases are cover by Lemma 4.3.1. We only give some examples here, the
others are similar. The heart of the argument is that the application of structural rules
are hidden inside the relation entailment, so we do not have to apply them explicitly.

Permute E through id, the suppose the original derivation runs as follows.

G; (y, x . z); (x, y . z) `R (w1 = w2)
id

G; (y, x . z); (x, y . z)||Γ; w1 : P ` w2 : P; ∆
E

G; (x, y . z)||Γ; w1 : P ` w2 : P; ∆

The permuted derivation is:

G; (x, y . z) `R (w1 = w2)
id

G; (x, y . z)||Γ; w1 : P ` w2 : P; ∆

Assume that G; (y, x . z); (x, y . z) `R (w1 = w2) is derived by applying a sequence
σ of structural rules. Then S((G; (x, y . z)), σ′) can prove G; (x, y . z) `R (w1 = w2),
where σ′ is E({(x, y . z)}, ∅) followed by σ.

Permuting A upwards through id is similar. The original derivation is:

G; (u, w . z); (y, v . w); (x, y . z); (u, v . x′) `R (w1 = w2)
id

G; (u, w . z); (y, v . w); (x, y . z); (u, v . x′)||Γ; w1 : P ` w2 : P; ∆
A

G; (x, y . z); (u, v . x′)||Γ; w1 : P ` w2 : P; ∆

The condition on the rule A is G; (x, y . z); (u, v . x′) `E (x = x′). Then we can omit
the application of A, since G; (u, w . z); (y, v . w); (x, y . z); (u, v . x′) `R (w1 = w2)
implies G; (x, y . z); (u, v . x′) `R (w1 = w2), one just need to add the A application
ahead to the sequence of structural rules that derives the former relation entailment to
get a new sequence of rules to derive the latter one.

Finally, we show a case where E is applied below ∗R. The derivation runs as below:

Π1

G; (x, y . z); (y, x . z)||Γ ` y : A; z : A ∗ B; ∆
Π2

G; (x, y . z); (y, x . z)||Γ ` x : B; z : A ∗ B; ∆
∗R

G; (x, y . z); (y, x . z)||Γ ` z : A ∗ B; ∆
E

G; (x, y . z)||Γ ` z : A ∗ B; ∆
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· · · `E (w2 = w2)
id

· · · ; w2 : r ` w2 : r; · · ·
(ε, w3 . ε); (w3, w4 . w1); · · · `E (w4 = w1)

id
· · · ; w4 : q ` w1 : q; · · ·

∗R
(w2, w1 . w0); · · · ; w3 : p; w3 : >∗; w4 : q; w2 : r ` w0 : r ∗ q

E
(ε, w3 . ε); (w3, w4 . w1); (w1, w2 . w0); w3 : p; w3 : >∗; w4 : q; w2 : r ` w0 : r ∗ q

>∗L
(w3, w4 . w1); (w1, w2 . w0); w3 : p; w3 : >∗; w4 : q; w2 : r ` w0 : r ∗ q

∧L
(w3, w4 . w1); (w1, w2 . w0); w3 : p ∧>∗; w4 : q; w2 : r ` w0 : r ∗ q

∗L× 2
w0 : ((p ∧>∗) ∗ q) ∗ r ` w0 : r ∗ q

→ R
` w0 : (((p ∧>∗) ∗ q) ∗ r)→ (r ∗ q)

· · · `R (w2 = w2)
id

(w2, w1 . w0); · · · ; || · · · ; w2 : r ` w2 : r; · · ·
(ε, w3 . ε); (w3, w4 . w1); · · · `R (w4 = w1)

id
(w2, w1 . w0); · · · || · · · ; w4 : q ` w1 : q; · · · C

∗R
(ε, w3 . ε); (w3, w4 . w1); (w1, w2 . w0)||w3 : p; w3 : >∗; w4 : q; w2 : r ` w0 : r ∗ q

>∗L
(w3, w4 . w1); (w1, w2 . w0)||w3 : p; w3 : >∗; w4 : q; w2 : r ` w0 : r ∗ q

∧L
(w3, w4 . w1); (w1, w2 . w0)||w3 : p ∧>∗; w4 : q; w2 : r ` w0 : r ∗ q

∗L× 2
w0 : ((p ∧>∗) ∗ q) ∗ r ` w0 : r ∗ q

→ R
` w0 : (((p ∧>∗) ∗ q) ∗ r)→ (r ∗ q)

where C ::= (w1, w2 . w0); · · · `R (w2, w1 . w0)

Figure 4.5: Example derivations in LSe
BBI (top) and LSsf

BBI (bottom).

Apparently the structural rules, including E, can be absorbed into the notion of `R. In
this case, the sequence of structural rule applications σ = E ensures that (y, x . z) ∈
S(G ∪ {(x, y . z)}, σ). Thus G ∪ {(x, y . z)} `R (y, x . z), thus we have the following
new derivation in LSsf

BBI:

Π1

S(G ∪ {(x, y . z)}, σ)||Γ ` y : A; z : A ∗ B; ∆
Π2

S(G ∪ {(x, y . z)}, σ)||Γ ` x : B; z : A ∗ B; ∆
∗R

G; (x, y . z)||Γ ` z : A ∗ B; ∆

where S(G ∪ {(x, y . z)}, σ) = G ∪ {(x, y . z), (y, x . z)}. Recall that we have shifted the
notation for sequents so that they consist of sets, the premises in the new derivation
is equivalent to the premises in the old derivation. The other cases can be shown in
the same way. That is, the structural rules do not disappear in the derivation, but are
simply absorbed in negative rules.

The completeness of LSsf
BBI is then an immediate result of Lemma 4.3.11.

Theorem 4.3.12. A sequent Γ ` ∆ is derivable in LSe
BBI if and only if it is derivable in LSsf

BBI.

As a consequence of Theorem 4.3.6 and 4.3.12, we can also obtain the equivalence
between LSBBI and LSsf

BBI. The latter will be used in the next section. Figure 4.5 shows
example derivations in the intermediate systems LSe

BBI and LSsf
BBI respectively in con-

trast to the derivation in Figure 4.2.
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4.4 Proof Search using Free Variables

We now consider a proof search strategy for a system based on LSsf
BBI. As we have

isolated all the structural rules into the entailment relation `R, proof search in LSsf
BBI

consists of guessing the shape of the derivation tree, and then checking that each
entailment `R can be proved. The latter involves guessing a splitting of labels in
the ∗R and −∗ L rules which also satisfies the equality constraints in the id and >∗R
rules. We formalise this via a symbolic proof system, where splitting and equality
are handled lazily, via the introduction of free variables which are essentially existential
variables (or logic variables) that must be instantiated to concrete labels satisfying all
the entailment constraints in the proof tree, for a derivation to be sound. The idea
of using free variables can be found in the literature, e.g., [4], in which a benefit is
that “the use of free variables generates a smaller search space”. We shall see in the
following sections that our free variable system, although different from existing ones
in certain aspects, can also narrow down the search space when zero-premise rules
can give exact equality constraints so that the constraints generated by logical rules
can be solved based on those generated by zero-premise rules. This means that the
applications of structural rules (hidden in the logical rules) are not only driven by
logical rules, but also by zero-premise rules.

Free variables are denoted by x, y and z. We use u, v, w to denote either labels or
free variables, and a, b, c are ordinary labels. A symbolic sequent is just a sequent but
possibly with occurrences of free variables in place of labels. We shall sometimes refer
to the normal (non-symbolic) sequent as a ground sequent to emphasise the fact that it
contains no free variables. The symbolic proof system FVLSBBI is given in Figure 4.6.
The rules are mostly similar to LSsf

BBI, but lacking the entailment relations `R . Instead,
new free variables are introduced when applying ∗R and −∗ L backwards. Notice also
that in FVLSBBI, the ∗R and−∗ L rules do not compute the set S(G, σ). So the relational
atoms in FVLSBBI are only those that are created by ∗L,−∗ R,>∗L. In the following,
given a derivation in FVLSBBI, we shall assume that the free variables that are created
in different branches of the derivation are pairwise distinct. We shall sometimes refer
to a derivation in FVLSBBI simply as a symbolic derivation.

An equality constraint is an expression of the form G `?
R (u = v), and a relational

constraint is an expression of the form G `?
R (u, v . w). In both cases, we refer to G as

the left hand side of the constraints, and (u = v) and (u, v . w) as the right hand side.
Constraints are ranged over by c, c′, c1, c2, etc. Given a constraint c, we write G(c) for
the left hand side of c. A constraint system is just a set of constraints. We write G `?

R C
for either an equality or relational constraint. We use f v(c) to denote the set of free
variables in c, and f v(C) to denote the set of free variables in a set of constraints C.

Definition 4.4.1 (Constraint systems). A constraint system is a pair (C,�) of a multiset
of constraints and a partial order on elements of C satisfying:

Monotonicity: c1 � c2 implies G(c1) ⊆ G(c2).
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Initial Sequent: id
G||Γ; w1 : P ` w2 : P; ∆

Logical Rules:
⊥L

G||Γ; w : ⊥ ` ∆
>R

G||Γ ` w : >; ∆

G; (ε, w . ε)||Γ ` ∆
>∗L

G||Γ; w : >∗ ` ∆
>∗R

G||Γ ` w : >∗; ∆

G||Γ; w : A; w : B ` ∆
∧L

G||Γ; w : A ∧ B ` ∆
G||Γ ` w : A; ∆ G||Γ ` w : B; ∆

∧R
G||Γ ` w : A ∧ B; ∆

G||Γ ` w : A; ∆ G||Γ; w : B ` ∆
→ L

G||Γ; w : A→ B ` ∆
G||Γ; w : A ` w : B; ∆

→ R
G||Γ ` w : A→ B; ∆

G; (a, b . w)||Γ; a : A; b : B ` ∆
∗L†

G||Γ; w : A ∗ B ` ∆
G; (a, w . c)||Γ; a : A ` c : B; ∆

−∗ R‡

G||Γ ` w : A−∗ B; ∆

G||Γ ` x : A; w : A ∗ B; ∆ G||Γ ` y : B; w : A ∗ B; ∆
∗R]

G||Γ ` w : A ∗ B; ∆

G||Γ; w : A−∗ B ` x : A; ∆ G||Γ; w : A−∗ B; z : B ` ∆
−∗ L\

G||Γ; w : A−∗ B ` ∆

†: a and b must be fresh in ∗L ‡: a and c must be fresh in −∗ R
]: x and y are new free variables in ∗R \: x and z are new free variables in −∗ L

Figure 4.6: Labelled Sequent Calculus FVLSBBI for Boolean BI.

A constraint system is well-formed if it also satisfies the condition below.

Unique variable origin: ∀x in C, there exists a unique constraint occurrence
c(x) = Gx `?

R (u, v . w) s.t. x occurs in (u, v . w), but not in Gx, and x
does not occur in any c′ where c′ 6= c(x) and c′ � c(x). Such a c(x) is the
origin of x. Furthermore, for any free variable x and any constraint c′, if x
occurs in G(c′), then c(x) � c′.

Notice that C is a multiset, rather than a set. We could have defined C as a set, but
the definition of composition of constraint systems (Definition 4.4.8) would be more
complicated. Thus in C there can be more than one occurrence of the same constraint
c.3 We write C1 ] C2 to denote the multiset union of C1 and C2. We shall use the
same symbol for a constraint and its occurrences. We shall often refer to a constraint
occurrence as simply a constraint when it is clear from the context of discussions that
we are referring to an occurrence rather than a constraint.

In a well-formed constraint system (C,�), in every minimum constraint c, with
respect to �, G(c) must be ground, i.e., has no free variables (see Lemma 4.4.2). The

3Another way of looking at this is to consider a set of pairs of the form (i, c) where i is an identifier
(e.g., a natural number) and c is a constraint. Multisets offer a more convenient abstraction.
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existence of such a c is important in the definition of solutions for a well-formed
constraint system, and in the proof that the symbolic proof system is sound with
respect to its concrete counterpart (i.e., the derivation for the same formula in LSsf

BBI).
From now on, we shall denote with c(x) the constraint occurrence from which

x originates, as defined in the above definition. We use the letter C to range over
constraint systems.

We write ci ≺ cj when ci � cj and ci 6= cj. Further, we define a direct successor
relation l as follows: ci l cj iff ci ≺ cj and there does not exist any ck such that
ci ≺ ck ≺ cj.

In proof search, associated constraints are generated as follows.

Definition 4.4.2. To a given symbolic derivation Π, we define a multiset of constraints C(Π)
by structural induction on Π. We shall assume that variables introduced in instances of ∗R
and −∗ L in Π are pairwise distinct. In the following, for each instance of the rules, we use
the same naming schemes for labels and variables as in Figure 4.6. We distinguish several
(base/inductive) cases based on the lowest rule of Π:

id C(Π) = {G `?
R (w1 = w2)}

>∗R C(Π) = {G `?
R (w = ε)}

∗R C(Π) = C(Π1) ] C(Π2) ] {G `?
R (x, y . w)} where the left premise

derivation is Π1 and the right-premise derivation is Π2

−∗ L C(Π) = C(Π1) ] C(Π2) ] {G `?
R (x, w . y)} where the left premise

derivation is Π1 and the right-premise derivation is Π2

– If Π ends with any other rule, with premise derivations {Π1, . . . , Πn}, then
C(Π) = C(Π1) ] · · · ] C(Πn).

Proof search in the free variable system is a refutation procedure. The ternary
relational atoms generated by >∗L, ∗L, and −∗ R are the base knowledge about the
monoidal semantics; the constraints generated by ∗R and −∗ L give hints on what
are further needed to falsify the end sequent. These constraints needs to be “solved”
by grounding the free variables to labels. Zero-premise rule applications refute that
the ternary relational atoms generated along a branch cannot form a counter-model.
The constraints generated by id and >∗R are the conditions that can close a branch
whenever they are satisfied.

Each constraint c ∈ C(Π) corresponds to a rule instance r(c) in Π where c is
generated. The ordering of the rules in the derivation tree of Π naturally induces a
partial order on C(Π). That is, let �Π be an ordering on C(Π) defined as follows:
c1 �Π c2 iff the conclusion of r(c1) appears in the path from the root sequent to the
conclusion of r(c2). Then obviously �Π is a partial order.

Lemma 4.4.1. Let Π be a symbolic derivation. Then (C(Π),�Π) is a constraint system.
Moreover, if the root sequent is ground, then (C(Π),�Π) is well-formed.

Proof. Each constraint in C(Π) is associated with an instance of a rule in Π; this in-
duces a partial order on the constraints as follows: c1 �Π c2 iff the rule instance where
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c1 originates from appears in the path from the root to the rule instance where c2 origi-
nates from, in the derivation tree of Π. It is easy to see that this gives us a partial order.
The monotonicity of �Π is immediate. The unique variable origin property of C(Π) is
also satisfied by the fact that new variables can only be created at ∗R and −∗ L. So the
minimum constraint for each variable is the constraint generated by the ∗R or −∗ L
rule instance where these variables are created.

Given a symbolic derivation Π, define C(Π) as the constraint system (C(Π),�Π).
A consequence of Lemma 4.4.1 is that if C(Π) 6= { }, then there exists a minimum
constraint c, w.r.t. the partial order �Π, such that G(c) is ground.

We now define what it means for a constraint system to be solvable. The compli-
cation arises when we need to capture that (ternary) relational atoms created by the
solution need to be accumulated along each branch in the proof search in order to
guarantee the soundness of FVLSBBI. A free-variable substitution θ is a total mapping
with finite domain4 from free variables to free variables or labels. We denote with
dom(θ) the domain of θ. Given θ, θ′ with dom(θ′) ⊆ dom(θ), and a set V of free vari-
ables, θ ↑ V is the substitution obtained from θ by restricting the domain to V; and
θ \ θ′ is the result of θ “subtract” θ′; formally:

x(θ ↑ V) =

{
xθ if x ∈ V
x otherwise.

x(θ \ θ′) =

{
xθ if x 6∈ dom(θ′)
x otherwise.

Definition 4.4.3 (Simple constraints and their solutions). A constraint c is simple if its
left hand side G(c) contains no free variables. A solution (θ, σ) to a simple constraint c is a
substitution θ and a sequence σ of structural rules such that:

• If c is G `?
R (u = v) then σ is a derivation of G `R (uθ = vθ).

• If c is G `?
R (u, v . w) then σ is a derivation of G `R (uθ, vθ . wθ).

Lemma 4.4.2. In a well-formed constraint system (C,�), the minimum constraints in C are
simple constraints.

Proof. Suppose otherwise, i.e., there exists a minimum c ∈ C such that G(c) contains a
free variable x. By the unique variable origin property (Definition 4.4.1), there exists
c(x) such that x is not free in G(c(x)) and c(x) � c. The former rules out the case that
c(x) = c, so we have c(x) ≺ c, which contradicts the minimality of c. Therefore G(c)
must be ground.

From the above definition, a simple constraint G `?
R (u = v) is solvable if there is

a series of structural rule applications on G and a series of free variable substitutions
θ, such that uθ = vθ. Since G only contains labels, the structural rule applications in
this case are usually not needed. For example, the simple constraint

(w1, w2 . w3) `?
R (w1 = x)

4Here the substitution θ can be viewed as a set of substitutions.
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is solvable by applying no structural rules and only assigning x to w1 in the free
variable substitution θ. The case for a ternary relation on the r.h.s. of `?

R is defined
similarly, but this case often involves structural rule applications. For example, the
simple constraint

(w1, w2 . w0); (w3, w4 . w1) `?
R (w4, w2 . x)

can be solved by letting σ be A followed by E as in the following structural rule
applications:

(w4, w2 . w5); · · ·
E

(w3, w5 . w0); (w2, w4 . w5); · · ·
A

(w1, w2 . w0); (w3, w4 . w1); · · ·

And the free variable substitution θ would be [w5/x].

Definition 4.4.4 (Restricting a constraint system). Let C = (C,�) be a well-formed con-
straint system, and c be a minimum (simple) constraint occurrence in C. Let (θ, σ) be a
solution to c and G ′ = S(G(c), σ). Define a function f on constraints:

f (c′) =
{

(G ′ ∪ Gθ `?
R Cθ) if c′ = (G `?

R C) ∈ C \ {c} and c � c′,
c′ otherwise.

The restriction of C by (c, θ, σ), written C ↑ (c, θ, σ), is the pair (C ′,�′), where

1. C ′ = { f (c′) | c′ ∈ C \ {c}} and
2. f (c1) �′ f (c2) iff c1 � c2.

The proof of the following lemma is straightforward from Definition 4.4.4.

Lemma 4.4.3. The restricted constraint system C ↑ (c, θ, σ) as defined in Definition 4.4.4 is a
well-formed constraint system.

Proof. It is easy to see that monotonicity is preserved by the restriction, since G ′ is ac-
cumulated on every constraint c′ in the restricted system with c � c′, and the constraint
system C is originally well-formed. For the unique variable origin property, first we
notice that the free variables that originate from c do not occur in the restricted sys-
tem, because the solution (θ, σ) to c must have instantiated those free variables to labels
(since the l.h.s. of c only contains labels), and the substitution θ is applied on every
constraint where those free variables may occur, i.e., every c′ such that c � c′. For the
other free variables, their origins remain unchanged in the restricted system.

Definition 4.4.5 (Solution to well-formed constraint systems). Let C = ({c1, . . . , cn},�)
be a well-formed constraint system. A solution (θ, {σ1, . . . , σn}) to C is a substitution and a
set of sequences of structural rules, such that:

If n = 0 then ([], {}) is trivially a solution.
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Let G = {(a1, a2 . a0); (a3, a4 . a1)} and Γ1 := {a2 : r ; a3 : p} and Γ2 := {a3 : p ; a4 : q}
in

idG||a2 : r; a3 : p; a4 : q `5 x5 : p

idG||Γ1; a4 : q `4 x7 : q
idG||a2 : r; Γ2 `3 x8 : r
∗RG||a2 : r; a3 : p; a4 : q `2 x6 : q ∗ r

∗RG||a2 : r; a3 : p; a4 : q `1 a0 : p ∗ (q ∗ r)
∗L

(a1, a2 . a0)||a1 : p ∗ q; a2 : r ` a0 : p ∗ (q ∗ r)
∗L

a0 : (p ∗ q) ∗ r ` a0 : p ∗ (q ∗ r)
→ R` a0 : ((p ∗ q) ∗ r)→ (p ∗ (q ∗ r))

Figure 4.7: A symbolic derivation for ((p ∗ q) ∗ r)→ (p ∗ (q ∗ r)).

If n ≥ 1 then there must exist some minimum (simple) constraint in C. For any mini-
mum constraint ci, let θi = θ ↑ f v(ci), then (θi, σi) is a solution to ci, and (θ \
θi, {σ1, . . . , σn} \ σi) is a solution to C ↑ (ci, θi, σi).

If a constraint system C = ({c1, · · · , cn},�) has a solution (θ, {σ1, · · · , σn}), then
there is a solution to each ci, which is computed recursively from the minimum con-
straints in C, as defined in Definition 4.4.5. It is easy to see that every c ∈ {c1, · · · , cn}
has a solution of the form (θc, σ), for some θc, where σ ∈ {σ1, . . . , σn}. Moreover, σ is
uniquely related to c. In the following, given such a constraint c, we shall write dev(c)
to refer to that sequence of rules σ in its solution.

Example 4.4.4. We now give an example of how to prove a formula using the free variable
system. Suppose we want to prove ((p ∗ q) ∗ r) → (p ∗ (q ∗ r)), where p, q and r are propo-
sitional variables. Using FVLSBBI, we build a symbolic derivation as in Figure 4.7. Note that
this derivation is generated automatically from our theorem prover which uses a0, a1, · · · for
label variables, hence the end-sequent is of the form a0 : F where a0 stands for the label variable
w and some of the indices of variables may not be contiguous. We subscript ` with a num-
ber i to indicate that the rule applied on this sequent generates the constraint ci. The set of
constraints C = {c1, · · · , c5} are generated from this derivation as below:

c5 : (a1, a2 . a0); (a3, a4 . a1) `R (a3 = x5)
c4 : (a1, a2 . a0); (a3, a4 . a1) `R (a4 = x7)
c3 : (a1, a2 . a0); (a3, a4 . a1) `R (a2 = x8)
c2 : (a1, a2 . a0); (a3, a4 . a1) `R (x7, x8 . x6)
c1 : (a1, a2 . a0); (a3, a4 . a1) `R (x5, x6 . a0).

The partial order � on these constraints is based on the order of rule applications in the
symbolic derivation in Figure 4.7. Thus we obtain that c1 � c2, c1 � c5, c2 � c3, and c2 � c4.
By Lemma 4.4.1, the constraint system (C,�) is well-formed.

The naive way to solve a constraint system would start by solving the minimum constraint
(i.e., c1), then solve the other constraints in the partial order �. Finally, if the constraints
generated by zero-premise rules can be solved based on the existing free variable substitutions,
then we obtain a solution to the constraint system; otherwise we have to backtrack and try
to solve previous constraints using different structural rule applications and/or free variable
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substitutions.
We have not introduced a method to solve the constraints yet, the next section will give

a heuristic method. For now let us just non-deterministically guess the solutions, starting
from the minimum constraint c1. If we were to solve c1 with the solution ({x5 7→ a0, x6 7→
a11}, {}), then we would have trouble when solving the constraint c5, because (a3 = a0)
cannot be derived by any structural rule applications. Backtracking to c1, suppose the oracle
says we should apply structural rules on G(c1) as below:

(a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1)
A

(a1, a2 . a0); (a3, a4 . a1)

where w is a fresh label created by the A application. Then c1 can be solved by the solution:
({x5 7→ a3, x6 7→ w}, {A({(a1, a2 . a0); (a3, a4 . a1)}, [], {w}, {(a3, w . a0); (a2, a4 .w)})}).
By Def. 4.4.4, this solution restricts the constraints system as follows:

c5 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a3 = a3)
c4 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a4 = x7)
c3 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a2 = x8)
c2 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (x7, x8 . w).

Next step is to use the rule E to create (a4, a2 . w) from (a2, a4 . w). The constraint c2 can
then be solved by the solution:

({x7 7→ a4, x8 7→ a2}, {E({(a2, a4 . w)}, [], {}, {(a4, a2 . w)})}).

The constraint system is now:
c5 : (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a3 = a3)
c4 : (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a4 = a4)
c3 : (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a2 = a2).

The remaining constraints can be trivially solved by the solution ({}, {}). Since the con-
straint system is solvable, the symbolic derivation in Figure 4.7 corresponds to a valid proof of
the formula by the coming soundness and completeness theorems. The reader can check that
the above solutions satisfy the conditions in Def. 4.4.5.

Theorem 4.4.5 (Soundness). Let Π be a symbolic derivation of a ground sequent G||Γ ` ∆.
If C(Π) is solvable, then G||Γ ` ∆ is derivable in LSsf

BBI.

Proof. By induction on the height n of derivation Π. The basic idea of the proof is
that one progressively “grounds” a symbolic derivation, starting from the root of the
derivation. At each inductive step we show that grounding the premises corresponds
to restricting the constraint system induced by the symbolic derivation.
Base case: n = 1. In this case, we can only use a zero-premise rule to prove the
sequent. Since the sequent is ground, there are no free variables. Thus the constraint
generated by the rule application is a simple constraint of the form G `?

R (a = b) or
G `?

R (a = ε). A solution of this constraint is simply a derivation σ of G `R (a = b)
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(resp. G ` (a = ε). In either case, this translates straightforwardly into a derivation in
LSsf

BBI with the same rule.
Inductive case: n > 1. This can be done by a case analysis of the last rule application in
Π. We demonstrate the case for ∗R, where a constraint is generated. The case for −∗ L
is analogous, and the other cases are easy since we can use the induction hypothesis
directly. Suppose Π runs as follows.

Π1

G||Γ ` x : A; w : A ∗ B; ∆
Π2

G||Γ ` y : B; w : A ∗ B; ∆
∗R

G||Γ ` w : A ∗ B; ∆

Assume that C(Π) = ({c1, . . . , ck},�), for some k ≥ 1, and the constraint gen-
erated by this rule application is G `?

R (x, y . w) and it corresponds to ci for some
i ∈ {1, . . . , k}. By the assumption, there is a solution (θ, {σ1, · · · , σk}) for the con-
straint system C = (C(Π),�Π). Now ci must be a simple constraint in C, as the end
sequent is ground. Let (θi, σi) be the solution to ci, where θi is a restriction to θ contain-
ing x and y, and σi ∈ {σ1, · · · , σk}. By definition of the solution to a simple constraint,
σi is a derivation of G `R (xθi, yθi . w). Therefore in LSsf

BBI, to derive the end sequent,
we apply ∗R backwards:

S(G, σi)||Γ ` xθi : A; w : A ∗ B; ∆ S(G, σi)||Γ ` yθi : B; w : A ∗ B; ∆
∗R

G||Γ ` w : A ∗ B; ∆

The condition on this rule is G `R (xθi, yθi . w). Now we construct the derivation
for both branches in the following way. Firstly we substitute x and y with xθi and yθi
respectively in Π1 and Π2, making the end sequents in the two derivations ground.
Let us refer to the modified derivations as Π′1 and Π′2 respectively. Then we add
S(G, σi) to the left hand side of each sequent in Π′1 and Π′2 and each constraint in
C(Π′1) ] C(Π′2). Let the resultant derivations be Π′′1 and Π′′2 respectively. Now the
end sequents of Π′′1 and Π′′2 are respectively just the same as the two branches we
created in the LSsf

BBI derivation. Moreover, each constraint in C(Π′′1 ) ] C(Π′′2 ) is in
the restricted constraint system C′ = (C ′,�′) = (C(Π),�Π) ↑ (ci, θi, σi), which has
a solution (θ \ θi, {σ1, · · · , σk} \ σi), and obeys the partial order �′. Further, as Π′′1
(resp. Π′′2 ) uses the same rule applications as in Π1 (resp. Π2), the order of constraints
is preserved. That is, in the constraints system C1 = (C(Π′′1 ),�Π′′1 ) (resp. C2 =
(C(Π′′2 ),�Π′′2 )), if c �Π′′1 c′ (resp. c �Π′′2 c′) then c �′ c′ in C′. Therefore we can
construct the solution (θ′′1 , Σ1) to C1 (and analogously to C2) as follows.

θ′′1 = (θ \ θi) ↑ f v(C(Π′′1 ))
Σ1 = {σ | c ∈ C(Π′′1 ), σ ∈ {σ1, · · · , σk} \ σi, and σ = dev(c)}.

By the induction hypothesis, we can obtain a LSsf
BBI derivation for each branch.
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To prove the completeness of FVLSBBI, we show that for every cut-free derivation
Π of a (ground) sequent in LSsf

BBI, there is a symbolic derivation Π′ of the same sequent
such that C(Π′) is solvable. It is quite obvious that Π′ should have exactly the same
rule applications as Π; the only difference is that some relational atoms are omitted
in the derivation, but instead are accumulated in the constraint system. Additionally,
some (new) labels are replaced with free variables. This is formalised as below.

Definition 4.4.6. Given a sequent in a LSsf
BBI derivation, let G be the set of its relational

atoms. We define GE as the subset of G that contains those ternary relational atoms created by
∗L, −∗ R, and >∗L. We define GS = G \ GE. We refer to GE as the essential subset of G, and
GS as the supplementary subset of G.

For a list L, we denote by head(L) the first element in the list L and tail(L) the list
of L without the first element, and end(L) the last element in L. We denote by L1@L2

the concatenation of two lists L1 and L2, and pre(x) the predecessor of x in a list L,
and suc(x) the successor of x in L.

Given a well-formed constraint system (C,�), we can define a partial order �v on
free variables of C as follows: x �v y iff c(x) � c(y). That is, free variables are ordered
according to their origins. The relations ≺v and lv are defined analogously to ≺ and
l, i.e., as the non-reflexive subset of �v and the successor relation.

Definition 4.4.7 (A thread of variables). Let C = (C,�) be a well-formed constraint sys-
tem, and let X be a list of free variables x1, . . . , xn, where n ≥ 0. Let �v be the partial order on
variables, derived from � . We say X is a thread of free variables of C (or simply a thread
of C) iff it satisfies the following conditions:

1. ∀x ∈ X, x ∈ f v(C)
2. For every i ∈ {1, . . . , n− 1}, xi lv xi+1

3. If n ≥ 1, then x1 is a minimum element and xn is a maximum element of �v

4. If n ≥ 1, then c(x1) is a minimum constraint in C.

A thread is effectively those variables that are generated along a certain branch in a
FVLSBBI symbolic derivation. It is not hard to verify that in a valid symbolic derivation
in FVLSBBI of a ground sequent, the set of free variables in any symbolic sequent in
the derivation can be linearly ordered as a thread.

Definition 4.4.8. Let C = (C1,�1) be a well-formed constraint system, let X be a thread
of C1, and C2 = (C2,�2) be a constraint system that satisfies monotonicity but may not be
well-formed, and that X consists of free variables in f v(C1) ∩ f v(C2). Assume that every
variable x in C2 but not in X satisfies the unique variable origin property, i.e., x originates
from a constraint in C2; while every variable y in C2 and in X does not have an origin in C2.
The composition of C1 and C2 along the thread X, written C1 ◦X C2, is the constraint system
(C,�) such that:

• C = C1 ] C2; and
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• Define a relation R as follows: for c1, c2 ∈ C, c1Rc2 iff either one of the following holds:

– c1 �1 c2,

– c1 �2 c2, or

– X is non-empty, y = end(X), c1 = c(y), c2 ∈ C2, and the left hand side of c1 is a
subset of the left hand side of c2.

Then define � to be the transitive closure of R.

This definition basically says that the composition of C1 and C2 along X is obtained
by simply ordering the constraints so that all constraints C2 are greater than c(y),
where y is the last variable in X. If X is empty, then C1 and C2 are independent, and
� is simply the union of �1 and �2 .

The next two lemmas follow from the definitions above.

Lemma 4.4.6. Let (C,�) be as defined in Definition 4.4.8. Then (C,�) is well-formed.

Proof. The case when X is empty is trivial, because in that case C1 and C2 are both well-
formed and independent, so their union satisfies monotonicity and unique variable
origin property. If X is non-empty, monotonicity holds because whenever c1 � c2 and
c1 ∈ C1 and c2 ∈ C2, the left hand side of c1 is a subset of the left hand side of c2.
Unique variable origin also holds because (1) all the free variables in C1, including
those in X, have unique origins in C1; (2) every free variable in C2 and also in X does
not have an origin in C2; and finally, (3) every free variable in C2 but is not in X has a
unique origin in C2.

Lemma 4.4.7. Let C = (C,�) be a well-formed constraint system and let X be a thread of C.
Let Π be a symbolic derivation such that the free variables in its end sequent are exactly those
in X. Then C ◦X C(Π) is well-formed.

Proof. Since Π is a symbolic derivation, C(Π) apparently satisfies monotonicity. The
free variables occurring in the end sequent of Π obviously do not have origins in C(Π),
and these free variables’ origins are only in C. Every free variable in Π but not in X
should have a unique origin in C(Π) because Π is a symbolic derivation. Thus by
Lemma 4.4.6, C ◦X C(Π) is well-formed.

Definition 4.4.9. Let C = (C,�) be a well-formed constraint system and let S = (θ, {~σ}) be
its solution. Let X be a thread of C. Define a set of relational atoms S∗(C, S, X) inductively
by the length n of X as follows:

• If n = 0 then S∗(C, S, []) = ∅
• Suppose n > 0. Let head(X) = x. Then c(x) ∈ C is a minimum constraint of C, and

there exists σx ∈ {~σ} such that (θx, σx) is a solution to c(x), where θx = θ ↑ f v(c(x)).
In this case, S∗(C, S, X) is defined as follows.

S∗(C, S, X) = S(G(c(x)), σx) ∪ S∗(C ↑ (c(x), θx, σx), S′, tail(X))
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where S′ = (θ \ θx, {~σ} \ {σx}).

Notice that by the definition of restriction to a constraint system, every time a
minimum constraint cx is eliminated in the second clause in the above definition,
S(G(cx), σx) is also added to the left hand side of every successor constraints of cx

in C. Therefore it is straightforward that the following proposition holds.

Proposition 4.4.8. Let C = (C,�) be a well-formed constraint system. Let G = S∗(C, S, X),
for some thread X of C, let xe = end(X) and let S = (θ, {⇀σ}) be a solution to C. Let
c = Gc `?

R Cc be a constraint not in C, the l.h.s. of c(xe) is a subset of Gc, and Gc only contains
free variables that occur in C. Let x be a new variable occurring only on the right hand side of
c. Let C′ = (C ′,�′) be the following constraint system:

• C ′ = C ] {c};
• �′ is the smallest extension of � such that c(xe)l c.

Let (θx, σx) be the solution to c′ = G ∪ Gcθ `?
R Ccθ, S′ = (θ ∪ θx, {⇀σ , σx}), and X′ = X@[x].

Then S∗(C′, S′, X′) = S(G ∪ Gcθ, σx).

Observe first that C′ is a well-formed constraint system: it satisfies monotonicity
because the l.h.s. of c(xe) is a subset of Gc; it satisfies the unique variable origin
property because every free variable in Gc has a unique origin in C, and any free
variable in c that does not occur in C (which must occur in Cc) has the unique origin
c. This proposition says that when we have eliminated (solved) all the constraints
but the last one c in a constraint system C′, we have the current accumulated and
substituted l.h.s. G of eliminated constraints, a set θ of free variable substitutions,
and structural rule applications

⇀
σ . The only remaining things are to apply θ on Gc

to eliminate previously solved free variables, take the union G ∪ Gcθ, and apply the
remaining structural rule applications σx to obtain the final set of relational atoms,
which by definition is S∗(C′, S′, X′).

Finally, we present the completeness proof for the free variable system FVLSBBI.

Theorem 4.4.9. Let Π be a derivation of a sequent in LSsf
BBI. Then there exists a symbolic

derivation Π′ of the same sequent such that C(Π′) is solvable.

Proof. We describe the construction from a LSsf
BBI derivation Π to a FVLSBBI derivation

Π′. We need to prove a stronger invariant: for each sequent GE;GS||Γ ` ∆ in Π, if there
exists a triple consisting of:

(1) a symbolic sequent G ′E||Γ′ ` ∆′,
(2) a well-formed constraint system C = (C,�),
(3) and a solution S = (θ, {⇀σ}) to C

such that
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(I) there exists a thread X of C consisting of f v(G ′E||Γ′ ` ∆′),
(II) G ′Eθ = GE, Γ′θ = Γ, ∆′θ = ∆ and

(III) GE ∪ GS = S∗(C, S, X),

then there is a symbolic derivation Ψ of G ′E||Γ′ ` ∆′ such that C ◦X C(Ψ) is well-formed
and solvable.

First of all, by Lemma 4.4.7, since the end sequent in Ψ only contains the free
variables occurring in X, the composition C ◦X C(Ψ) must be well-formed. Further,
any minimum constraint c in Ψ follows end(X) in the partial order � of the composed
constraint system since the l.h.s. of c must include the l.h.s. of end(X). Thus we only
need to show that there is a solution to the composed constraint system. We prove
this by a case analysis on the last rule in Π, and show that in each case, for each
premise of the rule, one can find a triple satisfying the above property, such that the
symbolic sequent(s) in the premise(s), together with the one in the conclusion form
a valid inference in FVLSBBI. We illustrate here with a non-trivial case when Π ends
with ∗R. Suppose the derivation Π runs as:

Π1

S((GE;GS), σ)||Γ ` w1 : A; w : A ∗ B; ∆
Π2

S((GE;GS), σ)||Γ ` w2 : B; w : A ∗ B; ∆
∗R

GE;GS||Γ ` w : A ∗ B; ∆

and the relational entailment is GE;GS `R (w1, w2 . w). Suppose that the relational
atoms in the premises are derived via σ. Suppose further that we can find a triple
consisting of (1) a symbolic sequent G ′E||Γ′ ` w : A ∗ B; ∆′, (2) a well-formed constraint
system C = (C,�), and (3) a solution S = (θ, {σ1, . . . , σn}) to C, satisfying the fol-
lowing: (I) X is a thread of C consisting of f v(G ′E||Γ′ ` w : A ∗ B; ∆′), (II) G ′Eθ = GE,
Γ′θ = Γ, ∆′θ = ∆, w = wθ, and (III) GE ∪ GS = S∗(C, S, X). We need to show that we
can find such triples for the premises, and more importantly, the symbolic sequents in
the premises are related to the symbolic sequent in the conclusion via ∗R. In this case,
the symbolic sequents are simply the following:

1. G ′E||Γ′ ` x : A; w : A ∗ B; ∆′, for the left premise,
2. G ′E||Γ′ ` y : A; w : A ∗ B; ∆′, for the right premise.

The constraint systems are: C′ = (C ] {cj},�′) for both premises, where cj = G ′E `?
R

(x, y .w) and �′ is � extended with c(end(X)) �′ cj. The solutions, for both premises,
are the tuple S′ = (θ′, Σ) where θ′ = θ ∪ {x 7→ w1, y 7→ w2} and Σ = {σ1, . . . , σn, σ}.
It is guaranteed that θ′ is enough to make both premises grounded, as x and y are
the only two new free variables. The threads of free variables X1 and X2 for the two
premises are naturally X@[x] and X@[y] respectively. By Proposition 4.4.8, in each
premise, the following holds:

GE ∪ G ′S = S(GE ∪ GS, σ) = S(GE ∪ GS ∪ G ′Eθ, σ) = S∗(C′, S′, X1) = S∗(C′, S′, X2).
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So by the induction hypothesis we have a symbolic derivation Π′1 for sequent (1) and
a symbolic derivation Π′2 for sequent (2), such that Cβ1 = C′ ◦X1 C(Π′1) and Cβ2 =
C′ ◦X2 C(Π′2) are both solvable. Suppose the solutions are respectively (θ′ ∪ θ1, Σ∪ Σ1)
and (θ′ ∪ θ2, Σ ∪ Σ2). Then construct Π′ by applying the ∗R rule to Π′1 and Π′2. Note
that the variables created in Π′1 are Π′2 are distinct so their constraints are independent
of each other. So we can construct Cp = C(Π′1) ◦∅ C(Π′2) = (Cp,�p), along an empty
thread ∅. Now C(Π′) is obtained as (Cp ] {cj},�Π′), where �Π′ is derived as follows.

• If c �p c′ in Cp, then c �Π′ c′ in C(Π′)
• For any minimum constraint cm in Cp, cj �Π′ cm in C(Π′).

The solution to Cα = C ◦X C(Π′) is constructed as the combination of the solutions
to Cβ1 and Cβ2: (θ′ ∪ θ1 ∪ θ2, Σ ∪ Σ1 ∪ Σ2). This construction of the solution is indeed
valid, because the symbolic derivation that gives Cα also yields exactly Cβ1 and Cβ2

(respectively on its two branches created by the ∗R rule).

4.5 A Heuristic Method for Proof Search

In this section, we first give an example of deriving a formula and solving the gener-
ated constraints in FVLSBBI based on a heuristic method, in which constraints gener-
ated by zero-premise rules are solved first, then the constraints from logical rules are
solved based on what we have gained in the solved constraints. We then extend this
idea and formalise it in the remainder of this section.

Consider again the constraint system in Example 4.4.4, which is generated from the
symbolic derivation in Figure 4.7. Our heuristic constraint solving method differs from
the naive method in two aspects. Firstly, we start by solving the constraints generated
by zero-premise rules. Since the constraints c3, c4, c5 are required by the id rule, we
must accept them by assigning x5, x7, x8 to a3, a4, a2 respectively. Then we are only left
with the constraints c1 and c2. In the following, we shall write (a1, a2 . a0); (a3, a4 . a1)
as G1, and (a3, x6 . a0); (a2, a4 . x6) as G2. Now x6 is the only remaining free variable.
We can apply the rule A (upwards) on G1 to obtain (a3, w . a0); (a2, a4 .w), where w is a
new label. Then apply the rule E (upwards) to obtain (a4, a2 . w). The two constraints
can be solved by the above derivation and assigning w to x6.

The second novelty of our heuristic method is that we view a set of relational atoms
as trees, and in certain cases, we can solve the constraints by only looking at the root
and the leaves, ignoring the internal structure of the trees. For the running example,
G1 is a tree tr1 with root a0 and leaves {a2, a3, a4}, which are exactly the same as the
tree tr2 of G2, although the internal structures of tr1 and tr2 are different. We will show
in Lemma 4.5.2 that, since every internal node in tr2 is a unique free variable, and there
are no ε labels in tr2, it is guaranteed that there exists a sequence of structural rule
applications on G1 to obtain a tree tr′1, which has the same structure as tr2, but only
differing in the labels of internal nodes. Hence we can assign the labels of internal
nodes in tr′1 to the corresponding free variables in tr2. The labels of nodes in tr′1 may
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be existing labels occurring in tr1, or fresh labels created by A, AC applications. We
will first try to match the free variables in tr2 with existing labels in tr1, if this is not
possible, we will assign the free variable to a fresh label. In the example, x6 cannot be
matched to any existing label, so we can globally replace x6 with a fresh label w, and
add G2 to the left hand side of the successor constraints of c1 in the partial order �. The
advantage of this process is that we do not care about the structural rule applications
to obtain tr′1 at all, but we know that the fresh label w as in the previous paragraph
must exist and can substitute x6.

We can extend this method to a chain of multiple relational atoms which form a
labelled binary tree.

We define a labelled binary tree as a binary tree where each node is associated
with a label. Each node in a labelled binary tree has a left child and a right child. The
minimum labelled binary tree has a root and two leaves, which corresponds to a single
relational atom. We define the following function inductively from a labelled binary
tree to a set of relational atoms.

Definition 4.5.1. Let tr be a labelled binary tree, the set Rel(tr) of relational atoms w.r.t. tr is
defined as follows.

• (Base case): tr only contains a root node labelled with r and two leaves labelled with a, b
respectively. Then Rel(tr) = {(a, b . r)}

• (Inductive case): tr contains a root node labelled with r and its left and right children
labelled with a and b respectively. Then Rel(tr) = Rel(tra) ∪ Rel(trb) ∪ {(a, b . r)},
where tra and trb are the subtrees rooted at, respectively, the left child and the right child
of the root node of tr.

The width of a labelled binary tree is defined as the number of leaves in the tree. A
labelled binary tree is a variant of another labelled binary tree if either they are exactly
the same, or they differ only in the labels of the internal nodes.

We say that a set R of relational atoms forms a labelled binary tree tr when R =
Rel(tr). In this case, the leaves in tr are actually a “splitting” of the root node. Com-
mutativity and associativity guarantee that we can split a node arbitrarily, as long as
the leaves in the tree are the same. Moreover, since all internal nodes are free variables,
we can assign them to either existing labels or fresh labels (created by A, AC) without
clashing with existing relational atoms.

In the following proofs we use the tree representation of a set of relational atoms.
Given a labelled binary tree tr as defined above, we say another labelled binary tree
tr′ is a permutation of tr if they have the same root and same multiset of leaves. A
permutation on tr is generally done by applying the rules E, A on Rel(tr). Figure 4.8
gives some examples on tree permutations. In Figure 4.8, (b) is permuted from (a) by
using E on (d, e . b), whereas (c) is permuted from (a) by using A on the two relational
atoms in the original tree.
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Figure 4.8: Examples of tree permutations.

Lemma 4.5.1. Let tr be a labelled binary tree with a root labelled with r and a multiset L
of labels for the leaves. If there is a labelled binary tree tr′ with the same root and leaf labels
respectively, then there is a variant tr′′ of tr′ and a sequence σ of E, A rule applications such
that Rel(tr′′) ⊆ S(Rel(tr), σ).

Proof. Prove by induction on the width of the tree tr. We show that any distinct
permutation (i.e., they are not variants of each other) of a tree can be achieved by
using the rules E and A. Base case is when there are only two leaves in tr. In this
case, there is only one relational atom in Rel(tr), thus clearly there is only one distinct
permutation of tr, which can be obtained by applying E on Rel(tr).

The next case is when there are 3 leaves in the tree, meaning Rel(tr) contains
two relational atoms. In this case, it can be easily checked that there are 12 distinct
permutations of tr, all of which can be derived by using E and A.

Inductive case, suppose the lemma holds for all trees with width less than n, con-
sider a tree tr with width n. Suppose further that the root label of tr is r, it’s two
children are in the relational atom (w1, w2 . r), and the multisets of leaves labels for
the subtrees of w1 and w2 are L1, L2 respectively. Let tr′ be a permutation of tr with
the same root label and leaves labels, and in tr′ the two children of the root label are
in the relational atom (w3, w4 . r). Suppose the multisets of leaf labels for the subtrees
of w3, w4 are L3, L4 respectively. Apparently, since L1 ∪ L2 = L3 ∪ L4 = L, every label
in L3 is either in L1 or in L2. Let L′ = L1 ∩ L3 and L′′ = L2 ∩ L3, then L′ ∪ L′′ = L3

and (L1 \ L′) ∪ (L2 \ L′′) = L4. By the induction hypothesis on the subtrees of w1 and
w2, there exist w5, w6, w7, w8 s.t. (w5, w6 . w1), (w7, w8 . w2) hold, and the subtrees of
w5, w6, w7, w8 give the multisets of leaves L′, (L1 \ L′), L′′, (L2 \ L′′) respectively. Then
we use the following derivation to permute the tree:
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(w′′, w′′′ . r); (w6, w8 . w′′′); (w5, w7 . w′′); · · ·
A

(w′, w6 . r); (w′′, w8 . w′); (w5, w7 . w′′); · · ·
E× 2

(w6, w′ . r); (w8, w′′ . w′); (w5, w7 . w′′); · · ·
A

(w6, w′ . r); (w2, w5 . w′); (w8, w7 . w2); · · ·
E

(w6, w′ . r); (w2, w5 . w′); (w7, w8 . w2); · · ·
A

(w6, w5 . w1); (w7, w8 . w2); (w1, w2 . r); · · ·
E

(w5, w6 . w1); (w7, w8 . w2); (w1, w2 . r); · · ·
Now the subtrees of w′′ and w′′′ has the same multisets of leaves as w3 and w4 respec-
tively. Again by the induction hypothesis on the subtrees of w′′ and w′′′, we obtain a
tree tr′′ which is a variant of tr′.

Our heuristic method is proved correct as below.

Lemma 4.5.2. Given constraints c1 l · · ·l cn with G = G(c1) = · · · = G(cn) where the
r.h.s. of these constraints gives the set R of relational atoms, the constraints c1, · · · , cn are
solvable if the following hold:

1. R = Rel(tr), for some labelled binary tree tr where every internal node label is a free
variable x which only occurs once in tr, and c1 � c(x).

2. The other node labels in tr are non-ε labels.
3. There exist G ′ ⊆ G and tr′ such that G ′ = Rel(tr′) and tr′ has the same root and leaves

as tr.

Proof. The lemma restricts the labels of internal nodes to be free variables that are
created after all the labels on the left hand side. Additionally, each free variable is only
allowed to occur once in a tree. Therefore given a set G of relational atoms as the left
hand side of those constraints, and any sequence σ of structural rule applications, the
free variable labels for internal nodes can be assigned to any labels occur in S(G, σ).
By Lemma 4.5.1, there exists a sequence σ of E, A applications which converts the tree
on the left hand side to a tree which is a variant of the one on the right hand side, thus
those constraints can be solved by assigning the free variables to the corresponding
labels in the variant tree.

Although incomplete, our heuristic method can solve constraints quickly in many
cases, as will be demonstrated in the next section.

4.6 Experiments

We used a Dell Optiplex 790 desktop with Intel CORE i7 2600 @ 3.4 GHz CPU and 8GB
memory as the platform, and tested the following provers on the formulae from Park
et al. [77]:

BBeye: the OCaml prover from Park et al. based upon nested sequents [77];
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Formula BBeye Naive FVLSBBI
(opt) (Vamp) Heuristic

(P−∗ Q) ∧ (> ∗ (>∗ ∧ P))→ Q d(2) 0 0.003 0.001
(>∗−∗ ¬(¬P ∗ >∗))→ P d(2) 0 0.003 0.000
¬((P−∗ ¬(P ∗Q)) ∧ ((¬P−∗ ¬Q) ∧Q)) d(2) 0 0.004 0.001
>∗ → ((P−∗ (Q−∗ R))−∗ ((P ∗Q)−∗ R)) d(2) 0.015 0.017 0.001
>∗ → ((P ∗ (Q ∗ R))−∗ ((P ∗Q) ∗ R)) d(2) 0.036 0.006 0.000
>∗ → ((P ∗ ((Q−∗ V) ∗ R))−∗ ((P ∗ (Q−∗ V)) ∗ R)) d(2) 0.07 0.019 0.001
¬((P−∗ ¬(¬(U−∗ ¬(P ∗ (R ∗Q))) ∗ P)) ∧ R ∗ (U ∧ (P ∗Q))) d(2) 0.036 0.037 0.001
¬((R ∗ (U ∗V)) ∧ B) where d(2) 0.016 0.075 0.039
B := ((P−∗ ¬(¬(Q−∗ ¬(U ∗ (V ∗ R))) ∗ P)) ∗ (Q ∧ (P ∗ >)))
¬(C ∗ (U ∧ (P ∗ (Q ∗V)))) where d(3) 96.639 0.089 0.038
C := ((P−∗ ¬(¬(U−∗ ¬((R ∗V) ∗ (Q ∗ P))) ∗ P)) ∧ R)
(P ∗ (Q ∗ (R ∗U)))→ (U ∗ (R ∗ (Q ∗ P))) d(2) 0.009 0.048 0.001
(P ∗ (Q ∗ (R ∗U)))→ (U ∗ (Q ∗ (R ∗ P))) d(3) 0.03 0.07 0.001
(P ∗ (Q ∗ (R ∗ (U ∗V))))→ (V ∗ (U ∗ (P ∗ (Q ∗ R)))) d(3) 1.625 1.912 0.001
(P ∗ (Q ∗ (R ∗ (U ∗V))))→ (V ∗ (Q ∗ (P ∗ (R ∗U)))) d(4) 20.829 0.333 0.001
>∗ → (P ∗ ((Q−∗ V) ∗ (R ∗U))−∗ ((P ∗U) ∗ (R ∗ (Q−∗ V)))) d(3) 6.258 0.152 0.007

Table 4.1: Initial experimental results.

Naive (Vamp): translates a BBI formula into a first-order formula based on the Kripke
semantics of BBI. Then uses Vampire 2.6 [50] to solve it;

FVLSBBI Heuristic: backward proof search in FVLSBBI, using the heuristic-based method
to solve the set of constraints, implemented in OCaml.

The results are shown in Table 4.1. The BBeye (opt) column shows the results
from Park et al’s prover where the d() indicates the depth of proof search. The other
two columns are for the two methods stated above. We see that naive translation is
comparable with BBeye in most cases, but the latter is not stable. When the tested
formulae involves more interaction between structural rules, BBeye runs significantly
slower. The heuristic method outperforms all other methods in the tested cases.

Nonetheless, our prover is slower than BBeye for formulae which contain many
occurrences of the same atomic formulae, giving (id) instances such as:

Γ; w1 : P; w2 : P; · · · ; wn : P ` x : P; ∆

We have to choose some wi to match with x without knowing which choice satisfies
other constraints. In the worst case, we have to try each using backtracking. Multiple
branches of this form lead to a combinatorial explosion. Determinising the concrete
labels (worlds) for formulae in proof search in LSBBI or BBeye [77] avoids this problem.
Further work is needed to solve this in FVLSBBI.

Even though we do not claim the completeness of our heuristics method, it appears
to be a fast way to solve certain problems. Completeness can be restored by fully
implementing LSBBI or FVLSBBI. The derivations in LSBBI are generally shorter than
those in the Display Calculus or Nested Sequent Calculus for BBI. The optimisations
of the implementation, however, is out of the scope of this chapter.
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4.7 Discussion and Related Work

The main contribution of this chapter is a labelled sequent calculus for BBIND that is
sound, complete, and enjoys cut-elimination. There are no explicit contraction rules in
LSBBI and all structural rules can be restricted so that proof search is entirely driven
by logical rules. We further propose a free variable system to restrict the proof search
space so that some applications of ∗R,−∗ L rules can be guided by zero-premise rules.
Although we can structure proof search to be more manageable compared to the un-
restricted (labelled or display) calculus, the undecidability of BBI implies that there is
no terminating proof search strategy for a sound and complete system. The essence of
proof search resides in guessing which relational atoms to use in the ∗R and −∗ L rules
and whether they need to be applied more than once to a formula. Nevertheless, our
initial experimental results raise the hope that a more efficient proof search strategy
can be developed based on our calculus.

In the literature, the purely syntactic proof theory of BBI comes in three flavours:
Hilbert calculi [84, 36] (cf. Section 2.2), display calculi [16] (cf. Section 2.3) and
nested sequent calculi [77] (cf. Section 3.4). All are sound and complete w.r.t. the
ND-semantics.

In between the relational semantics and the purely syntactic proof theory are the
labelled tableaux of Larchey-Wendling and Galmiche which are sound and complete
w.r.t. the PD-semantics [61, 60]. They remark that “the adaptation of this tableau
system to BBITD should be straightforward (contrary to BBIND)” [63]. Their labelled
tableau calculus can be converted into a labelled sequent calculus that has the same
set of logical rules as that of LSBBI. The difference lies in the rules for capturing the
semantics. Our structural rules directly encode the properties of the non-deterministic
monoidal semantics of BBI (i.e., identity, commutativity, and associativity) by explic-
itly using ternary relational atoms. In comparison, Larchey-Wendling and Galmiche’s
tableau calculus indirectly captures the partial-deterministic semantics via a set of
rules for Partial Monoidal Equivalences (PMEs). Their rules do not employ ternary rela-
tions, but treat a combination of worlds as a string, building in the partial-determinism
reading. This could be part of the reason why their tableau calculus can be further
specialised to capture other properties in separation theories, but it is hard to be gen-
eralised to capture the non-deterministic semantics. The tableau method also differs
from ours in that its completeness is proved via a counter-model construction, whereas
our completeness is proved by simulating the Hilbert system for BBI. We shall see
later that there does not exist a Hilbert system for BBIPD, thus their counter-model
construction is necessary.

The display postulates and other structural rules of display calculi, especially the
contraction rules on structures, are impractical for backward proof search. Display
postulates shuffle structures in a sequent, whereas contraction rules copy structures
from the conclusion to the premise. These rules are applicable at any stage of the
proof search, and they can easily generate redundant derivations when one is not
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clear which inference rule to use. Hence it is hard to give a systematic proof search
procedure without controlling these rules. Nested sequents usually face similar prob-
lems with the contraction rules and propagation rules, and although Park et al. [77]
showed the admissibility of contraction in an improved nested sequent calculus, that
calculus contains other rules that explicitly contract structures. Their iterative deep-
ening automated theorem prover for BBI based on nested sequents is terminating and
incomplete for bounded depths, but complete and potentially non-terminating for
an unbounded depth [77]. The labelled tableaux of Larchey-Wendling and Galmiche
compile all structural rules into PD-monoidal constraints, and are cut-fee complete for
BBIPD using a potentially infinite counter-model construction [60]. But effective proof
search is only a “perspective” and is left as further work [60, page 2].

Our labelled sequent calculus LSBBI for BBI adopts some features from existing la-
belled tableaux for BBI [61] and existing labelled sequent calculi for modal logics [72].
Unlike these calculi, some LSBBI-rules contain substitutions on labels. From a proof-
search perspective, labelled calculi are no better than display calculi since they require
extra-logical rules to explicitly encode the frame conditions of the underlying (Kripke)
semantics. Such rules, which we refer to simply as structural rules, are just as bad
as display postulates for proof search since we may be forced to explore all potential
models and our structural rules may generate unnecessary relational atoms in proof
search. As a step towards our goal, we showed that the applications of these structural
rules can be localised around logical rules. Thus these structural rules are only trig-
gered by applications of logical rules, leading to a purely syntax-driven proof search
procedure for LSBBI in which all the rule applications in proof search are decided by
the logical connectives (the syntax), and redundant derivations caused by structural
rules are reduced.

Our work is novel from two perspectives. Compared to the labelled tableaux of
Larchey-Wendling and Galmiche, we deal with the non-deterministic semantics of BBI,
which they have flagged as a difficulty, and we obtain a constructive cut-elimination
procedure. Compared to the nested sequent calculus of Park et al., our calculus has
much simpler structural rules. Some of Park et al.’s structural rules and traverse
rules involve copying structures. When made contraction free, these rules (especially
EAC) are extraordinarily long and complicated. Our structural rules directly capture
the semantics using ternary relational atoms, thus they are very intuitive and easy to
read. As a result, our calculus generally gives much shorter derivations for the same
formula than Park et al.’s calculus. Note that Park et al. actually gave a labelled variant
of their nested sequent calculus, with the same logical rules as ours. However, their
structural rules are still just notational variants of the original ones, which are lengthy
and do not use ternary relations.

An immediate task is to find a complete and terminating (if possible) constraint
solving strategy. We will return to this issue in Chapter 8.

Another interesting topic is to extend our calculus to handle some semantics other
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(a, b . c)[c/d]; Γ[c/d] ` ∆[c/d]
P

(a, b . c); (a, b . d); Γ ` ∆
(a, b . c); Γ ` ∆

T
Γ ` ∆

(ε, ε . ε); Γ[ε/a][ε/b] ` ∆[ε/a][ε/b]
IU

(a, b . ε); Γ ` ∆
(a, b . c)[b/d]; Γ[b/d] ` ∆[b/d]

C
(a, b . c); (a, d . c); Γ ` ∆

In T, a, b do occur in the conclusion but c does not
In all substitutions [y/x], x 6= ε

Figure 4.9: Some auxiliary structural rules.

than the non-deterministic monoidal ones. Our design of the structural rules in LSBBI
can be generalised as follows. If there is a semantic condition of the form (w11, w12 .
w13) ∧ · · · ∧ (wi1, wi2 . wi3) ⇒ (w′11, w′12 . w′13) ∧ · · · ∧ (w′j1, w′j2 . w′j3) ∧ (x11 = x12) ∧
· · · ∧ (xk1 = xk2), we create a rule:

(w′11, w′12 . w′13); · · · ; (w′j1, w′j2 . w′j3); (w11, w12 . w13); · · · ; (wi1, wi2 . wi3); Γ ` ∆
r

(w11, w12 . w13); · · · ; (wi1, wi2 . wi3); Γ ` ∆

And apply substitutions [x12/x11] · · · [xk2/xk1] globally on the premise, where ε is not
substituted. Many additional features can be added in this way. We summarise the
following desirable ones:

PD-semantics: the composition of two elements is either the empty set or a singleton,
i.e., (a, b . c) ∧ (a, b . d)⇒ (c = d);

TD-semantics: the composition of any two elements is always defined as a singleton,
i.e., ∀a, b, ∃c s.t. (a, b . c);

Indivisible unit: (a, b . ε)⇒ (a = ε) ∧ (b = ε);
Cancellativity: if w ◦ w′ is defined and w ◦ w′ = w ◦ w′′, then w′ = w′′, i.e., (a, b . c) ∧

(a, d . c)⇒ (b = d).

Note that TD-semantics are in addition to PD-semantics, so is our definition of can-
cellativity. The above are formalised in the rules P, T, IU, C respectively in Figure 4.9.

The formula (F ∗ F) → F, where F = ¬(>−∗ ¬>∗), differentiates BBIND and
BBIPD [62] and is provable using LSBBI + P. Using LSBBI + P + T, we can prove
(¬>∗−∗ ⊥)→ >∗ and (>∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥) ∨ (q−∗ ⊥)), which are valid
in BBITD but not in BBIPD [62, 21]. These additional rules do not break cut-elimination.
The derivations for the formulae above are shown below.

1. To prove the formula (F ∗ F)→ F, where F = ¬(>−∗ ¬>∗), we use the following
derivation in LSBBI:
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(w′, w′′ . ε); (b′, c′ . w′′); (b, c . w′); (b, c . a); · · ·
A

(w′, c′ . w); (w, b′ . ε); · · ·
E2

(c′, w′ . w); (b, c . w′); (b′, w . ε); · · ·
A

(b′, w . ε); (ε, b . w); (c′, c . ε); · · ·
A

(b, c . a); (b′, b . ε); (c′, c . ε); (ε, ε . ε); · · ·
U

(b, c . a); (b′, b . ε); (c′, c . ε); a : >−∗ ¬>∗; b′ : >, c′ : > `
>∗L2

(b, c . a); (b′, b . b′′); (c′, c . c′′); a : >−∗ ¬>∗; b′ : >, c′ : >; b” : >∗; c′′ : >∗ `
¬R2

(b, c . a); (b′, b . b′′); (c′, c . c′′); a : >−∗ ¬>∗; b′ : >, c′ : > ` b′′ : ¬>∗; c′′ : ¬>∗
−∗ R2

(b, c . a); a : >−∗ ¬>∗ ` b : >−∗ ¬>∗; c : >−∗ ¬>∗
¬L2;¬R

(b, c . a); b : ¬(>−∗ ¬>∗); c : ¬(>−∗ ¬>∗) ` a : ¬(>−∗ ¬>∗)
∗La : F ∗ F ` a : F → R` a : (F ∗ F)→ F

The top sequent above the A rule instance contains only one non-atomic formula:
a : >−∗ ¬>∗ on the left hand side. The correct relational atom that is required to
split a : >−∗ ¬>∗ is (w′′, a . ε). However, in the labelled sequent calculus we can
only obtain (w′′, w′ . ε). Although w′ and a both have exactly the same children,
but the non-deterministic monoid allows the composition b ◦ c to be multiple
elements, or even ∅ in M. Thus we cannot conclude that w′ = a. This can be
solved by using P to replace w′ by a, then use E to obtain (w′′, a . ε) on the left
hand side of the sequent, then the derivation can go through:

>∗R
(w′′, a . ε); · · · ;` ε : >∗

¬L
(w′′, a . ε); · · · ; ε : ¬>∗ ` >R

(w′′, a . ε); · · · ` w′′ : >
−∗ L

(w′′, a . ε); · · · ; a : >−∗ ¬>∗; b′ : >, c′ : > `

2. The trick to prove (¬>∗−∗ ⊥)→ >∗ is to create a relational atom (w, w . w′), as
shown below.

>∗R
(ε, ε . w′); · · · ` ε : >∗

>∗L
(w, w . w′); · · · ; w : >∗ ` w : >∗

¬R
(w, w . w′); · · · ` w : ¬>∗; w : >∗ ⊥L

(w, w . w′); · · · ; w′ : ⊥ ` w : >∗
−∗ L

(w, w . w′); w : ¬>∗−∗ ⊥ ` w : >∗
Tw : ¬>∗−∗ ⊥ ` w : >∗ → R` w : (¬>∗−∗ ⊥)→ >∗

3. The proof for (>∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥) ∨ (q−∗ ⊥)) is as follows.
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id· · · ; c : q ` c : q; · · · id· · · ; a : p ` a : p; · · ·
∗R

(a, c . e); · · · ; a : p; c : q ` e : p ∗ q; · · · ⊥L· · · e : ⊥ ` · · ·
−∗ L

(e, ε . e); (a, c . e); (a, ε . b); (c, ε . d); ε : (p ∗ q)−∗ ⊥; a : p; c : q ` b : ⊥; d : ⊥
U

(a, c . e); (a, ε . b); (c, ε . d); ε : (p ∗ q)−∗ ⊥; a : p; c : q ` b : ⊥; d : ⊥
T

(a, ε . b); (c, ε . d); ε : (p ∗ q)−∗ ⊥; a : p; c : q ` b : ⊥; d : ⊥
−∗ R2

ε : (p ∗ q)−∗ ⊥ ` ε : p−∗ ⊥; ε : q−∗ ⊥
>∗L

w : >∗; w : (p ∗ q)−∗ ⊥ ` w : p−∗ ⊥; w : q−∗ ⊥
∧L;∨R

w : >∗ ∧ ((p ∗ q)−∗ ⊥) ` w : (p−∗ ⊥) ∨ (q−∗ ⊥)
→ R` w : (>∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥) ∨ (q−∗ ⊥))

We will continue to discuss how to handle the above properties in Chapter 6.
Oddly, the formula ¬(>∗ ∧ A∧ (B ∗ ¬(C−∗ (>∗ → A)))), which is valid in BBIND,

is very hard to prove in the display calculus and Park et al.’s method. We ran this
formula using Park et al.’s prover for a week on a CORE i7 2600 processor, without
success. Very short proofs of this formula exist in LSBBI or Larchey-Wendling and
Galmiche’s labelled tableaux (this formula must also be valid in BBIPD), as below.

id
(c, b . ε); (a, b . ε); ε : A; a : B; c : C ` ε : A

>∗L
(c, b . d); (a, b . ε); ε : A; a : B; c : C; d : >∗ ` d : A

→ R
(c, b . d); (a, b . ε); ε : A; a : B; c : C ` d : >∗ → A

−∗ R
(a, b . ε); ε : A; a : B ` b : C−∗ (>∗ → A)

¬L
(a, b . ε); ε : A; a : B; b : ¬(C−∗ (>∗ → A)) `

∗L
ε : A; ε : B ∗ ¬(C−∗ (>∗ → A)) `

>∗L
w : >∗; w : A; w : B ∗ ¬(C−∗ (>∗ → A)) `

∧L
w : >∗ ∧ A ∧ (B ∗ ¬(C−∗ (>∗ → A))) `

¬R` w : ¬(>∗ ∧ A ∧ (B ∗ ¬(C−∗ (>∗ → A))))

We are not sure what caused the above phenomenon. It might be that a proof for this
formula exists in Park et al.’s nested sequent calculus and the display calculus and the
Hilbert system, but the proof is too complicated to be found in days by a computer.
Another possibility is that there is a bug in Park et al.’s implementation, or in their
completeness proof. The worst situation, which was discussed through our private
communication with Park at POPL14, is that Park et al.’s nested sequent calculus,
Brotherston’s display calculus, and the Hilbert system are all sound and complete
with respect to each other, but the non-deterministic semantics do not correspond to
these proof theories of BBI. Nonetheless, we shall focus on our own problems in this
dissertation and leave this as future work.



Chapter 5

Separation Logic

Having discussed some proof methods for BBI in the previous chapters, we can now
move on to consider one of the most successful applications of BBI: separation logic
(SL). Reynolds, Ishtiaq, O’Hearn, and Yang etc. introduced separation logic as an
extension of Hoare logic, which is a widely used method to reason about computer
programs with its well-known Hoare triple:

{P}C{Q}

where P and Q are called the precondition and the postcondition respectively, both
of which are assertions typically formulated in first-order logic, and C is a piece of
program code. Separation logic further employs the multiplicative connectives from
BBI in its assertion language to reason about resources such as memory addresses. It
also supports program commands to read and write memory addresses, thus it is able
to deal with long-standing troubles in program verification such as reasoning about
pointers and aliasing. Within years of research, separation logic quickly became a hot
topic and well-developed branch in program verification. There have been numerous
proof methods and automated reasoning tools for the assertion language of SL. But
existing tools, although some support complicated features such as arbitrary inductive
predicates, do not consider the full spectrum of logical connectives. Therefore in the
following chapters we will fill in this blank by extending our labelled sequent calculus
for BBI to reason about the assertion language of separation logic.

Here is the story of separation logic from the beginning of Chapter 2 retold, but
now you may have a better understanding of this logic. The early version of separation
logic is formalised as an extension of Hoare logic to reason about shared mutable data
structures intuitionistically [87] via assertions from BI and the “points-to” predicate

e1 7→ e2

to express that the value of expression e1 is a memory address that holds the value of
expression e2 as the content. Ishtiaq and O’Hearn then gave a classical version based
on BBI that is more powerful and is able to express storage deallocation [54]. This idea
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later went through several evolutions [76] and finally was formalised as separation
logic [88].

The story, of course, did not end there. The reader may have observed that we have
talked about more than one flavour of separation logic. Even the classical flavour intro-
duced by Ishtiaq [54], O’Hearn [76], and Reynolds [88] all have slight differences. The
growing interest in separation logic later raised a vast array of papers using separation
logic to verify programs. Many of those papers either added new features or made
certain modifications to separation logic to fit in their scenario. As a consequence,
when we say “separation logic” now, it may not ring a bell for a particular logic, but
more often it refers to “a zoo of logics” [55]. Finding the right core principles and pro-
viding abstract specifications of separation logics then became a trend [79]. Calcagno,
O’Hearn and Yang started a thread of abstract separation logic, which does not have
the 7→ predicate to describe concrete heaps, but still uses BBI as the core of the as-
sertion logic with two extra properties: partial-determinism and cancellativity [24].
Dockins et al. extended these properties with some other properties that are found
useful in various settings [32], these properties were then summarised by Brotherston
and Villard as a separation theory [22].

This chapter first introduces Reynolds’s separation logic in Section 5.1 with a fo-
cus on its assertion logic. In this dissertation we shall not cover the full details of
Reynolds’s assertion logic, but only concentrate on a fragment with all logical connec-
tives, but without address arithmetic and arbitrary predicates. Our dedicated fragment
is given in Section 5.1.2.2, in which we also review various fragments of the assertion
logic that are automated in the literature, followed by a discussion of the computabil-
ity issue of these fragments. Section 5.2 presents Calcagno et al.’s abstract separation
logic and some popular properties in separation theories.

5.1 Reynolds’s Separation Logic

Separation logic has appeared in the literature in many forms, but in general it is a
combination of a programming language, an assertion logic, and a specification logic
for reasoning about Hoare triples [55]. By tradition, the assertion logic of separation
logic is also referred to as separation logic, this might be confusing, but it is the as-
sertion logic that we are interested in. So in the remaining chapters, when we say
separation logic without any explanation, we mean the assertion logic of a separation
logic. In the following we give the definitions of these components as in Reynolds’s
2002 LICS paper [88].

5.1.1 Programming Language

The programming language in Reynolds’s separation logic is a simple imperative lan-
guage that extends the one axiomatised by Hoare [48] with new commands to manip-
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ulate mutable data structures:

C ::= v := e assignment
| C; C sequencing
| if b then C else C conditional
| while b do C loop
| v := cons(e, · · · , e) allocation
| v := [e] lookup
| [e] := e mutation
| dispose e deallocation

Here we use C for a piece of program code, v for a program variable, e for an ordinary
expression which may involve program variables, atoms, integers, and basic arithmetic
operators such as +,−,×, and use b for a Boolean expression that may involve binary
relations such as =,<,> between ordinary expressions, logical constants >,⊥, and
logical connectives ¬,→, etc..

Reynolds defined all values as integers, an infinite number of which are addresses.
Atoms, containing nil, form a subset of values that is disjoint from addresses. Heaps
are finite partial functions from addresses to values, and stores are total functions from
finite sets of program variables to values. These are formalised as below:

Value = Int Atoms ∪ Addr ⊆ Int
nil ∈ Atoms Atoms ∩ Addr = ∅
H = Addr ⇀ f in Value S = Var→ Value

A state in separation logic not only talks about the status of variables (the store) but
also the contents of memory addresses (the heap). This will be formalised in the next
subsection. We write [[e]]s to denote the valuation of an expression e by store s, and
fix that [[nil]]s = nil. We often use nil to denote an invalid memory address such as
−1. When computing [[e]]s, we look up the value of each variable x in e from the
store s, then compute the value of e using arithmetic. The store valuates an ordinary
expression to integers, and valuates a Boolean expression to either > or ⊥, where
> = 1 and ⊥ = 0.

[[b]]S ∈ {>,⊥} [[e]]S ∈ Int

The command v := cons(e1, · · · en) can be read as: from the memory address at the
value of v, allocate n continuous memory addresses with contents e1 to en respectively
so that the content of address S(v) is [[e1]]s. The command v := [e] looks up the content
of the address [[e]]s and assigns that content to variable v. The mutation command
[e1] := e2 updates the content of the address [[e1]]s to the value [[e2]]s. We say that each
of the commands v := cons(· · · ) and v := [e] and v := e modify v. Note that the
command [v] := e, for example, does not change the value of v, but only changes the
content of memory address [[v]]s.
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s, h 
 >∗ iff h = ∅
s, h 
 A ∗ B iff ∃h1, h2.(h1 ◦ h2 = h and s, h1 
 A and s, h2 
 B)
s, h 
 e 7→ e′ iff dom(h) = {[[e]]s} and h([[e]]s) = [[e′]]s
s, h 
 A−∗ B iff ∀h1, h2.(h1 ◦ h = h2 and s, h1 
 A) implies s, h2 
 B)

Table 5.1: The semantics of the new formulae in separation logic.

5.1.2 Assertion Logic

This subsection first gives the full assertion logic defined by Reynolds, then introduces
a fragment that is compliant with Reynolds’s semantics and will be used in Chapter 7.
Other widely-used fragments for SL and computability issues are discussed at the end
of this subsection.

5.1.2.1 Reynolds’s Full Assertion Logic

The assertion language of separation logic that Reynolds proposed is an extension of
classical first-order logic with the multiplicative connectives from BBI and a special
predicate 7→ called “points-to” for singleton heaps. Thus the syntax extends that of
first-order logic (cf. Section 1.1.1) with the following:

F ::= e 7→ e′ | >∗ | F ∗ F | F−∗ F

where e stands for an expression and F is a SL formula. We prefer to write >∗ for
the empty heap constant emp in the literature, as the former is used in the prior work
for BBI and PASL [53, 51]. The points-to predicate e 7→ e′ denotes a singleton heap
sending the value of e to the value of e′. The connectives ∗ and −∗ are taken from BBI,
which, in separation logic, denote heap composition and heap extension respectively.
These two connectives are interpreted with the binary operator ◦ defined as follows,
where h1, h2 are heaps [20]:

h1 ◦ h2 =

{
h1 ∪ h2 if h1,h2 have disjoint domains

undefined otherwise

That is, two heaps h1 and h2 can only be composed when dom(h1) ∩ dom(h2) = ∅.
A state is a pair (s, h) of a store s and a heap h. Given two stores s1 and s2, the operator
◦ can be extended to states as below:

(s1, h1) ◦ (s2, h2) =


(s1, h1 ◦ h2) if s1 = s2 and

h1 ◦ h2 is defined

undefined otherwise

A separation logic model is a pair (S, H) of stores and heaps. Both are non-empty as
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defined previously. The forcing relation between a state and a formula in one of the
four new forms is formally defined in Table 5.1.

A formula F is true at the state (s, h) if (s, h) 
 F, and it is valid if (s, h) 
 F for
every s ∈ S, h ∈ H.

The literature contains the following useful abbreviations:

e 7→ _ ≡ ∃x.e 7→ x e1
.
= e2 ≡ (e1 = e2) ∧>∗ e ↪→ e′ ≡ e 7→ e′ ∗ >

e 7→ e1, · · · , en ≡ (e 7→ e1) ∗ (e + 1 7→ e2) ∗ · · · ∗ (e + n− 1 7→ en)

The multi-field points-to predicate e 7→ e1, · · · , en has different interpretations in the
literature. In Reynolds’s notation, the formula e 7→ e1, e2 is equivalent to (e 7→ e1) ∗
(e + 1 7→ e2), thus it is a heap of size two. However, in other versions of separation
logic, the set of heaps may be defined as finite partial functions from addresses to
pairs of values [26, 18]:

H = Addr ⇀ f in Value×Value

In this setting the formula e 7→ e1, e2 is a singleton heap. A more general case can be
found in the definition of symbolic heap [8], where heaps are defined as1

H = Addr ⇀ f in (Fields→ Value)

Now one can define as (finitely) many fields in the points-to predicate as one wishes.
But this also creates a dilemma for us, since on the one hand we want to use Reynolds’s
semantics and notations, on the other hand we also want to compare our method
with the prevalent tools for symbolic heap, such as Smallfoot [7]. We will use the
interpretation of Smallfoot for the multi-field points-to predicate when comparing our
work with Smallfoot. Moreover, we will also provide a slightly different tool that
obeys Reynolds’s semantics.

5.1.2.2 The Assertion Logic in This Dissertation

Reynolds allows arithmetic expressions denoting values, but in the remaining of this
dissertation, we shall only focus on expressions which are either program variables
or the constant nil. Variables in our assertion logic are ranged over by x, y, z and ex-
pressions by e, possibly with subscripts and primes. We also do not consider arbitrary
predicates, terms and propositions from first-order logic. Our syntax for formulae is
thus restricted as:

F ::= e = e′ | e 7→ e′ | e 7→ e′, e′′ | ⊥ | F → F | >∗ | F ∗ F | F−∗ F | ∃x.F

The only atomic formulae are ⊥, >∗, (e = e′), (e 7→ e′), and (e 7→ e′, e′′). We
will later develop a branch of our method that considers the arbitrary multi-field 7→

1We made a slight modification since in the original symbolic heap, addresses and values are disjoint.
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predicate from the symbolic heap semantics. There are no propositional variables. The
domain of the quantifier is the set of values. We assume the usual notion of free and
bound variables in formulae. We can also define >, ¬, ∧, ∨ and ∀ based on the above
connectives as in first-order logic. The two field points-to predicate e 7→ e′, e′′ is similar
to the one field version, but also specifies that the next address contains the value of
e′′.

The semantics of the formulae in our fragment are the same as in Reynolds’s defi-
nition, Table 5.2 completes Table 5.1 for the semantics of our logic. We write s[x 7→ v]
to denote a stack that is identical to s, except possibly on the valuation of x, i.e.,
s[x 7→ v](x) = v and s[x 7→ v](y) = s(y) for y 6= x.

s, h 
 ⊥ iff never
s, h 
 e = e′ iff [[e]]s = [[e′]]s
s, h 
 A→ B iff s, h 
 A implies s, h 
 B
s, h 
 ∃x.A iff ∃v ∈ Value such that s[x 7→ v], h 
 A

Table 5.2: The semantics of some formulae in our assertion logic.

5.1.2.3 Other Fragments of SL and Computability Issues

Reynolds’s SL

SL in this dissertation

Quantifier-
free SL

SLP

Symbolic heap

CyclistSL

Figure 5.1: Syntactical expressivity of some SL fragments with Reynolds’s semantics.

The expressive power of some popular fragments of SL are visualised in Figure 5.1.
The syntax of our fragment introduced in the previous section is more expressive than
the popular symbolic heap fragment [8], whose syntax is restricted to the following:

P ::= e = e′ | ¬P Π ::= > | P | Π ∧Π
S ::= e 7→ [ f : e] Σ ::= >∗ | S | Σ ∗ Σ

The 7→ predicate in symbolic heap supports a list [ f1 : e1, · · · , fn : en] of fields, where f
is the name of a field and e is the content of the field. Symbolic heaps are pairs Π ∧ Σ.
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The entailment of symbolic heaps is written as Π∧Σ ` Π′ ∧Σ′, and the corresponding
formula is (Π ∧ Σ)→ (Π′ ∧ Σ′). The symbolic heap fragment also allows formulae of
the form e 7→ _ which does not specify the content of the heap.

It is known that −∗ can encode ∗, but not the other way around [14], thus symbolic
heap cannot express extending the current heap with a new heap. Even in the absence
of −∗ , there are many interesting formulae that cannot be expressed in the symbolic
heap fragment. For example, symbolic heap cannot express (F ∗ F) → F where F
is ¬(> → ¬>∗), the formula that is only valid when partial-determinism holds in
abstract separation logics [62]. Symbolic heap also cannot describe the axiom (>∗ ∧
(A ∗ B)) → A of indivisible unit, because having more than one splitting of a heap is
not allowed. For some examples with the 7→ predicate and lists, see the experimental
section of [91]. However, a majority of previous work on automated reasoning for SL
focused on the symbolic heap fragment, because it is decidable [6]. As a result, sound,
complete and terminating decision procedures for this fragment can be developed,
e.g., Smallfoot [7].

Galmiche and Méry’s resource graph tableau method considers a decidable frag-
ment called SLP2 [37], which does not consider first-order quantifiers, equality of ex-
pressions, the one-field 7→ predicate, and quantified variables from our syntax, and
only allows l in (l 7→ e′, e′′) to be an address. Without equality, SLP cannot express data
structures such as lists and trees. The authors further extended the tableau method to
handle quantifiers and equality, although completeness is impossible. Their tableau
method relies on a complicated back-end theory to check the consistency of heaps,
thus automating proof search using their tableau method is likely to be non-trivial.

The quantifier-free fragment of SL is decidable [26], but so far there is no proof
method that is sound and complete for this fragment, except for a translation method
to first-order logic on an empty signature [23].

Our assertion logic introduced in Section 5.1.2.2 does not support complicated
features such as address and expression arithmetic and arbitrarily defined predicate
etc., but does allow arbitrary combinations of all the logical connectives, which is not
supported by existing automated reasoning tools for SL. If one allows the combination
of all connectives, the assertion logic with the two-field 7→ predicate is not recursively
enumerable [26], and the logic with the one-field 7→ predicate is equivalent to second
order logic [14]. Our logic is not recursively enumerable either, thus it has no finitary
proof system that is both sound and complete. But a sound proof system may still be
useful if it can prove a wide range of formulae in a reasonable time. Developing such
a system is the main objective in Chapter 7.

BBI can be faithfully translated to first-order logic, although proving translated
formulae using first-order solvers is not very efficient [53]. By contrast, we could not
use a naive translation from our assertion logic to first-order logic, because the naive
translation encodes heaps as functions, and connectives ∗,−∗ build quantifiers over

2Do not confuse this with the solver SLP by Navarro Pérez et al. [70]
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functions. More sophisticated incomplete translation may be possible, but that is not
in our scope.

CyclistSL [19] implements a fragment of SL that includes connectives >∗,∨, ∗, and
∃, predicates 7→, =, and 6=, as well as arbitrary inductively defined predicates. As
for the symbolic heap fragment, the fragment considered by CyclistSL excludes −∗ ,
so it cannot express heap extension. However, it supports arbitrary inductive defini-
tions, whereas we will only consider two specific instances, i.e., lists and trees (see
Section 7.3), and unlike CyclistSL, we do not support direct inductive reasoning over
these definitions.

There are also closely related fragments of separation logic that are recently identi-
fied and do not yet have mechanisations. Demri and Deters [14] sharpened the previ-
ous undecidability results on separation logic with the 1 field points-to predicate, they
further showed that this logic, when restricted to only two quantified variables and
the magic wand (i.e., no ∗), is as expressive as the version without these restrictions.
Thus their restricted fragment is also undecidable [29]. On the other hand, Demri et
al. showed that separation logic with the 1 field points-to predicate, when restricted to
only one quantified variable, but with both ∗ and −∗ , is PSPACE-complete [28]. The
authors also showed that when the number of program variables are bounded, the
satisfiability problem can be solved in polynomial time. Hence automated reasoning
in these fragments is an interesting problem.

5.1.3 Specification Logic

The notion of program specification of separation logic is similar to that of Hoare logic.
Reynolds discussed both partial and total correctness, here we only revisit the partial
correctness part using Hoare triples of the form {P}C{Q}, which means that if the
precondition P holds in the prestate before the code C is executed, and C terminates
in a poststate, then the postcondition Q holds in the poststate. We now give the
inference rules for Hoare triples à la Reynolds [88].

Most inference rules in Hoare logic still work in separation logic, for example, the
consequence rule that combines precondition strengthening and postcondition weak-
ening runs as follows:

P′ → P {P}C{Q} Q→ Q′
Consequence

{P′}C{Q′}
Auxiliary variable elimination, where v is a variable not free in C:

{P}C{Q}
Variable Elimination

{∃v.P}C{∃v.Q}
And the substitution rule where v1, · · · , vn are variables free in P, C, Q and if vi, where
1 ≤ i ≤ n, is modified by C, then ei is a variable that does not occur free in any other ej,
where 1 ≤ j ≤ n, j 6= i. The rule is presented below with the notation of substitution
identical to the one used in our labelled sequent calculus.
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{P}C{Q}
Substitution

({P}C{Q})[e1/v1, · · · , en/vn]

The rules for program commands in Hoare logic can also be used in separation logic,
those are presented below.

Assignment

{Q[e/v]}v := e{Q}
{P}C1{Q} {Q}C2{R}

Sequencing

{P}C1; C2{R}

{P ∧ b}C1{Q} {P ∧ ¬b}C2{Q}
Conditional

{P}if b then C1 else C2{Q}
{P ∧ b}C{Q}

Loop

{P}while b do C{Q ∧ ¬b}

Note that the assignment rule in Hoare logic works backwards, i.e., we copy the post-
condition Q to the precondition and perform the substitution. Some literature presents
the forward reading assignment rule, but they turn out to be equivalent [41].

The rule of consistency, however, is not sound in Hoare logic and separation logic:

{P}C{Q}
Consistency

{P ∧ R}C{Q ∧ R}

For example, {>∗}v := cons(1){v 7→ 1} holds, but {>∗ ∧ >∗}v := cons(1){(v 7→
1) ∧>∗} is not true since (v 7→ 1) ∧>∗ is unsatisfiable.

A key feature of separation logic is that it supports local reasoning, which only uses
the part of memory (heap) used in the program code. When composing programs in
a proof, local reasoning often requires the frame rule that extends the specification to
talk about a part of memory that is not used in the program, as shown below.

{P}C{Q}
Frame

{P ∗ R}C{Q ∗ R}

where no variable occurring free in R is modified by C.
Instead of showing Reynolds’s local and global rules for the mutation, deallocation,

allocation, and lookup commands, we simply present the Small Axioms of O’Hearn et
al. [76]:

{e1 7→ _}[e1] := e2{e1 7→ e2} {e 7→ _}dispose(e){>∗}
{v .

= m}v := cons(e1, · · · , en){v 7→ e1[m/v], · · · , en[m/v]}
{e 7→ n ∧ v = m}v := [e]{v = n ∧ e[m/v] 7→ n}

Reynolds also gave backward reasoning rules for the above commands. Those
backward rules give complete weakest preconditions that may involve −∗ and are
less frequently used in automated tools since few existing tools support −∗ . The
door to such weakest preconditions will be open when we have a theorem prover for
separation logic that can deal with −∗ .
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5.2 Abstract Separation Logic and DHA Separation Theory

In this section we move back to the abstract setting and consider separation logics
that do not have the 7→ predicate and the elements in the programming language,
but instead use propositions. These abstract logics are based on BBI, but they further
satisfy various useful properties abstracted from concrete heap models etc.. Therefore
these abstract logics are useful in a wide spectrum of situations, although they may
not be applied directly.

We define the separation algebra semantics of Calcagno et al [24] for Propositional
Abstract Separation Logic (PASL), discuss some properties in separation theories, and
present examples of these semantics summarised by Clouston.

Separation logic variants in abstract semantics are undecidable [20, 62] even at the
propositional level, thus there can only be semi-decision procedures for the logics in
this subsection.

5.2.1 Propositional Abstract Separation Logic

The formulae of PASL are defined inductively as follows, where p ranges over some
set PVar of propositional variables:

A ::= p | > | ⊥ | ¬A | A ∨ A | A ∧ A | A→ A | >∗ | A ∗ A | A−∗ A

PASL-formulae are interpreted with respect to the following semantics, where we
use H as the set of worlds instead ofM because separation algebra is inspired by the
heap model, thus each world can be seen as a heap.

Definition 5.2.1. A separation algebra, or partial cancellative commutative monoid, is a
triple (H, ◦, ε) where H is a non-empty set, ◦ is a partial binary function H × H ⇀ H
written infix, and ε ∈ H, satisfying the following conditions, where ‘=’ is interpreted as ‘both
sides undefined, or both sides defined and equal’:

identity: ∀h ∈ H. h ◦ ε = h
commutativity: ∀h1, h2 ∈ H. h1 ◦ h2 = h2 ◦ h1

associativity: ∀h1, h2, h3 ∈ H. h1 ◦ (h2 ◦ h3) = (h1 ◦ h2) ◦ h3

cancellativity: ∀h1, h2, h3, h4 ∈ H. if h1 ◦ h2 = h3 and h1 ◦ h4 = h3 then h2 = h4

Note that partial-determinism of the monoid is assumed since ◦ is a partial function:
for any h1, h2, h3, h4 ∈ H, if h1 ◦ h2 = h3 and h1 ◦ h2 = h4 then h3 = h4.

The following are some example applications of the above properties in the seman-
tics summarised by Clouston.

Example 5.2.1. The paradigmatic example of a separation algebra is the set of heaps [88]:
finite partial functions from an infinite set of addresses to a set of values. Then h1 ◦ h2 =
h1 ∪ h2 if h1, h2 have disjoint domains, and is undefined otherwise. ε is the empty function.
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Example 5.2.2. A partial commutative semigroup [11], also known as a permission al-
gebra [24].3, is a set V equipped with an associative commutative partial binary operator ?,
written infix.

Given an infinite set Addr of addresses, we define two finite partial functions h1, h2 from
Addr to V to be compatible iff for all l in the intersection of their domains, h1(l) ? h2(l)
is defined (we give definitions of ? below for various situations). We then define the binary
operation ◦ on partial functions h1, h2 as undefined if they are not compatible, otherwise when
they are compatible, (h1 ◦ h2)(l) is defined as:

(h1 ◦ h2)(l) =


h1(l) ? h2(l) l ∈ dom(h1) ∩ dom(h2)

h1(l) l ∈ dom(h1) \ dom(h2)

h2(l) l ∈ dom(h2) \ dom(h1)

undefined l /∈ dom(h1) ∪ dom(h2)

Setting ε as the empty function, many examples of concrete separation algebras have this
form, with the ? operation, where defined, intuitively corresponding to some notion of shared
resource. The following are some example definitions of the ? operation with resource reading:

• Heaps: let V be the set of values, and ? be undefined everywhere.

• Fractional permissions [13]: let V be the set of pairs of values (denoted by v, w) and (real
or rational) numbers (denoted by i, j) in the interval (0, 1], and

(v, i) ? (w, j) =

{
(v, i + j) v = w and i + j ≤ 1

undefined otherwise

• Named permissions [78]: given a set P of permission names, let V be the set of pairs
of values (denoted by v, w) and non-empty subsets (denoted by P, Q) of P, and

(v, P) ? (w, Q) =

{
(v, P ∪Q) v = w and P ∩Q = ∅

undefined otherwise

• Counting permissions [11]: let V be the set of pairs of values (denoted by v, w) and
integers (denoted by i, j). Here 0 is interpreted as total permission, negative integers as
read permissions, and positive integers as counters of the number of permissions taken.
Let

(v, i) ? (w, j) =


(v, i + j) v = w and i < 0 and j < 0

(v, i + j) v = w and i + j ≥ 0 and ( i < 0 or j < 0 )

undefined otherwise
3We prefer the former term, as many interesting examples have little to do with permissions, and the

definition of permissions algebra seems somewhat up for grabs - compare [24, 96].
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• Binary Tree Share Model [32]: Consider the set of finite non-empty binary trees whose
leaves are labelled true (>) or false (⊥), modulo the smallest congruence such that > ∼=
>̂> and ⊥ ∼= ⊥̂⊥. Let ∨ (resp. ∧) be the pointwise disjunction (resp. conjunction) of
representative trees of the same shape. Then let V be the pairs of values (denoted by v, w)
and equivalence classes of trees (denoted by t, u) so defined, with

(v, t) ? (w, u) =

{
(v, t ∨ u) v = w and t ∧ u = [⊥]
undefined otherwise

Note that the construction above employing partial commutative semigroups does
not in general guarantee cancellativity; for this we need to require further that (V, ?)
is cancellative and has no idempotent elements (where v ? v = v). As we will see
later, some interesting concrete models fail this requirement, so we will generalise the
results of this dissertation to drop cancellativity in Section 6.4.

Example 5.2.3. Other concrete separation algebras resemble the construction of Example 5.2.2
without fitting it precisely:

• Finite set of addresses: The concrete memory model of a 32-bit machine [56] has as its
addresses the set of integers [0 . . . 232).

• Total functions: Markings of petri nets [69] without capacity constraints are simply
multisets. They may be considered as separation algebras [24] by taking Addr to be
Places and (V, ?) to be the set of natural numbers with addition, then considering the
set of total functions Places → N, with ◦ defined as usual (hence, as multiset union),
and ε as the constant 0 function. If there is a global capacity constraint κ then we let
i ? j be undefined if i + j > κ, and hence ◦ becomes undefined also in the usual way.

Note that this example can only be made to exactly fit the construction of Example 5.2.2
if we restrict ourselves to markings of infinite Petri nets with finite numbers of
tokens. In this case we would consider a place without tokens to have an undefined map,
rather than map to 0, and set V to be the positive integers.

• Constraints on functions: The endpoint heaps of [99] are only those partial functions
that are dual, irreflexive and injective (we refer to the citation for the definition of
these properties). Similarly, if the places of a petri net comes equipped with a capacity
constraint function κ : Places → N, we consider only those functions compatible with
those constraints.

There are many other examples of separation logics with concrete semantics, which
inspired us to study the abstract properties that are shared by those concrete semantics.
We begin with PASL, which is based on the separation algebra defined in Def. 5.2.1.
In this dissertation we prefer to express PASL semantics in the style of ternary relations
to maintain consistency with the earlier work on BBI [53]; it is easy to see that the
definition below is a trivial notational variant of Def. 5.2.1.
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h 
 p iff p ∈ PVar and h ∈ v(p)
h 
 A ∧ B iff h 
 A and h 
 B
h 
 A→ B iff h 6
 A or h 
 B
h 
 A ∨ B iff h 
 A or h 
 B

h 
 >∗ iff h = ε
h 
 > iff always
h 
 ⊥ iff never
h 
 ¬A iff h 6
 A

h 
 A ∗ B iff ∃h1, h2.(R(h1, h2, h) and h1 
 A and h2 
 B)
h 
 A−∗ B iff ∀h1, h2.((R(h, h1, h2) and h1 
 A) implies h2 
 B)

Table 5.3: Semantics of PASL.

Definition 5.2.2. A PASL Kripke relational frame is a triple (H, R, ε), where H is a non-
empty set of worlds, R ⊆ H × H × H, and ε ∈ H, satisfying the following conditions for all
h1, h2, h3, h4, h5 in H:

identity: R(h1, ε, h2)⇔ h1 = h2

commutativity: R(h1, h2, h3)⇔ R(h2, h1, h3)
associativity: (R(h1, h5, h4)&R(h2, h3, h5))⇒ ∃h6.(R(h6, h3, h4)&R(h1, h2, h6))
cancellativity: (R(h1, h2, h3)&R(h1, h4, h3))⇒ h2 = h4

partial-determinism: (R(h1, h2, h3)&R(h1, h2, h4))⇒ h3 = h4.

A PASL Kripke relational model is a tuple (H, R, ε, ν) of a PASL Kripke relational
frame (H, R, ε) and a valuation function ν : PVar → P(H) (where P(H) is the power
set of H). The forcing relation 
 between a world h ∈ M and a formula is defined
in Table 5.3, where we write h 6
 A for the negation of h 
 A. Given a model M =
(H, R, ε, ν), a formula is true at (world) h iff M, h 
 A. The formula A is valid iff it is
true at all worlds of all models.

5.2.2 DHA Separation Theory

As shown by some examples in the previous subsection, even the notion of separation
algebra is not universally agreed, for example, in some applications we do not demand
cancellativity. On the other hand, Dockins et al. examined several additional proper-
ties that may also be useful, including indivisible unit, disjointness, splittability and
cross-split [32]4, the first of which was proposed by Brotherston and Kanovich [20].
We have discussed some of these properties at the end of Chapter 4. In fact, one can
freely choose these properties and the ones presented previously to obtain an abstract
separation logic. Thus Brotherston and Villard proposed the term separation theory [22]
to mean any combination of the properties like those proposed by Dockins et al.. Here
we call the set of properties: partial-determinism, cancellativity, indivisible unit, dis-
jointness, splittability, and cross-split as DHA separation theory, following the initials of
Dockins, Hobor, and Appel. We now discuss the additional properties with examples
provided by Clouston.

4Their work also distinguishes models with single unit and multiple units. However, it turns out these
two properties give the same set of valid BBI-formulae (cf. [64]), so we assume single unit here.
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Indivisible Unit The unit ε in a commutative monoid (H, ◦, ε) is indivisible iff the
following holds for any h1, h2 ∈ H:

if h1 ◦ h2 = ε then h1 = ε.

Relationally, this corresponds to the first-order condition:

∀h1, h2 ∈ H. if R(h1, h2, ε) then h1 = ε.

This also means that h2 = ε whenever h1 ◦ h2 = ε. Most memory models in the
literature obey indivisible unit [20], so this property seems appropriate for reasoning
about concrete applications of separation logic. Indivisible unit can be axiomatised by
the formula [22]:

>∗ ∧ (A ∗ B)→ A.

Example 5.2.4. It is trivial to confirm that all the concrete separation algebras surveyed in Sec-
tion 5.2.1 satisfy indivisible unit; we are not aware of any separation algebras with applications
to program verification that fail to do so.

Disjointness The separating conjunction ∗ in separation logic requires that the two
combined heaps have disjoint domains [88]. Without concrete semantics that describe
the “points-to” predicate 7→, we cannot express the domain of a heap. However,
the abstract semantics do support a special case where two heaps have a common
sub-heap. In a separation algebra (H, ◦, ε), disjointness is defined by the following
additional requirement:

∀h1, h2 ∈ H. if h1 ◦ h1 = h2 then h1 = ε.

The above can be expressed relationally:

∀h1, h2 ∈ H. if R(h1, h1, h2) then h1 = ε.

Notice also the subtlety between “intersecting heaps” and “heaps with intersecting
domains”. In Reynolds’ semantics, we can find two heaps, for example, h1 = {(1 7→
3), (2 7→ 4)} and h2 = {(1 7→ 2), (5 7→ 7)}, that do not have an intersection (a common
sub-heap), but their domains intersect, i.e., both contain 1. These two heaps cannot be
combined either, but this idea cannot be expressed by the disjointness property in the
abstract semantics. We will return to this issue in Section 7.2.

Disjointness implies indivisible unit (but not vice versa), as shown by Dockins et
al. [32]. However, when partial-determinism is assumed, disjointness and indivisible
unit collapse [64].

Example 5.2.5. In the cases of Example 5.2.2, where separation algebras are defined via a
partial commutative semigroup (V, ?), the disjointness property holds iff there exist no v ∈ V
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such that v ? v is defined. This is the case for heaps, named permissions, and the binary
tree share model. On the other hand, disjointness fails to holds for fractional permissions
(where (v, i) ? (v, i) is defined so long as i ≤ 0.5) and counting permissions (for example
(v,−1) ? (v,−1) = (v,−2)).

Disjointness fails in general for markings of petri nets, as a marking can be combined with
itself by doubling its number of tokens at all places. However disjointness holds in the presence
of a global capacity constraint κ = 1.

Splittability The property of infinite splittability is sometimes useful when reason-
ing about the kinds of resource sharing that occur in divide-and-conquer style com-
putations [32]. A separation algebra (H, ◦, ε) has splittability if

∀h0 ∈ H \ {ε}, ∃h1, h2 ∈ H \ {ε} such that h1 ◦ h2 = h0.

Relationally, this corresponds to:

if h0 6= ε then ∃h1 6= ε, h2 6= ε such that R(h1, h2, h0).

This property can be axiomatised by the formula ¬>∗ → (¬>∗ ∗ ¬>∗) [22].

Example 5.2.6. In the case of separation algebras defined via a partial commutative semigroup
(V, ?), splittability holds iff all v ∈ V are in the image of ?. This holds for fractional permis-
sions, as each (v, i) is (v, i

2 ) ? (v, i
2 ). The binary tree share model also enjoys this property;

see [32] for details.
On the other hand, splittability does not hold for heaps (for which the image of ? is empty),

for named permissions (singletons cannot be split), or for counting permissions (where (v,−1)
is not in the image of ?). Splittability also fails for petri nets, as the marking assigning one
token to one place, with all other places empty, cannot be split.

Cross-split specifies that if a heap can be split in two different ways, then there
should be intersections of these splittings. Formally, in a separation algebra (H, ◦, ε),
if h1 ◦ h2 = h0 and h3 ◦ h4 = h0, then there should be four elements h13, h14, h23, h24,
informally representing the intersections h1 ∩ h3, h1 ∩ h4, h2 ∩ h3 and h2 ∩ h4 respec-
tively, such that h13 ◦ h14 = h1, h23 ◦ h24 = h2, h13 ◦ h23 = h3, and h14 ◦ h24 = h4. The
corresponding condition on Kripke relational frames is:

∀h0, h1, h2, h3, h4 ∈ H, if R(h1, h2, h0) and R(h3, h4, h0) hold then
∃h5, h6, h7, h8 ∈ H such that R(h5, h6, h1), R(h7, h8, h2), R(h5, h7, h3)
and R(h6, h8, h4) hold.

Example 5.2.7. All examples of separation algebras presented in Section 5.2.1 satisfy cross-
split; we are not aware of any separation algebras with applications to program verification that
fail to do so. In the case of heaps, for example, cross-splits are simply defined as intersections,
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Concrete model IU D S CS C
Heaps X X × X X
Fractional permissions X × X X X
Named permissions X X × X X
Counting permissions X × × X X
Binary trees X X X X X
Petri nets X × × X X
Petri nets with capacity 1 X X × X X
Monotonic counter X × X X ×
Logical heaps X × X X ×

Table 5.4: Some concrete separation algebras and their abstract properties.

but the situation becomes more complex in the case that sharing is possible, and the sub-
splittings h13, h23, . . . need not be uniquely defined.

Take the concrete case of counting permissions. The most difficult case of the examples in
Section 5.2.1. Let h = {l 7→ (v, 1)} for some address l and value v. We will abuse notation
by writing this as h = 1, since the identity of the address and value are not important here.
Let (h1, h2, h3, h4) be (−2, 3,−3, 4) respectively. Then the values of (h13, h14, h23, h24) may be
(−2, undefined,−1, 4), or (undefined,−2,−3, 6), or (−1,−1, 2, 5).

However the definition of CS does not require uniqueness; it is sufficient to describe a
method by which a valid cross-split may be defined. We consider each address l ∈ dom(h)
in turn. The difficult case has that l is in the domain of all of h1, h2, h3, h4, and that the two
splittings are not identical on l. By definition at least one of h1(l), h2(l) is negative, and simi-
larly h3(l), h4(l). Without loss of generality say h1(l) is the strictly largest negative number
of the four. Then we may set (h13(l), h14(l), h23(l), h24(l)) to be (h1(l), undefined, h3(l) −
h1(l), h4(l)). Routine calculation confirms that this defines a cross-split.

On the other hand, there are concrete models that drop some of the properties in
separation theories. For example, the fictional separation logic mentioned below does
not require cancellativity.

Example 5.2.8. The partial commutative semigroup construction of Example 5.2.2, as noted
after that example, need not yield a cancellative structure. In particular, if there exists an
idempotent element v ? v = v, then {l 7→ v} ◦ {l 7→ v} = {l 7→ v} = {l 7→ v} ◦ ε. We give
two examples:

• Monotonic Counter for Fictional Separation Logic [57]: fictional separation logic is a
program verification framework where every module is associated with its own notion of
resource. We here note only the example of a monotonic counter, for which the partial
commutative semigroup is the integers with a bottom element, with max as operation.
Clearly every element is idempotent.
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• Logical Heaps for Relaxed Separation Logic [97]: we refer to the citation for the rather
involved definition and an example of an idempotent element.

Both of the examples above satisfy indivisible unit, splittability, and cross-split, but fail to
satisfy disjointness.

This section presented examples of concrete separation algebras from a range of
different program verification applications, and discussed their relation to the various
spatial properties considered for abstract separation logic. Table 5.4 summarises this
information, in which there is no entry for partial-determinism because it holds in
all the examined models. We use P, C, IU, D, S, CS to denote the properties partial-
determinism, cancellativity, indivisible unit, disjointness, splittability, and cross-split
respectively.
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Chapter 6

Labelled Sequent Calculi for
Propositional Abstract Separation
Logics

Separation logic has proved fruitful for a range of memory (or, more generally, re-
source) models, some quite different from the original heap model. We have seen
examples drawn from [13, 78, 11, 24, 32, 99, 57, 56, 97] in the previous chapter, but
this list is far from exhaustive. Each such model has its own notion of separation
and sharing of resources, and hence formally gives rise to a new logic with respect
to the BI connectives, let alone any special-purpose predicates which might be taken
as fundamental. The connections between these separation logics are usually not for-
mal, so new metatheory and tool support must be substantially reconstructed for each
case. This has led to a subgenre of papers highlighting the need for organisation and
generalisation across these logics [10, 24, 79, 55].

In this chapter we work with the Abstract Separation Logic (ASL) of [24]. Taking a
cue from the well-known algebraic semantics for substructural logics [35], ASL intro-
duces the abstract semantics of partial cancellative monoids, or separation algebras (cf.
Section 5.2.1). These semantics allow interpretation of ∗, >∗ and −∗ , although the
latter is not considered by [24]. On the other hand, points-to ( 7→) is not a first class
citizen of ASL; it may be introduced as a predicate only if an appropriate concrete
separation algebra is fixed. ASL is appropriate to reasoning about certain relations
of memory heaps, but not the addresses and their contents. We further consider the
properties in DHA separation theory (cf. Section 5.2.2) and the resultant variants of
abstract separation logics.

Since [88] the term separation logic has been used “both for the extension of predi-
cate calculus with the separation operators and the resulting extension of Hoare logic”.
In this chapter we consider the former style of logic with respect to abstract separation
logic. As we will not consider quantifiers, we call this logic Propositional Abstract
Separation Logic (PASL). Reasoning for the assertion language of ASL is the key to
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support precondition strengthening and postcondition weakening for the Hoare-style
(specification) logic, but proof search and structural proof theory for PASL and its
variations has received little attention until now. It is known the added expressive
power of the multiplicative connectives comes at a price, since these (propositional)
abstract separation logics are in general undecidable [20, 62]. Given their wide ap-
plicability, a semi-decision procedure for these logics is then of vital importance in
program verification, and that is our goal in this Chapter.

We first give our labelled sequent calculus in Section 6.1, in which we also discuss
the cut-elimination theorem for our calculus. Section 6.2 presents the completeness
proof for our calculus using a counter-model construction method, which is also ex-
tensible to handle some other variants of PASL. Section 6.3 introduces labelled sequent
rules for other properties in DHA separation theory, followed by Section 6.4 where
we discuss our labelled systems for variants of PASL, completing our labelled cal-
culi framework. We then demonstrate experimental results in Section 6.5 and discuss
related work in Section 6.6.

This chapter is based on a published paper by Hóu, Clouston, Goré, and Tiu [51].

6.1 LSPASL: A Labelled Sequent Calculus for PASL

Separation algebras are a restriction of non-deterministic monoids, which are known to
give sound and complete semantics for BBI [36]. In this sense PASL (cf. Section 5.2.1) is
a refinement of BBI, differing only by the addition of the semantic properties of partial-
determinism and cancellativity1natural to ask if proof techniques for BBI can be adapted
to PASL. We show that this is possible, extending the labelled sequent calculus LSBBI
for BBI in Chapter 4 by adding explicit sequent rules that capture partial-determinism
and cancellativity, we call the resultant calculus LSPASL.

The definition of labelled formula, relational atom, sequent, substitution, label
mapping, sequent falsifiability etc. in LSPASL are the same as those in LSBBI (cf. Sec-
tion 4.1.1). Here we only slightly change the presentation of a sequent as G; Γ ` ∆,
where G is a multiset of relational atoms, and Γ, ∆ are multisets of formulae. More-
over, the interpretation of the logical connectives of PASL are the same as those for
BBI. Thus we may obtain a labelled sequent calculus LSPASL for PASL by adding the
rules P (partial-determinism) and C (cancellativity) to LSBBI [53]. The rules for LSPASL
are presented in Fig. 6.1, where p is a propositional variable, A, B are formulae, and
w, x, y, z are labels.

Unlike the rules Eq1 and Eq2, both of which are needed as explained in Sec-
tion 4.1.1, we do not need two variants of the rule P or C, since the order of relational
atoms in the sequent does not matter. That is, the rule P may also be used if we want

1Recent work [64] shows that validity of partial-deterministic BBI-models coincides with validity of
cancellative partial-deterministic BBI-models. We nonetheless treat cancellativity as a first class property
for reasons we will address in Section 6.6.
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Identity and Cut:

id
G; Γ; w : p ` w : p; ∆

G; Γ ` x : A; ∆ G ′; Γ′; x : A ` ∆′
cut

G;G ′; Γ; Γ′ ` ∆; ∆′

Logical Rules:

⊥L
G; Γ; w : ⊥ ` ∆

(ε, w . ε);G; Γ ` ∆
>∗L

G; Γ; w : >∗ ` ∆
>R

G; Γ ` w : >; ∆
>∗R

G; Γ ` ε : >∗; ∆

G; Γ; w : A; w : B ` ∆
∧L

G; Γ; w : A ∧ B ` ∆
G; Γ ` w : A; ∆ G; Γ ` w : B; ∆

∧R
G; Γ ` w : A ∧ B; ∆

G; Γ ` w : A; ∆ G; Γ; w : B ` ∆
→ L

G; Γ; w : A→ B ` ∆
G; Γ; w : A ` w : B; ∆

→ R
G; Γ ` w : A→ B; ∆

(x, y . z);G; Γ; x : A; y : B ` ∆
∗L

G; Γ; z : A ∗ B ` ∆
(x, z . y);G; Γ; x : A ` y : B; ∆

−∗ R
G; Γ ` z : A−∗ B; ∆

(x, y . z);G; Γ ` x : A; z : A ∗ B; ∆ (x, y . z);G; Γ ` y : B; z : A ∗ B; ∆
∗R

(x, y . z);G; Γ ` z : A ∗ B; ∆

(x, y . z);G; Γ; y : A−∗ B ` x : A; ∆ (x, y . z);G; Γ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z);G; Γ; y : A−∗ B ` ∆

Structural Rules:

(y, x . z); (x, y . z);G; Γ ` ∆
E

(x, y . z);G; Γ ` ∆

(u, w . z); (y, v . w); (x, y . z); (u, v . x);G; Γ ` ∆
A

(x, y . z); (u, v . x);G; Γ ` ∆

(x, ε . x);G; Γ ` ∆
U

G; Γ ` ∆
(x, w . x); (y, y . w); (x, y . x);G; Γ ` ∆

AC
(x, y . x);G; Γ ` ∆

(ε, w′ . w′);G[w′/w]; Γ[w′/w] ` ∆[w′/w]
Eq1

(ε, w . w′);G; Γ ` ∆

(ε, w′ . w′);G[w′/w]; Γ[w′/w] ` ∆[w′/w]
Eq2

(ε, w′ . w);G; Γ ` ∆

(x, y . z)[z/w];G[z/w]; Γ[z/w] ` ∆[z/w]
P

(x, y . z); (x, y . w);G; Γ ` ∆

(x, y . z)[y/w];G[y/w]; Γ[y/w] ` ∆[y/w]
C

(x, y . z); (x, w . z);G; Γ ` ∆

Side conditions:
Only label variables (not ε) may be substituted for.
In ∗L and −∗ R, the labels x and y do not occur in the conclusion.
In the rules A, AC, the label w does not occur in the conclusion.

Figure 6.1: The labelled sequent calculus LSPASL for PASL.

to globally replace z by w, when z 6= ε.
To show that a formula A is valid in LSPASL, we prove ` w : A for an arbitrary

label w. See Section 4.7 for an example derivation of formula (F ∗ F) → F, where
F = ¬(>−∗ ¬>∗). The use of the rule P is essential in proving this formula.

Theorem 6.1.1 (Soundness). For any formula A, and any label w ∈ LVar, if the labelled
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sequent ` w : A is derivable in LSPASL then A is valid in PASL.

Proof. We prove that the rules of LSPASL preserve falsifiability upwards. For all the
rules except for P, C, we refer the interested reader to the soundness proof for LSBBI
(Theorem 4.1.1), since the semantics of PASL is just the semantics of BBI plus partial
determinism and cancellativity, those rules are sound by the same argument.

For the rule P, suppose the conclusion is falsifiable in some model (H, R, ε, v) and
label mapping ρ, which means R(ρ(x), ρ(y), ρ(z)) and R(ρ(x), ρ(y), ρ(w)) both hold in
the model. By partial-determinism, ρ(z) = ρ(w), thus the premise is falsifiable. That
is, the substitution preserves the falsifiability of the sequent in the same model under
the same label mapping.

The case for the rule C is similar. Suppose the conclusion is falsifiable in a model
(H, R, ε, v) and a label mapping ρ. We know that the relations R(ρ(x), ρ(y), ρ(z)) and
R(ρ(x), ρ(w), ρ(z)) both hold. By cancellativity, ρ(y) = ρ(w), therefore replacing every
w with y preserves falsifiability of the premise.

6.1.1 Cut-elimination for LSPASL

The only differences between LSPASL and LSBBI are the additions of the structural
rules P and C, so we may prove cut-elimination by the same route, which in turn
follows from the usual cut-elimination procedure for labelled sequent calculi for modal
logics [73]. Recall that we use ht(Π) to denote the height of the derivation Π. This
will be used in the lemmas below.

We first show the substitution lemma for LSPASL, most of the details are the same
as for LSBBI, so we only present the part about the new rules.

Lemma 6.1.2 (Substitution). For any label x 6= ε and any label y, if Π is an LSPASL
derivation for the sequent G; Γ ` ∆ then there is an LSPASL derivation Π′ of the sequent
G[y/x]; Γ[y/x] ` ∆[y/x] such that ht(Π′) ≤ ht(Π).

Proof. By induction on ht(Π). We do a case analysis on the last rule applied in the
derivation. There are three sub-cases: (1) neither x nor y is the label of the principal
formula; (2) y is the label of the principal formula; and (3) x is the label of the principal
formula. Most of the rules can be proved as in LSBBI. Here we only illustrate the new
rules P and C. Apparently they both fall into the first sub-case, as they are structural
rules and there is no principal formula for them.

If the last rule in Π is P, which generally runs as below,

(G; (a, b . c); Γ ` ∆)[c/d]
P

G; (a, b . c); (a, b . d); Γ ` ∆

we further distinguish three cases: (1) x 6= d and x 6= c; (2) x = d; and (3) x = c.

1. If x 6= d and x 6= c, we need to consider three sub-cases:
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(a) If y 6= d and y 6= c, then the two substitutions [y/x] and [c/d] do not inter-
fere with each other, thus we can use the induction hypothesis to substitute
[y/x] and reorder the substitutions to obtain the desired derivation.

Π′

(G; (a, b . c); Γ ` ∆)[c/d][y/x]

(G; (a, b . c); Γ ` ∆)[y/x][c/d]
P

(G; (a, b . c); (a, b . d); Γ ` ∆)[y/x]

(b) If y = d we first use the induction hypothesis, substituting [c/x], then obtain
the following derivation:

Π′

(G; (a, b . c); Γ ` ∆)[c/d][c/x]

(G; (a, b . c); Γ ` ∆)[c/x][c/d]

(G; (a, b . c); Γ ` ∆)[d/x][c/d]
P

(G; (a, b . c); (a, b . d); Γ ` ∆)[d/x]

(c) If y = c, the proof is similar to above, without the second last step.

2. If x = d, we consider three sub-cases:

(a) If y 6= c and y 6= ε, we use the induction hypothesis to substitute [c/y], and
obtain the following derivation:

Π′

(G; (a, b . c); Γ ` ∆)[c/d][c/y]

(G; (a, b . c); Γ ` ∆)[y/d][c/y]
P

(G; (a, b . c); (a, b . y); Γ ` ∆)[y/d]

(b) If y 6= c but y = ε, then we use induction hypothesis to substitute [ε/c], and
obtain the following derivation:

Π′

(G; (a, b . ε); Γ ` ∆)[c/d][ε/c]

(G; (a, b . ε); Γ ` ∆)[ε/d][ε/c]
P

(G; (a, b . c); (a, b . ε); Γ ` ∆)[ε/d]

(c) If y = c, then the case is reduced to admissibility of weakening on relational
atoms.

3. If x = c, the cases are similar to those for x = d.

If the last rule in Π is C, the proof is analogous to the proof for P.

The rules P and C do not affect the result of weakening, therefore we state the
lemma without proof.
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Lemma 6.1.3 (Admissibility of weakening). If G; Γ ` ∆ is derivable in LSPASL, then for
any multiset G ′ of relational atoms, any multiset Γ′ and ∆′ of labelled formulae, the sequent
G;G ′; Γ; Γ′ ` ∆; ∆′ is derivable with the same height in LSPASL.

Invertibility needs more care. We give the parts of proof related to the new rules.

Lemma 6.1.4 (Invertibility). If Π is a cut-free LSPASL derivation of the conclusion of a rule,
then there is a cut-free LSPASL derivation for each premise, with height at most ht(Π).

Proof. The rules P, C themselves are trivially invertible, since the inverted versions can
be proved by using Lemma 6.1.2. The invertibility of all other rules except for >∗L can
be proved similarly as in LSBBI. Here we show the proof for >∗L in LSPASL. We do an
induction on the height of the derivation. Base case is the same as the proof for LSBBI.
For the inductive case, we illustrate the cases where the last rule in the derivation is P
or C. Assume w.l.o.g. that the principal formula for the rule >∗L is x : >∗.

1. If the last rule is P, which runs as below.

(G; (a, b . c); Γ; x : >∗ ` ∆)[c/d]
P

G; (a, b . c); (a, b . d); Γ; x : >∗ ` ∆

we distinguish three sub-cases:

(a) If x 6= d and x 6= c, then the substitutions [ε/x] and [c/d] are independent.
Thus we can use the induction hypothesis and apply the rule >∗L (mean-
while switch the order of substitutions) to obtain the desired derivation.

(b) If x = d, the original derivation is as follows.

Π
(G; (a, b . c); c : >∗; Γ ` ∆)[c/d]

P
G; (a, b . c); (a, b . d); d : >∗; Γ ` ∆

We apply the induction hypothesis on the premise, then apply P to obtain
the following derivation:

Π′

(G; (a, b . ε); Γ ` ∆)[c/d][ε/c]

(G; (a, b . ε); Γ ` ∆)[ε/d][ε/c]
P

(G; (a, b . c); (a, b . ε); Γ ` ∆)[ε/d]

(c) If x = c, the case is similar.

2. The case where the last rule is C is similar to above.

Admissibility of Contraction is also easy to see. The lemma is shown below.

Lemma 6.1.5 (Admissibility of contraction). If G;G; Γ; Γ ` ∆; ∆ is derivable in LSPASL,
then G; Γ ` ∆ is derivable with the same height in LSPASL.
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To show this lemma we need to go through two cases: contraction on relational
atoms and labelled formulae. As the new rules P, C only involve global substitutions,
the proofs for Lemma 4.2.8, 4.2.9 also work for LSPASL. The case where a relational
atom is contracted, then the pair of identical relational atoms is used in a P (resp.
C) application does not pose a problem, since in this case the substitution does not
change the conclusion at all, so the contraction and the rule P (resp. C) applied on the
conclusion is admissible.

The lemmas in this section are presented in an order such that the next lemma
depends on the previous ones. For example, the admissibility of contraction relies on
invertibility of certain rules, which in turn requires admissibility of weakening. These
details can be found in Section 4.2. Finally, we give the cut-elimination theorem, which
can be proven the same way as for LSBBI.

Theorem 6.1.6 (Cut-elimination). If G; Γ ` ∆ is derivable in LSPASL then it is derivable
without using the cut rule.

Proof. The proof follows the same structure as that for LSBBI (Theorem 4.2.11), utilising
the lemmas above. The additional cases we need to consider are those involving the
rules P and C; their treatment is similar to that for Eq1 in the proof for LSBBI. We
show the case for P here. The case for C is analogous. These cases both belong to
the subcase “the cut formula is not principal in the left premise” of Theorem 4.2.11.
Suppose the original derivation runs as below:

Π1

((x, y . z);G; Γ ` x : A; ∆)[z/w]
P

(x, y . z); (x, y . w);G; Γ ` x : A; ∆
Π2

G ′; Γ′; x : A ` ∆′
cut

(x, y . z); (x, y . w);G;G ′; Γ; Γ′ ` ∆; ∆′

We can permute this application of cut upwards through the P application as follows:

Π1

((x, y . z);G; Γ ` x : A; ∆)[z/w]

Π′2
(G ′; Γ′; x : A ` ∆′)[z/w]

cut
((x, y . z);G;G ′; Γ; Γ′ ` ∆; ∆′)[z/w]

P
(x, y . z); (x, y . w);G;G ′; Γ; Γ′ ` ∆; ∆′

That is, the new cut application cuts on the formula x : A[z/w] instead, which has the
same cut complexity as the original cut application. The derivation Π′2 for the right
premise is obtained by applying the substitution lemma on the derivation Π2.

Reflecting on the above proofs, the rules P and C do not break the nice properties
related to cut-elimination, and the proofs share the same idea as the one presented for
LSBBI. This is partly because the two new rules only involve global substitutions that
work similarly to the old rules Eq1 and Eq2. We will further exploit rules that only
involve substitutions in later sections.
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On the other hand, since partial-determinism and cancellativity are not axiomati-
sable in BBI [22], there does not exist a sound and complete Hilbert system for PASL
that we can simulate using LSPASL, and cut-elimination does not immediately yield the
completeness of LSPASL; we prove completeness of our calculus in the next section.

6.2 Completeness of LSPASL

We prove the completeness of LSPASL with respect to the Kripke relational semantics
by a counter-model construction. A standard way to construct a counter-model for
an unprovable sequent is to show that it can be saturated by repeatedly applying
all applicable inference rules to reach a limit sequent where a counter-model can be
constructed. In adopting such a counter-model construction strategy to LSPASL we
encounter difficulty in formulating the saturation conditions for rules involving label
substitutions. We therefore adopt the approach in Section 4.3, using an intermediate
system without explicit use of label substitutions, but where equivalences between
labels are captured via an entailment `E. Again, in the sequel, we assume that labelled
sequents such as G; Γ ` ∆ are built from sets G, Γ, ∆ rather than multisets. This is
harmless since contraction is admissible in LSPASL.

6.2.1 The Intermediate System ILSPASL

We introduce an intermediate system where rules with substitutions (Eq1, Eq2, P, C)
are isolated into an equivalence entailment `E, so that the resultant calculus does not
involve explicit substitutions.

We recall the definition of the function S(G, σ) at the beginning of Section 4.3.1
here. Given a set of relational atoms G, we denote with LV(G) the set of label variables
in G. Let σ be a sequence (list) of abstract instances of structural rules [r1; · · · ; rn].
Given a set of relational atoms G, the result of the application of σ to G, denoted by
S(G, σ), is defined inductively as follows:

S(G, σ) =


G if σ = [ ]
S(Gθ ∪ G2, σ′) if G1 ⊆ G, σ = [r(G1, θ,V ,G2)]@σ′ and

LV(G) ∩ V = ∅
undefined otherwise

Given a sequence σ = [r1(G1, θ1,V1,G ′1); · · · ; rn(Gn, θn,Vn,G ′n)] of structural rule
applications, we denote with subst(σ) the composite substitution θ1 ◦ · · · ◦ θn, where
t(θ1 ◦ θ2) means (tθ1)θ2.

Definition 6.2.1 (Equivalence entailment). Let G be a set of relational atoms. The entailment
G `E (a = b) holds iff there exists a sequence σ of Eq1, Eq2, P, C applications s.t. S(G, σ) is
defined, and aθ = bθ, where θ = subst(σ).
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Since substitution is no longer in the calculus, some inference rules that involve
matching two equal labels need to be changed. We define the intermediate system
ILSPASL as LSPASL minus {Eq1, Eq2, P, C}, with certain rules changed following Fig. 6.2.
The equivalence entailment `E is not a premise, but rather a condition of the rules.
One can readily notice that the rules in Figure 6.2 are just notational variants of the
rules in Figure 4.3, as the two systems LSBBI and LSPASL have the same rules when
substitutions are absorbed into `E.

G `E (w1 = w2)
id

G; Γ; w1 : p ` w2 : p; ∆
G `E (w = ε)

>∗R
G; Γ ` w : >∗; ∆

(x, w . x′); (y, y . w); (x, y . x′);G; Γ ` ∆
AC

(x, y . x′);G; Γ ` ∆

(u, w . z); (y, v . w); (x, y . z); (u, v . x′);G; Γ ` ∆
A

(x, y . z); (u, v . x′);G; Γ ` ∆

(x, y . w′);G; Γ ` x : A; w : A ∗ B; ∆ (x, y . w′);G; Γ ` y : B; w : A ∗ B; ∆
∗R

(x, y . w′);G; Γ ` w : A ∗ B; ∆

(x, w′ . z);G; Γ; w : A−∗ B ` x : A; ∆ (x, w′ . z);G; Γ; w : A−∗ B; z : B ` ∆
−∗ L

(x, w′ . z);G; Γ; w : A−∗ B ` ∆

Side conditions:

In A, AC, the label w does not occur in the conclusion.
In AC, (x, y . x′);G `E (x = x′) In A, (x, y . z); (u, v . x′);G `E (x = x′)
In ∗R, (x, y . w′);G `E (w = w′) In −∗ L, (x, w′ . z);G `E (w = w′)

Figure 6.2: Changed rules in the intermediate system ILSPASL.

Given a set of relational atoms G, we define the relation =G as follows: a =G b iff
G `E (a = b). We show next that =G is in fact an equivalence relation. This equivalence
relation will be useful in our counter-model construction later. Recall from Section 4.3
that we use σ to stand for a sequence of structural rule applications.

Lemma 6.2.1. Let G be a set of relational atoms. If G `E (a = b) by applying σ1 and G `E
(c = d) by applying σ2, then ∃σ3 s.t. S(G, σ1) `E (cθ = dθ) by σ3, where θ = subst(σ1).

Proof. Note that S(G, σ1) = Gθ. So essentially we need to show that if G `E (c = d),
then Gθ `E (cθ = dθ). This is a consequence of the substitution Lemma 6.1.2.

Lemma 6.2.2. Given a set of relational atoms G, the relation =G is an equivalence relation on
the set of labels.

Proof. We show that `E satisfies the following conditions:

Reflexivity: for any label a, we have G `E (a = a) by applying an empty sequence of
Eq1, Eq2, P, C rules.
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Symmetry: if G `E (x = y), via a sequence σ of Eq1, Eq2, P, C applications. Let θ =
subst(σ), then by definition, xθ and yθ are syntactically identical. Thus yθ ≡ xθ.
We obtain that G `E (y = x).

Note that if one of x and y is not in G, any structural rule application on G will
not derive any relation between x and y unless x and y are the same label. If x
and y are the same label, symmetry is immediate.

Transitivity: if G `E (x = y) and G `E (y = z), then by Lemma 6.2.1 we obtain a
sequence σ of Eq1, Eq2, P, C applications, with θ = subst(σ). Then xθ ≡ yθ ≡ zθ.
Thus G `E (x = z).

Again, if one of x, y and z is not in G, transitivity is immediate.

The intermediate system ILSPASL is equivalent to LSPASL. This connection is easy
to make, as is shown in Section 4.3. We just need to additionally consider that the
rules P, C are captured by the equivalence entailment `E. This is straightforward from
the definition. Properties such as contraction admissibility, closure under substitution
etc. also hold for ILSPASL.

Lemma 6.2.3. The intermediate labelled calculus ILSPASL is equivalent to LSPASL. That is,
every sequent provable in ILSPASL is also provable in LSPASL, and vice versa.

6.2.2 Counter-model Construction

We now give a counter-model construction procedure for ILSPASL which, by Lemma
6.2.3, applies to LSPASL as well.

As the counter-model construction involves infinite sets and sequents, we extend
the definition of `E appropriately as below.

Definition 6.2.2. A (possibly infinite) set G of relational atoms satisfies G `E (x = y) iff
G f `E (x = y) for some finite G f ⊆ G.

Given a set of relational atoms G, the equivalence relation =G partitions the set L
of labels into equivalence classes [a]G for each label a ∈ L:

[a]G = {a′ ∈ L | a =G a′}.

The counter-model construction is essentially a procedure to saturate a sequent
by applying all applicable rules repeatedly. The aim is to obtain a possibly infinite
saturated sequent from which a counter-model can be extracted. We first define a list
of desired properties of such a saturated sequent, by tradition is called the Hintikka
sequent, which would allow the counter-model construction.

Definition 6.2.3 (Hintikka sequent). A labelled sequent G; Γ ` ∆ is a Hintikka sequent if
it satisfies the following conditions for any formulae A, B and any labels a, a′, b, c, d, e, z:
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1. If a : A ∈ Γ and b : A ∈ ∆ then a 6=G b.
2. If a : A ∧ B ∈ Γ then a : A ∈ Γ and a : B ∈ Γ.
3. If a : A ∧ B ∈ ∆ then a : A ∈ ∆ or a : B ∈ ∆.
4. If a : A→ B ∈ Γ then a : A ∈ ∆ or a : B ∈ Γ.
5. If a : A→ B ∈ ∆ then a : A ∈ Γ and a : B ∈ ∆.
6. If a : >∗ ∈ Γ then a =G ε.
7. If a : >∗ ∈ ∆ then a 6=G ε.
8. If z : A ∗ B ∈ Γ then ∃x, y, z′ ∈ L s.t. (x, y . z′) ∈ G, z =G z′, x : A ∈ Γ and

y : B ∈ Γ.
9. If z : A ∗ B ∈ ∆ then ∀x, y, z′ ∈ L if (x, y . z′) ∈ G and z =G z′ then x : A ∈ ∆ or

y : B ∈ ∆.
10. If z : A−∗ B ∈ Γ then ∀x, y, z′ ∈ L if (x, z′ . y) ∈ G and z =G z′, then x : A ∈ ∆ or

y : B ∈ Γ.
11. If z : A−∗ B ∈ ∆ then ∃x, y, z′ ∈ L s.t. (x, z′ . y) ∈ G, z =G z′, x : A ∈ Γ and

y : B ∈ ∆.
12. For any label m ∈ L, (m, ε . m) ∈ G.
13. If (a, b . c) ∈ G then (b, a . c) ∈ G.
14. If {(a, b . c), (d, e . a′)} ⊆ G and a =G a′, then ∃ f , f ′ ∈ L s.t. {(d, f . c), (b, e . f ′)} ⊆
G and f =G f ′.

15. a : ⊥ 6∈ Γ and a : > 6∈ ∆.

The next lemma shows that a Hintikka sequent gives a PASL Kripke relational
frame which is a (counter-)model of the sequent. Given a PASL model (H, R, ε, ν),
we define an extended model as (H, R, ε, ν, ρ) where ρ is a mapping from labels to
members of H.

Lemma 6.2.4. Every Hintikka sequent is falsifiable.

Proof. Let G; Γ ` ∆ be a Hintikka sequent. We construct an extended model M =
(H, .G , εG , ν, ρ) as follows:

• H = {[a]G | a ∈ L}
• .G([a]G , [b]G , [c]G) iff ∃a′, b′, c′.(a′, b′ . c′) ∈ G, a =G a′, b =G b′, c =G c′

• εG = [ε]G
• ν(p) = {[a]G | a : p ∈ Γ} for every p ∈ PVar
• ρ(a) = [a]G for every a ∈ L

To reduce clutter, we shall drop the subscript G in [a]G and write [a], [b] .G [c]
instead of .G([a], [b], [c]).

We first show that F = (H, .G , εG) is a PASL Kripke relational frame.

identity: for each [a] ∈ H, by definition, there must be a label a′ ∈ L such that [a] =
[a′]. It follows from condition 12 in Def. 6.2.3 that (a′, ε . a′) ∈ G, thus [a], [ε] .G [a]
holds. By condition 13, we have [ε], [a] .G [a]. On the other hand, assume there is
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some [ε], [a] .G [b]. There must be some a′, b′ such that [a] = [a′], [b] = [b′], and
(ε, a′ . b′) ∈ G. By the rules Eq1 and Eq2, we obtain that G `E (a′ = b′). Thus
[a] = [a′] = [b′] = [b].

commutativity: if [a], [b] .G [c] holds, there must be some (a′, b′ . c′) ∈ G s.t. [a] =
[a′], [b] = [b′], [c] = [c′]. Then by condition 13 in Def. 6.2.3, (b′, a′ . c′) ∈ G,
therefore [b], [a] .G [c] holds.

associativity: if [a], [b] .G [c] and [d], [e] .G [a] holds, then there exist some (a′, b′ . c′) ∈
G and (d′, e′ . a′′) ∈ G s.t. [a] = [a′] = [a′′], [b] = [b′], [c] = [c′], [d] = [d′], [e] = [e′].
Then by condition 14 in Def. 6.2.3, there also exist labels f , f ′ s.t. (d′, f . c′) ∈ G
and (b′, e′ . f ′) ∈ G and [ f ] = [ f ′]. Thus we can find [ f ] s.t. [d], [ f ] .G [c] and
[b], [e] .G [ f ] hold.

Partial-determinism: If [a], [b] .G [c] and [a], [b] .G [d] hold, then there exists some
(a′, b′ . c′) ∈ G and (a′′, b′′ . d′) ∈ G s.t. [a] = [a′] = [a′′], [b] = [b′] = [b′′], [c] =
[c′], [d] = [d′]. So there are some σ1, σ2 such that G `E (a′ = a′′) via σ1 and
G `E (b′ = b′′) via σ2. Let θ1 be subst(σ1). By Lemma 6.2.1, there is some σ3 such
that S(G, σ1) `E (b′θ1 = b′′θ1). Let θ2 be subst(σ3). We have a′θ1θ2 ≡ a′′θ1θ2 and
b′θ1θ2 ≡ b′′θ1θ2 in S(S(G, σ1), σ3). So we can apply the rule P on S(S(G, σ1), σ3)
to unify c′θ1θ2 and d′θ1θ2, obtaining [c] = [c′] = [d] = [d′].

Cancellativity: if [a], [b] .G [c] and [a], [d] .G [c] hold, then we can find some (a′, b′ .
c′) ∈ G and (a′′, d′ . c′′) ∈ G s.t. [a] = [a′] = [a′′], [c] = [c′] = [c′′], [b] = [b′], [d] =
[d′]. By a similar reasoning as the above case, we obtain that [b] = [b′] = [c] = [c′].

SoM is indeed a model based on a PASL Kripke relational frame. We prove next that
G; Γ ` ∆ is false inM. We need to show the following (where ρ(m) = [m]):

(1) If (a, b . c) ∈ G then ([a], [b] .G [c]).
(2) If m : A ∈ Γ then ρ(m) 
 A.
(3) If m : A ∈ ∆ then ρ(m) 6
 A.

Item (1) follows from the definition of .G . We prove (2) and (3) simultaneously by
induction on the size of A.

Base cases: when A is an atomic proposition p.

• If m : p ∈ Γ then [m] ∈ ν(p) by definition of ν, so [m] 
 p.

• Suppose m : p ∈ ∆, but [m] 
 p. Then m′ : p ∈ Γ, for some m′ s.t. m′ =G m.
This violates condition 1 in Def. 6.2.3. Thus [m] 6
 p.

Inductive cases: when A is a compound formula. We do a case analysis on the main
connective of A.
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• If m : A ∧ B ∈ Γ, by condition 2 in Def. 6.2.3, m : A ∈ Γ and m : B ∈ Γ. By
the induction hypothesis, [m] 
 A and [m] 
 B, thus [m] 
 A ∧ B.

• If m : A ∧ B ∈ ∆, by condition 3 in Def. 6.2.3, m : A ∈ ∆ or m : B ∈ ∆. By
the induction hypothesis, [m] 6
 A or [m] 6
 B, thus [m] 6
 A ∧ B.

• If m : A → B ∈ Γ, by condition 4 in Def. 6.2.3, m : A ∈ ∆ or m : B ∈ Γ. By
the induction hypothesis, [m] 6
 A or [m] 
 B, thus [m] 
 A→ B.

• If m : A→ B ∈ ∆, by condition 5 in Def. 6.2.3, m : A ∈ Γ and m : B ∈ ∆. By
the induction hypothesis, [m] 
 A and [m] 6
 B, thus [m] 6
 A→ B.

• If m : >∗ ∈ Γ then [m] = [ε] by condition 6 in Def. 6.2.3. Since [ε] 
 >∗, we
obtain [m] 
 >∗.

• If m : >∗ ∈ ∆, by condition 7 in Def. 6.2.3, [m] 6= [ε] and then [m] 6
 >∗.
• If m : A ∗ B ∈ Γ, by condition 8 in Def. 6.2.3, ∃a, b, m′ s.t. (a, b . m′) ∈ G and

[m] = [m′] and a : A ∈ Γ and b : B ∈ Γ. By the induction hypothesis, [a] 
 A
and [b] 
 B. Thus [a], [b] .G [m] holds and [m] 
 A ∗ B.

• If m : A ∗ B ∈ ∆, by condition 9 in Def. 6.2.3, ∀a, b, m′ if (a, b . m′) ∈ G and
[m] = [m′], then a : A ∈ ∆ or b : B ∈ ∆. By the induction hypothesis, if such
a, b exist, then [a] 6
 A or [b] 6
 B. For any [a], [b] .G [m], there must be some
(a′, b′ . m′′) ∈ G s.t. [a] = [a′], [b] = [b′], [m] = [m′′]. Then [a] 6
 A or [b] 6
 B
therefore [m] 6
 A ∗ B.

• If m : A−∗ B ∈ Γ, by condition 10 in Def. 6.2.3, ∀a, b, m′ if (a, m′ . b) ∈ G and
[m] = [m′], then a : A ∈ ∆ or b : B ∈ Γ. By the induction hypothesis, if such
a, b exists, then [a] 6
 A or [b] 
 B. Consider any [a], [m] .G [b]. There must
be some (a′, m′′ . b′) ∈ G s.t. [a] = [a′], [m′′] = [m], and [b] = [b′]. So [a] 6
 A
or [b] 
 B, thus [m] 
 A−∗ B.

• If m : A−∗ B ∈ ∆, by condition 11 in Def. 6.2.3, ∃a, b, m′ s.t. (a, m′ . b) ∈ G
and [m] = [m′] and a : A ∈ Γ and b : B ∈ ∆. By the induction hypothesis,
[a] 
 A and [b] 6
 B and [a], [m] .G [b] holds, thus [m] 6
 A−∗ B.

To prove the completeness of ILSPASL, we have to show that any given unprovable
sequent can be extended to a Hintikka sequent. To do so we need a way to enumerate
all possible applicable rules in a fair way so that every rule will be chosen infinitely
often. Traditionally, this is achieved via a fair enumeration strategy of every principal
formula of every rule. Since our calculus contains structural rules with no principal
formulas, we need to include them in the enumeration strategy as well. For this
purpose, we define a notion of extended formulae, given by the grammar:

ExF ::= F | U | E | A | AC

where F is a formula, and U, E, A, AC are constants that are used as “dummy” prin-
cipal formulae for the structural rules U, E, A, and AC, respectively. A schedule
enumerates each combination of left or right of turnstile, a label, an extended formula
and at most two relational atoms infinitely often.
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Definition 6.2.4 (Schedule φ). A rule instance is a tuple (O, m, ExF, R), where O is either
0 (left) or 1 (right), m is a label, ExF is an extended formula and R is a set of relational atoms
such that |R| ≤ 2. Let S denote the set of all rule instances. A schedule is a function from
natural numbers N to S . A schedule φ is fair if for every rule instance S, the set {i | φ(i) = S}
is infinite.

Lemma 6.2.5. There exists a fair schedule.

Proof. Our proof is similar to the proof of fair strategy of Larchey-Wendling [60]. To
adapt their proof, we need to show that the set S is countable. This follows from the
fact that S is a finite product of countable sets.

From now on, we shall fix a fair schedule, which we call φ. We assume that the set
of labels L is totally ordered, and its elements can be enumerated as a0, a1, a2, . . . where
a0 = ε. This indexing is used to select fresh labels in our construction of Hintikka
sequents. We say the formula F is not cut-free provable in ILSPASL if the sequent
` w : F is not cut-free derivable in ILSPASL for any label w 6= ε. Since we shall be
concerned only with cut-free provability, in the following when we mention derivation,
we mean cut-free derivation.

Definition 6.2.5. Let F be a formula which is not provable in ILSPASL. We construct a series
of finite sequents 〈Gi; Γi ` ∆i〉i∈N from F where G1 = Γ1 = ∅ and ∆1 = a1 : F.

Assuming that Gi; Γi ` ∆i has been defined, we define Gi+1; Γi+1 ` ∆i+1 as follows.
Suppose φ(i) = (Oi, mi, ExFi, Ri).

• If Oi = 0, ExFi is a PASL formula Ci and mi : Ci ∈ Γi:

– If Ci = F1 ∧ F2, then Gi+1 = Gi, Γi+1 = Γi ∪ {mi : F1, mi : F2}, ∆i+1 = ∆i.

– If Ci = F1 → F2. If there is no derivation for Gi; Γi ` mi : F1; ∆i then Γi+1 = Γi,
∆i+1 = ∆i ∪ {mi : F1}. Otherwise Γi+1 = Γi ∪ {mi : F2}, ∆i+1 = ∆i. In both
cases, Gi+1 = Gi.

– If Ci = >∗, then Gi+1 = Gi ∪ {(ε, mi . ε)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If Ci = F1 ∗ F2, then Gi+1 = Gi ∪ {(a2i, a2i+1 . mi)}, Γi+1 = Γi ∪ {a2i : F1, a2i+1 :
F2}, ∆i+1 = ∆i.

– If Ci = F1−∗ F2 and Ri = {(x, m . y)} ⊆ Gi and Gi `E (m = mi). If Gi; Γi `
x : F1; ∆i has no derivation, then Γi+1 = Γi, ∆i+1 = ∆i ∪ {x : F1}. Otherwise
Γi+1 = Γi ∪ {y : F2}, ∆i+1 = ∆i. In both cases, Gi+1 = Gi.

• If Oi = 1, ExFi is a PASL formula Ci, and mi : Ci ∈ ∆:

– If Ci = F1 ∧ F2. If there is no derivation for Gi; Γi ` mi : F1; ∆i then ∆i+1 =
∆i ∪ {mi : F1}. Otherwise ∆i+1 = ∆i ∪ {mi : F2}. In both cases, Gi+1 = Gi and
Γi+1 = Γi.
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– If Ci = F1 → F2, then Γi+1 = Γ ∪ {mi : F1}, ∆i+1 = ∆i ∪ {mi : F2}, and
Gi+1 = Gi.

– Ci = F1 ∗ F2 and Ri = {(x, y . m)} ⊆ Gi and Gi `E (mi = m). If Gi; Γi ` x :
F1; ∆i has no derivation, then ∆i+1 = ∆i ∪ {x : F1}. Otherwise ∆i+1 = ∆i ∪ {y :
F2}. In both cases, Gi+1 = Gi and Γi+1 = Γi.

– If Ci = F1−∗ F2, then Gi+1 = Gi ∪ {(a2i, mi . a2i+1)}, Γi+1 = Γi ∪ {a2i : F1}, and
∆i+1 = ∆i ∪ {a2i+1 : F2}.

• If ExFi ∈ {U, E, A, AC}, we proceed as follows:

– If ExFi = U, Ri = {(an, ε . an)}, where n ≤ 2i + 1, then Gi+1 = Gi ∪ {(an, ε .
an)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = E, Ri = {(x, y . z)} ⊆ Gi, then Gi+1 = Gi ∪ {(y, x . z)}, Γi+1 = Γi,
∆i+1 = ∆i.

– If ExFi = A, Ri = {(x, y . z); (u, v . x′)} ⊆ Gi and Gi `E (x = x′), then
Gi+1 = Gi ∪ {(u, a2i . z), (y, v . a2i)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = AC, Ri = {(x, y . x′)} ⊆ Gi, and Gi `E (x = x′) then Gi+1 =
Gi ∪ {(x, a2i . x), (y, y . a2i)}, Γi+1 = Γi, ∆i+1 = ∆i.

• In all other cases, Gi+1 = Gi, Γi+1 = Γi and ∆i+1 = ∆i.

Intuitively, each tuple (Oi, mi, ExFi, Ri) corresponds to a potential rule application.
If the components of the rule application are in the current sequent, we apply the
corresponding rule to these components. The indexing of labels guarantees that the
choice of a2i and a2i+1 are always fresh for the sequent Gi; Γi ` ∆i. The construc-
tion in Def. 6.2.5 non-trivially extends a similar construction of Hintikka CSS due to
Larchey-Wendling [60], in addition to which we have to consider the cases for struc-
tural rules. We also borrow the notions of consistency and finite-consistency from
Larchey-Wendling’s work [60].

We say G ′; Γ′ ` ∆′ ⊆ G; Γ ` ∆ iff G ′ ⊆ G, Γ′ ⊆ Γ and ∆′ ⊆ ∆. A labelled
sequent G; Γ ` ∆ is finite if G, Γ, ∆ are finite sets. Define G ′; Γ′ ` ∆′ ⊆ f G; Γ ` ∆ iff
G ′; Γ′ ` ∆′ ⊆ G; Γ ` ∆ and G ′; Γ′ ` ∆′ is finite. If G; Γ ` ∆ is a finite sequent, it is
consistent iff it does not have a derivation in ILSPASL. A (possibly infinite) sequent
G; Γ ` ∆ is finitely-consistent iff every G ′; Γ′ ` ∆′ ⊆ f G; Γ ` ∆ is consistent.

We write Li for the set of labels occurring in the sequent Gi; Γi ` ∆i. Thus L1 =
{a1}. The following lemma states some properties of the construction of the sequents
Gi; Γi ` ∆i, e.g., the labels a2i, a2i+1 are always fresh for Gi; Γi ` ∆i. This can be proved
by an induction on i.

Lemma 6.2.6. For any i ∈ N , the following properties hold:

1. Gi; Γi ` ∆i has no derivation
2. Li ⊆ {a0, a1, · · · , a2i−1}
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3. Gi; Γi ` ∆i ⊆ f Gi+1; Γi+1 ` ∆i+1

Proof. Item 1 is based on the fact that the inference rules preserves falsifiability up-
wards, and we always choose the branch with no derivation. To show item 2, we do
an induction on i. Base case, i = 1, L1 ⊆ {a0, a1} (recall that a0 = ε). Inductive cases:
suppose item 2 holds for any i ≤ n, for n + 1, we consider five cases depending on
which rule is applied on Gi; Γi ` ∆i.

1. If ∗L is applied, then Li+1 = Li ∪ {a2i, a2i+1} ⊆ {a1, · · · , a2i+1}.
2. If −∗ R is applied, same as above.
3. If U is applied, which generates (an, ε . an), then n ≤ 2i + 1, thus Li+1 = Li ∪
{an} ⊆ {a1, · · · , a2i+1}.

4. If A is applied, the fresh label in the premise is a2i. Thus Li+1 = Li ∪ {a2i} ⊆
{a1, · · · , a2i+1}.

5. Otherwise, Li+1 = Li ⊆ {a1, · · · , a2i+1}.

Item 3 is obvious from the construction of Gi+1; Γi+1 ` ∆i+1.

Given the construction of the series of sequents we have just seen above, we define
a notion of a limit sequent as the union of every sequent in the series.

Definition 6.2.6 (Limit sequent). Let F be a formula unprovable in ILSPASL. The limit
sequent for F is the sequent Gω; Γω ` ∆ω where Gω =

⋃
i∈N Gi and Γω =

⋃
i∈N Γi and

∆ω =
⋃

i∈N ∆i and where Gi; Γi ` ∆i is as defined in Def.6.2.5.

The following lemma shows that the limit sequent defined above is indeed a Hin-
tikka sequent. Thus we can use it to extract a counter-model.

Lemma 6.2.7. If F is a formula unprovable in ILSPASL, then the limit labelled sequent for F
is a Hintikka sequent.

Proof. Let Gω; Γω ` ∆ω be the limit sequent. First we show that Gω; Γω ` ∆ω is
finitely-consistent. Consider any G; Γ ` ∆ ⊆ f Gω; Γω ` ∆ω, we show that G; Γ ` ∆
has no derivation. Since G, Γ, ∆ are finite sets, there exists i ∈ N s.t. G ⊆ Gi, Γ ⊆ Γi,
and ∆ ⊆ ∆i. Moreover, Gi; Γi ` ∆i is not provable in ILSPASL. Since weakening is
admissible in ILSPASL, G; Γ ` ∆ ⊆ f Gi; Γi ` ∆i cannot be provable either. So condition
1, 7, and 15 in Definition 6.2.3 hold for the limit sequent, for otherwise we would be
able to construct a provable finite labelled sequent from the limit sequent. We show
the proofs that the other conditions in Definition 6.2.3 are also satisfied by the limit
sequent. The following cases are numbered according to items in Definition 6.2.3.

2. If m : F1 ∧ F2 ∈ Γω, then it is in some Γi, where i ∈ N . Since φ select the
formula infinitely often, there is j > i such that φ(j) = (0, m, F1 ∧ F2, R). Then by
construction {m : F1, m : F2} ⊆ Γj+1 ⊆ Γω.
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3. If m : F1 ∧ F2 ∈ ∆ω, then it is in some ∆i, where i ∈ N . Since φ select the
formula infinitely often, there is j > i such that φ(j) = (1, m, F1 ∧ F2, R). Then by
construction m : Fn ∈ ∆j+1 ⊆ ∆ω, where n ∈ {1, 2} and Gj; Γj ` m : Fn; ∆j does
not have a derivation.

4. If m : F1 → F2 ∈ Γω, similar to case 3.

5. If m : F1 → F2 ∈ ∆ω, similar to case 2.

6. If m : >∗ ∈ Γω, then m : >∗ ∈ Γi, for some i ∈ N , since each labelled formula
from Γω must appear somewhere in the sequence. Then there exists j > i such
that φ(j) = (0, m,>∗, R) where this formula becomes principal. By construction,
(ε, m . ε) ∈ Gj+1 ⊆ Gω. Then Gω `E (m = ε) because Gj+1 `E (m = ε). So we
deduce that m =Gω ε.

8. If m : F1 ∗ F2 ∈ Γω, then it is in some Γi, where i ∈ N . Then there exists j > i such
that φ(j) = (0, m, F1 ∗ F2, R). By construction Gj+1 = Gj ∪ {(a2j, a2j+1 . m)} ⊆ Gω,
and Γj+1 = Γj ∪ {a2j : F1, a2j+1 : F2} ⊆ Γω.

9. If m : F1 ∗ F2 ∈ ∆ω, then it is in some ∆i, where i ∈ N . For any (x, y . m′) ∈ Gω

such that Gω `E (m = m′), there exists j > i such that (x, y . m′) ∈ Gj and
Gj `E (m = m′). Also, there exists k > j such that φ(k) = (1, m, F1 ∗ F2, {(x, y .
m′)}) where the labelled formula becomes principal. Since (x, y . m′) ∈ Gk and
Gk ` (m = m′), we have either x : F1 ∈ ∆k+1 ⊆ ∆ω or y : F2 ∈ ∆k+1 ⊆ ∆ω.

10. If m : F1−∗ F2 ∈ Γω, similar to case 8.

11. If m : F1−∗ F2 ∈ ∆ω, similar to case 9.

12. For each an ∈ L, there is a j ≥ n such that φ(j) = (O, m, U, {(an, ε . an)}) where
U is applied to an. Then Gj+1 = Gj ∪ {(an, ε . an)} ⊆ Gω, because n ≤ 2j + 1.

13. If (x, y . z) ∈ Gω, then it is in some Gi, where i ∈ N . Since the schedule is fair,
there is a j > i such that φ(j) = (O, m, E, {(x, y . z)}) where E is applied. Then
Gj+1 = Gj ∪ {(y, x . z)} ⊆ Gω.

14. If (x, y . z) ∈ Gω, (u, v . x′) ∈ Gω, and x =Gω x′, then there is some Gi, i ∈ N
such that {(x, y . z), (u, v . x′)} ⊆ Gi and Gi `E (x = x′). There are two cases to
consider, depending on whether (x, y . z) and (u, v . x′) are the same relational
atoms or not. Suppose they are distinct. Then there must be some j > i such
that φ(j) = (O, m, A, {(x, y . z), (u, v . x′)}). Then {(x, y . z), (u, v . x′)} ∈ Gj and
Gj `E (x = x′). By construction we obtain that Gj+1 = Gj ∪ {(u, a2j . z), (y, v .
a2j)} ⊆ Gω. If (x, y . z) and (u, v . x′) are the same relational atom, then a similar
argument can be applied, but in this case the rule instance to choose is one which
selects AC rather than A.
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Finally we can state the completeness theorem: whenever a formula has no deriva-
tion in ILSPASL, there is an infinite counter-model based on the limit sequent and the
Kripke relational frame.

Theorem 6.2.8 (Completeness). Every formula F unprovable in ILSPASL is not valid (in
PASL relational Kripke models).

Proof. We construct a limit sequent Gω; Γω ` ∆ω for F following Def. 6.2.6. Note that
by the construction of the limit sequent, we have a1 : F ∈ ∆ω. By Lemma 6.2.7, this
limit sequent is a Hintikka sequent, and therefore by Lemma 6.2.4, Gω; Γω ` ∆ω is
falsifiable. This means there exists a model (F , ν, ρ) that satisfies Gω and Γω and
falsifies every element of ∆ω, including a1 : F, which means that F is false at world
ρ(a1). Thus F is not valid.

Corollary 6.2.9. If formula F is unprovable in LSPASL then F is not valid (in PASL relational
Kripke models).

Proof. By Lemma 6.2.3 and Theorem 6.2.8.

6.3 LSSTDHA : Labelled Rules for DHA Separation Theory

We now consider some extensions of PASL obtained by imposing additional properties
on the semantics, as suggested by Dockins et al. [32] and covered in Section 5.2.2.
We show that sound rules for indivisible unit and the stronger property of disjointness
can be added to our labelled sequent calculus without jeopardising our completeness
proof, but that the more exotic properties of splittability and cross-split are not fully
compatible with our current framework, they require non-trivial changes to the proofs
in Section 6.2.

Indivisible unit is captured by the following sound rule:

(ε, y . ε)[ε/x];G[ε/x]; Γ[ε/x] ` ∆[ε/x]
IU

(x, y . ε);G; Γ ` ∆

Note that even if y is not x, we can still instantiate the label y to ε by applying
Eq1 upwards. Recall that the sequent calculus LSBBI [53] is just the sequent calculus
LSPASL minus the rules C and P, and that the formula corresponds to frames with
indivisible unit is >∗ ∧ (A ∗ B) → A. The following proposition states that the axiom
of indivisible unit is provable in LSBBI extended with IU.

Proposition 6.3.1. The formula >∗ ∧ (A ∗ B)→ A is provable in LSBBI + IU.

We give a derivation for this proposition below.
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id
(ε, a2 . ε); ε : A; a2 : B ` ε : A

IU
(a1, a2 . ε); a1 : A; a2 : B ` ε : A

>∗L
(a1, a2 . a0); a0 : >∗; a1 : A; a2 : B ` a0 : A

∗L
; a0 : >∗; a0 : A ∗ B ` a0 : A

∧L
; a0 : >∗ ∧ (A ∗ B) ` a0 : A

→ R
; ` a0 : (>∗ ∧ (A ∗ B))→ A

Therefore the completeness of LSBBI + IU for the BBI semantics plus indivisible unit
is obvious. However, showing that the axiom for indivisible unit can be proved is not
sufficient for proving the completeness of LSPASL + IU. Again, we would have to prove
via a counter-model construction similar to the one presented in Section 6.2.2. Luckily,
the rule IU can be easily incorporated into the definition of `E as IU only involves a
global label substitution, so the main proof remains the same. Nice properties such as
cut-elimination are also preserved.

Theorem 6.3.2. LSPASL + IU is sound and cut-free complete with respect to the class of PASL
Kripke relational frames (and separation algebras) with indivisible unit.

Proof. Soundness is straightforward as the rule IU essentially just encodes the seman-
tics into the labelled sequent calculus.

Cut-elimination follows by checking each lemma in Section 6.1.1. Specifically, we
show the details of Lemma 6.1.2 (substitution) and Lemma 6.1.4 (invertibility) here.

Substitution: Prove by induction on the height of the derivation. Here we examine the
case where IU is the last rule in the derivation. The rule IU is a structural rule,
thus it does not have a principal formula and belongs to the case where neither x
nor y in the substitution [y/x] is the label of the principal formula. We consider
the sub-cases of x, y being a or not respectively, where the IU application is
shown below.

Π
(G; (ε, b . ε); Γ ` ∆)[ε/a]

IU
G; (a, b . ε); Γ ` ∆

1. If x 6= a we consider two sub-cases.

(a) If y 6= a then the substitutions [y/x], [ε/a] are independent, thus we
can easily use the induction hypothesis to substitute [y/x] and switch
the order of substitutions to obtain the desired derivation. If x = b
and y = ε, the IU application is reduced to Eq1 and E applications
as follows, where Π′ is obtained by using the induction hypothesis to
substitute [ε/b]:
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Π′

(G; (ε, ε . ε); Γ ` ∆)[ε/a][ε/b]

(G; (ε, ε . ε); Γ ` ∆)[ε/b][ε/a]
Eq1

(G; (a, ε . ε); (ε, a . ε); Γ ` ∆)[ε/b]
E

(G; (a, ε . ε); Γ ` ∆)[ε/b]
(b) If y = a, we use the induction hypothesis to substitute [ε/x], then use

IU to obtain the derivation.
Π′

(G; (ε, b . ε); Γ ` ∆)[ε/a][ε/x]

(G; (ε, b . ε); Γ ` ∆)[a/x][ε/a]
IU

(G; (a, b . ε); Γ ` ∆)[a/x]
A special case where x = b can be shown similarly.

2. If x = a, again, we consider two sub-cases:

(a) If y 6= ε, we use the induction hypothesis to substitute [ε/y], and then
use IU to obtain the derivation.

Π′

(G; (ε, b . ε); Γ ` ∆)[ε/a][ε/y]

(G; (ε, b . ε); Γ ` ∆)[y/a][ε/y]
IU

(G; (y, b . ε); Γ ` ∆)[y/a]
(b) If y = ε, then the substitution gives G[ε/a]; (ε, b . ε); Γ[ε/a] ` ∆[ε/a],

which is known to be derivable by using Π.

Invertibility: The rule IU is trivially invertible, as can be proved by using the substi-
tution lemma. We show here (by induction on the height of the derivation) the
case for the rule >∗L, where the last rule in the derivation is IU. The other rules
can be proved similarly as in [53]. The last rule IU runs as below.

Π
(G; (ε, b . ε); Γ; x : >∗ ` ∆)[ε/a]

IU
G; (a, b . ε); Γ; x : >∗ ` ∆

we consider three sub-cases:

1. If x 6= a and x 6= b, then we can safely apply the induction hypothesis
on the premise, switch the order of substitutions, and apply IU to obtain
(G; (a, b . ε); Γ ` ∆)[ε/x].

2. If x = a, then the premise of the IU application is what we need to derive
(with a dummy ε : >∗ on the left hand side of the sequent).

3. If x = b, then (G; (a, ε . ε); Γ ` ∆)[ε/b] can be derived by applying E and
Eq1 backwards then use the induction hypothesis to obtain the derivation.
The details are the same as the derivation shown in 1(a) of the proof for
substitution.



§6.3 LSSTDHA : Labelled Rules for DHA Separation Theory 203

Completeness can be proved via the same counter-model construction for LSPASL
(Corollary 6.2.9). That is, we first define an intermediate calculus ILSPASL +IU that is
equivalent to LSPASL + IU, and do counter-model construction in ILSPASL + IU. Since
the IU rule involves substitution, the rule will be localised into the entailment relation
`E, so the definition of `E in Definition 6.2.1 is modified to include IU in addition to
Eq1, Eq2, P and C. Thus the rules of ILSPASL + IU are exactly the same as ILSPASL, and
the only change is in the definition of `E . The equivalence between LSPASL + IU and
ILSPASL + IU can be proved as in Lemma 6.2.3.

Then we only need to show that a Hintikka sequent yields a Kripke relational frame
that corresponds to a separation algebra with indivisible unit. In particular, no addi-
tional clauses are needed in the definition of Hintikka sequent since it is parametric
on the entailment relation `E.

For a Hintikka sequent G; Γ ` ∆, suppose (H, .G , [ε]) is the PASL Kripke relational
frame generated by G. Given any [a], [b] .G [ε], we can find a (a′, b′ . c′) ∈ G such that
[a] = [a′], [b] = [b′], [ε] = [c′]. Also, we can use the rule IU to derive G `E (a′ = ε).
Thus by Lemma 6.2.1, we obtain [a] = [a′] = [ε]. So the structure (H, .G , [ε]) generated
by G is indeed a PASL Kripke relational frame that obeys indivisible unit.

The saturation with logical rules and structural rules E, U, A, AC is then the same
as in Section 6.2.

Disjointness is captured by the following rule:

(ε, ε . y)[ε/x];G[ε/x]; Γ[ε/x] ` ∆[ε/x]
D

(x, x . y);G; Γ ` ∆

Clearly the label y, if not the same as x, can be unified to ε by applying Eq2 on the
premise. Since associativity and commutativity for the ternary relation R are assumed,
given three worlds w1, w2, w0 that satisfy R(w1, w2, w0), if w1, w2 share a common child
w3, then there must be some worlds w, w′′ such that R(w, w′′, w0) and R(w3, w3, w)
hold. Therefore by disjointness we get w3 = ε as well as w = ε. If we view each world
as a heap, this corresponds to forbidding two heaps that can be combined to have a
non-empty intersection (sub-heap).

We can prove the axiom for indivisible unit by using LSBBI + D.

Proposition 6.3.3. The formula >∗ ∧ (A ∗ B)→ A is provable in LSBBI + D.

The following is a derivation for the above proposition. We highlight the principal
relational atoms where they are not obvious.
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id
(ε, ε . ε); · · · ; ε : A; ε : B ` ε : A

Eq1
(ε, a1 . ε); · · · ; a1 : A; ε : B ` ε : A

E

(a1, w2 . w1);(ε, ε . w2); (a1, ε . ε) ;· · · ; a1 : A; ε : B ` ε : A
D

(a1, w2 . w1); (a2, a2 . w2) ; (a1, a2 . ε); · · · ; a1 : A; a2 : B ` ε : A
A

(a1, w1 . ε); (ε, a2 . w1); (a1, a2 . ε) ; · · · ; a1 : A; a2 : B ` ε : A
A

(ε, ε . ε); (a1, a2 . ε); a1 : A; a2 : B ` ε : A
U

(a1, a2 . ε); a1 : A; a2 : B ` ε : A
>∗L

(a1, a2 . a0); a0 : >∗; a1 : A; a2 : B ` a0 : A
∗L

; a0 : >∗; a0 : A ∗ B ` a0 : A
∧L

; a0 : >∗ ∧ (A ∗ B) ` a0 : A
→ R

; ` a0 : >∗ ∧ (A ∗ B)→ A

Similarly to the rule IU, the rule D for disjointness only involves global label sub-
stitution, therefore we can prove the completeness of LSPASL + D by the same routine.
But unlike indivisible unit, disjointness is not axiomatisable [22], so the completeness
proof for LSBBI + D has to follow the counter-model construction procedure as well.

Theorem 6.3.4. LSPASL + D is sound and cut-free complete with respect to the class of PASL
Kripke relational frames (and separation algebras) with disjointness.

Proof. Similar to the proof for Theorem 6.3.2.

Splittability and cross-split are harder to capture, in the sense that the labelled rules
for them cannot be directly incorporated in the counter-model construction in Sec-
tion 6.2. Instead, we need rather non-trivial changes in the proof to accommodate
them. Therefore we present these two properties together, as well as how the rules for
them are handled in the completeness proof.

We give the following rules for splittability:

(x, y . z); (x 6= ε); (y 6= ε); (z 6= ε);G; Γ ` ∆
S

(z 6= ε);G; Γ ` ∆
6= L

(w 6= w);G; Γ ` ∆

(w 6= ε);G; Γ ` ∆ (ε, w . ε);G; Γ ` ∆
EM

G; Γ ` ∆

We add a new type of structure, namely inequality of labels, to our calculus. This
should not be confused with the equality predicate for expressions or values in sepa-
ration logic with concrete heap model semantics. We can view (x 6= y) as a negated
(x, ε . y), which is equivalent to allowing (x, ε . y) in the succedent. The inequality
expressions are grouped with relational atoms in G. The rule S directly encodes the
semantics of splittability. We then need another rule 6= L to conclude that (w 6= w),
for any label w, cannot be valid. Finally, the rule EM, named as the law of excluded
middle for (w = ε) ∨ (w 6= ε), is essentially a cut on w : >∗. This rule is needed
because our cut rule does not cut on relational atoms.
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The advantage of formulating the above as structural rules, in contrast to the cor-
responding rules presented in [51], is that these structural rules do not require extra
arguments in the cut-elimination proof.

The following sound rule naturally captures cross-split, where p, q, s, t, u, v, x, y, z
are labels:

(p, q . x); (p, s . u); (s, t . y); (q, t . v); (x, y . z); (u, v . z);G; Γ ` ∆
CS

(x, y . z); (u, v . z);G; Γ ` ∆
The labels p, q, s, t do not occur in the conclusion

However, to ensure contraction admissibility, we need the following special case for
this rule where the two principal relational atoms are the same.

(p, q . x); (p, s . x); (s, t . y); (q, t . y); (x, y . z);G; Γ ` ∆
CSC

(x, y . z);G; Γ ` ∆
The labels p, q, s, t do not occur in the conclusion

Soundness for these new rules are easy to check. They obviously preserve falsifia-
bility upwards.

Proposition 6.3.5. The rules S, 6= L, EM, CS, CSC are sound.

The axiom of splittability can be proved in LSBBI with the extension of rules for this
property, thus the extended system is complete for BBI plus splittability.

Proposition 6.3.6. The axiom ¬>∗ → (¬>∗ ∗ ¬>∗) for splittability is provable in LSBBI +
{S, 6= L, EM}.

Proof. We start from ¬>∗ → (¬>∗ ∗ ¬>∗), and obtain the following derivation back-
wards:

>∗R
(ε, ε . ε);` ε : >∗; ε : ¬>∗ ∗ ¬>∗

Eq1
(ε, w . ε);` w : >∗; w : ¬>∗ ∗ ¬>∗

Π
(w 6= ε);` w : >∗; w : ¬>∗ ∗ ¬>∗

EM
;` w : >∗; w : ¬>∗ ∗ ¬>∗

¬L
; w : ¬>∗ ` w : ¬>∗ ∗ ¬>∗

→ R
;` w : ¬>∗ → (¬>∗ ∗ ¬>∗)

Where Π is the following derivation:
6= L

(ε, ε . ε); (w 6= ε); (ε, y . w); (ε 6= ε); (y 6= ε);` w : >∗; w : ¬>∗ ∗ ¬>∗
Eq1

(ε, x . ε); (w 6= ε); (x, y . w); (x 6= ε); (y 6= ε);` w : >∗; w : ¬>∗ ∗ ¬>∗
>∗L

(w 6= ε); (x, y . w); (x 6= ε); (y 6= ε); x : >∗ ` w : >∗; w : ¬>∗ ∗ ¬>∗
¬R

(w 6= ε); (x, y . w); (x 6= ε); (y 6= ε);` x : ¬>∗; w : >∗; w : ¬>∗ ∗ ¬>∗ Π′
∗R

(w 6= ε); (x, y . w); (x 6= ε); (y 6= ε);` w : >∗; w : ¬>∗ ∗ ¬>∗
S

(w 6= ε);` w : >∗; w : ¬>∗ ∗ ¬>∗

and Π′ is a symmetric derivation of the left branch of the ∗R application.
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It is easy to check that the rules S, 6= L, EM, CS, CSC do not break cut-elimination.
Incorporating splittability and cross-split both involve modifications of our previous
counter-model construction method. We present these treatments together in the com-
pleteness proof for LSPASL + {S, 6= L, EM, CS, CSC}.

Theorem 6.3.7. LSPASL + {S, 6= L, EM, CS, CSC} is sound and cut-free complete with re-
spect to the class of PASL Kripke relational frames (and separation algebras) with splittability
and cross-split.

In the following we give the proof for the above theorem. The definition of the
equivalence entailment `E is the same as Definition 6.2.1. We then obtain the intermedi-
ate system ILSPASL2 as ILSPASL plus S, EM, CSC, with the following modifications:

G `E (w = w′)
6= L

(w 6= w′);G; Γ ` ∆

(p, q . x); (p, s . u); (s, t . y); (q, t . v); (x, y . z); (u, v . z′);G; Γ ` ∆
CS

(x, y . z); (u, v . z′);G; Γ ` ∆
(x, y . z); (u, v . z′);G `E (z = z′)

The labels p, q, s, t do not occur in the conclusion

Note that, although technically being a side condition and a premise are the same, we
say `E is a side condition because it does not appear in a derivation tree.

The system ILSPASL2 is equivalent to LSPASL + {S, 6= L, EM, CS, CSC}, which is
straightforward to show. Thus in what follows we give a counter-model construction
procedure for ILSPASL2, then obtain the completeness result for both systems. As
ILSPASL2 is just an extension of ILSPASL, we only give the additional definitions and
proofs, and the parts where modifications are made.

Definition 6.3.1 (Hintikka sequent). A labelled sequent G; Γ ` ∆ is a Hintikka sequent if
it satisfies the conditions in Definition 6.2.3 and the following, for any formulae A, B and any
labels a, a′, b, c, d, e, z, z′:

16. For any label m ∈ L, either (m 6= ε) ∈ G or m =G ε.
17. If (z 6= ε) ∈ G, then ∃x, y, s.t. (x, y . z) ∈ G, and (x 6= ε) ∈ G, and (y 6= ε) ∈ G.
18. It is not the case that (a 6= a′) ∈ G and a =G a′.
19. If (a, b . z) ∈ G and (c, d . z′) ∈ G and z =G z′, then ∃ac, bc, ad, bd s.t. (ad, ac . a) ∈
G, (ad, bd . d) ∈ G, (ac, bc . c) ∈ G, and (bc, bd . b) ∈ G.

We extend the proof for Lemma 6.2.4 for the additional items in the above def-
inition. That is, we show that every Hintikka sequent is satisfiable by additionally
showing that the constructed model (H, .G , εG , ν, ρ) from the Hintikka sequent satis-
fies splittability and cross-split.

Proof. The following belongs to the first part of the proof for Lemma 6.2.4.
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Splittability: for each [a] ∈ H, there is some a′ ∈ L s.t. [a] = [a′]. By condition 16 in
Definition 6.3.1, either (1) (a′ 6= ε) ∈ G or (2) a′ =G ε. If (1) holds, by condition
17 in Definition 6.3.1, there exist x, y s.t. (x, y . a′) ∈ G, (x 6= ε) ∈ G, and
(y 6= ε) ∈ G hold. Thus we can find [x], [y] s.t. [x], [y] .G [a] holds and [x] 6= [ε],
[y] 6= [ε]. If (2) holds, splittability trivially holds.

Cross-split: if [a], [b] .G [z] and [c], [d] .G [z] hold, then we can fine some (a′, b′ . z′) ∈ G
and (c′, d′ . z′′) ∈ G s.t. [a] = [a′], [b] = [b′], [c] = [c′], [d] = [d′], and [z] = [z′] =
[z′′]. This implies that z′ =G z′′. Then by condition 19 in Definition 6.3.1, there
are ad, ac, bc, bd, s.t. (ad, ac . a′) ∈ G, (ad, bd . d′) ∈ G, (ac, bc . c′) ∈ G, and
(bc, bd . b′) ∈ G. Therefore we can find [ad], [ac], [bc], [bd], s.t. [ad], [ac] .G [a],
[ad], [bd] .G [d], [ac], [bc] .G [c], and [bc], [bd] .G [b].

For the second part of the proof for Lemma 6.2.4, we need to further show that

4. If (a 6= b) ∈ G, then [a] 6= [b].

This is a direct consequence of Condition 18 in Definition 6.3.1.

To deal with the new rules we added, we now define the extended formulae as

ExF ::= F | U | E | A | AC | S | EM | CS | CSC

where F is a BBI formula, and the others are constants. We also need to redefine the
rule instance to handle the inequality structure. Thus Definition 6.2.4 is modified as
below.

Definition 6.3.2 (Schedule φ). A rule instance is a tuple (O, m, ExF, R, I), where O is
either 0 (left) or 1 (right), m is a label, ExF is an extended formula, R is a set of relational
atoms such that |R| ≤ 2, and I is a singleton inequality. Let S denote the set of all rule
instances. A schedule is a function from the set of natural numbers N to S . A schedule φ is
fair if for every rule instance S ∈ S , the set {i | φ(i) = S} is infinite.

It follows from the same reason that there exists a fair schedule. The new com-
ponent I in the schedule is ignored in all the cases in Definition 6.2.5. However, we
have to slightly extend the definition to accommodate splittability and cross-split. The
original definition is rewritten as follows.

Definition 6.3.3. Let F be a formula which is not provable in ILSPASL2. We construct a series
of finite sequents {Gi; Γi ` ∆i}i∈N from F where G1 = Γ1 = ∅ and ∆1 = a1 : F.

Assuming that Gi; Γi ` ∆i has been defined, we define Gi+1; Γi+1 ` ∆i+1 as follows.
Suppose φ(i) = (Oi, mi, ExFi, Ri, Ii).

• If Oi = 0, ExFi is a PASL formula Ci and mi : Ci ∈ Γi:

– If Ci = F1 ∧ F2, same as original def..
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– If Ci = F1 → F2, same as original def..

– If Ci = >∗, same as original def..

– If Ci = F1 ∗ F2, then Gi+1 = Gi ∪ {(a4i, a4i+1 . mi)}, Γi+1 = Γi ∪ {a4i : F1, a4i+1 :
F2}, ∆i+1 = ∆i.

– If Ci = F1−∗ F2 and Ri = {(x, m . y)} ⊆ Gi and Gi `E (m = mi), same as
original def..

• If Oi = 1, ExFi is a PASL formula Ci, and mi : Ci ∈ ∆:

– If Ci = F1 ∧ F2, same as original def..

– If Ci = F1 → F2, same as original def..

– Ci = F1 ∗ F2 and Ri = {(x, y . m)} ⊆ Gi and Gi `E (mi = m), same as original
def..

– If Ci = F1−∗ F2, then Gi+1 = Gi ∪ {(a4i, mi . a4i+1)}, Γi+1 = Γi ∪ {a4i : F1}, and
∆i+1 = ∆i ∪ {a4i+1 : F2}.

• If ExFi ∈ {U, E, A, AC, S, EM, CS, CSC}, we proceed as follows:

– If ExFi = U, Ri = {(an, ε . an)}, where n ≤ 4i + 3, then Gi+1 = Gi ∪ {(an, ε .
an)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = E, same as original def..

– If ExFi = A, Ri = {(x, y . z); (u, v . x′)} ⊆ Gi and Gi `E (x = x′), then
Gi+1 = Gi ∪ {(u, a4i . z), (y, v . a4i)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = AC, Ri = {(x, y . x′)} ⊆ Gi, and Gi `E (x = x′) then Gi+1 =
Gi ∪ {(x, a4i . x), (y, y . a4i)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = S and Ii = {(w 6= ε)} ⊆ Gi, then Gi+1 = Gi ∪ {(a4i, a4i+1 . w), (a4i 6=
ε), (a4i+1 6= ε)}, Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = EM and Ri = {(ε, an . ε)}, where n ≤ 4i + 3. If there is no derivation
for (ε, an . ε);Gi; Γi ` ∆i, then Gi+1 = Gi ∪ {(ε, an . ε)}, otherwise Gi+1 =
Gi ∪ {(an 6= ε)}. In both cases, Γi+1 = Gi and ∆i+1 = ∆i.

– If ExFi = CS, Ri = {(x, y . z), (u, v . z′)} ⊆ Gi, and Gi `E (z = z′), then
Gi+1 = Gi ∪ {(a4i, a4i+1 . x), (a4i, a4i+2 . u), (a4i+2, a4i+3 . y), (a4i+1, a4i+3 . v)},
Γi+1 = Γi, ∆i+1 = ∆i.

– If ExFi = CSC and Ri = {(x, y . z)} ⊆ Gi, then Gi+1 = Gi ∪ {(a4i, a4i+1 .
x), (a4i, a4i+2 . x), (a4i+2, a4i+3 . y), (a4i+1, a4i+3 . y)}, Γi+1 = Γi, ∆i+1 = ∆i.

• In all other cases, Gi+1 = Gi, Γi+1 = Γi and ∆i+1 = ∆i.

Lemma 6.2.6 is easy to show for the new definitions. The second item in the lemma
should now be stated as L ⊆ {a0, a1, · · · , a4i−1}. We are ready to prove Lemma 6.2.7
for the new conditions in the Hintikka sequent.
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Proof. Condition 18 holds because the limit sequent is finitely-consistent. We show the
cases for conditions 16, 17, 19 as follows.

16. For each an ∈ L, there is some natural number j ≥ n s.t. φ(j) = (O, m, EM,
{(ε, an . ε)}, I), where EM is applied to an. Then either (1) Gj+1 = Gj ∪ {(ε, an .
ε)} or (2) Gj+1 = Gj ∪ {(an 6= ε)}, depending on which choice gives a finitely-
consistent sequent Gj+1; Γj+1 ` ∆j+1. If (1) holds, then (ε, an . ε) ∈ Gj+1 ⊆ Gω,
and Gω `E (an = ε) by an Eq1 application, giving an =Gω ε. If (2) holds, then
(an 6= ε) ∈ Gj+1 ⊆ Gω.

17. If (z 6= ε) ∈ Gω, then (z 6= ε) ∈ Gi, for some i ∈ N . Then there exists j > i
s.t. φ(j) = (O, m, S, R, {(z 6= ε)}). Then Gj+1 = Gj ∪ {(a4j, a4j+1 . z), (a4j 6=
ε), (a4j+1 6= ε)} ⊆ Gω.

19. If (x, y . z) ∈ Gω and (u, v . z′) ∈ Gω and z =Gω z′. There must be some i ∈ N s.t.
{(x, y . z), (u, v . z′)} ⊆ Gi and Gi `E (z = z′). Suppose (x, y . z) and (u, v . z′)
are distinct, then there exists j > i s.t. φ(j) = (O, m, CS, {(x, y . z), (u, v . z′)}, I),
and {(x, y . z), (u, v . z′)} ⊆ Gj, Gj `E (z = z′) hold. By construction, Gj+1 =
Gj ∪ {(a4j, a4j+1 . x), (a4j, a4j+2 . u), (a4j+2, a4j+3 . y), (a4j+1, a4j+3 . v)} ⊆ Gω. If
(x, y . z) and (u, v . z′) are the same, a similar argument can be applied for CSC.

The other cases are similar to the original proof. Note that the subscript of new labels
needs to be adjusted accordingly.

Therefore the limit sequent in the new definition is indeed an Hintikka sequent,
and we can extract an infinite counter-model from it. The completeness result stated
by Theorem 6.3.7 follows.

Following the previous work [32, 22], we refer to the set of rules C, P, IU, D, S, 6=
L, EM, CS, CSC as LSSTDHA for labelled sequent rules for separation theories. By a proof
that appropriately incorporates the treatments for these properties in this section, we
obtain the following result:

Theorem 6.3.8. LSBBI + LSSTDHA is sound and cut-free complete with respect to the class of
BBI Kripke relational frames with DHA separation theory.

Subsystems of LSBBI + LSSTDHA are also easy to obtain. In our current setting,
checking the completeness for additional properties is a long and tedious process. It
is possible to come up with a more general proof theory for these logics so that the
completeness of new properties would be immediate. This will be a future work. We
discuss some examples of subsystems in the next section.

6.4 Calculi for BBI with Subsets of DHA Separation Theory

We now consider various labelled calculi obtained by extending LSBBI with one or
more structural rules that correspond to the properties in DHA separation theory.



210 Labelled Sequent Calculi for Propositional Abstract Separation Logics

Most of the results in this section either directly follow from the proofs in previous
sections, or are easy adaptations. As those conditions for monoids are often given in
a modular way, e.g., in [32, 22], it is not surprising that our structural rules can also
be added modularly to LSBBI, since they just simulate those conditions directly and
individually in the labelled sequent calculus.

Calculi without Cancellativity There exist resource semantics which would be sepa-
ration algebras were it not for the failure of cancellativity; we have given two examples
in Example 5.2.8. This has led to the suggestion, first in [45], that cancellativity should
be omitted from the definition of separation algebra. In any case, it is clear that drop-
ping the rule C in LSPASL gives an interesting system. The proofs in Sec. 6.2 still work
if we just insist on a partial commutative monoid, and drop C in `E.

Theorem 6.4.1. The labelled sequent calculus LSBBI + P is sound and cut-free complete with
respect to the partial commutative monoidal semantics for BBI.

As a result, it is easy to obtain the following sound and complete labelled calculi
for the corresponding semantics: LSBBI + P + IU and LSBBI + P + D. The proofs are
similar to that for Theorem 6.3.2. Larchey-Wendling and Galmiche’s work showed that
separation algebras with partial-determinism and those additionally with cancellativ-
ity have the same set of valid formulae. Their result implies that LSBBI + P + IU and
LSBBI + P + D are respectively equivalent to LSBBI + P + C + IU and LSBBI + P + C +
D. However, in separation logic with concrete memory model semantics, assuming
partial-determinism, there might be formulae that can distinguish cancellative models
and non-cancellative models. Thus we list these calculi with cancellativity as stand-
alone systems.

Calculi without Partial-determinism and Cancellativity The labelled calculus LSBBI +
IU is sound and complete by Prop. 6.3.1, and cut-elimination holds.

Theorem 6.4.2. The labelled sequent calculus LSBBI + IU is sound and cut-free complete with
respect to the commutative monoidal semantics for BBI with indivisible unit.

To prove the completeness of the calculus LSBBI + D, we need to go through the
counter-model construction proof, since disjointness is not axiomatisable. It is easy
to check that the proofs in Section 6.2 do not break when we define `E by using
Eq1, Eq2, D only, and the Hintikka sequent then gives the BBI Kripke relational frame
that obeys disjointness. The other proofs remain the same.

Theorem 6.4.3. The labelled sequent calculus LSBBI + D is sound and cut-free complete with
respect to the commutative monoidal semantics for BBI with disjointness.

To summarise, the proofs given in this chapter offer a sound and cut-free complete
calculus for the extension of BBI with every combination of the properties P, C, IU, D,
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except that we assume a system with cancellativity also has partial-determinism. The
case where none of the properties hold, i.e. regular BBI, have already been solved
in Section 3.4 (by Park et al.) and Chapter 4. Omitting the cases covered by the
implication of IU by D, this provides us with the following seven labelled calculi:

LSBBI + IU LSBBI + D
LSBBI + P = LSPASL(= LSBBI + P + C)
LSBBI + P + IU LSPASL + IU
LSBBI + P + D LSPASL + D

Additionally, sound and cut-free complete subsystems containing rules for splitta-
bility or cross-split can be obtained by incorporating the treatments in the proof for
Theorem. 6.3.7. The proofs for these subsystems may involve changes in the definition
of Hintikka sequent and construction of the limit sequent etc., but the general idea
remains the same. We give the following theorem without showing the full proof:

Theorem 6.4.4. For each subset of DHA separation theory coupled with PASL, there is a
subsystem of LSPASL + LSSTDHA that is sound and cut-free complete for it.

6.5 Experiments

The logic PASL with disjointness and cross-split seems to be a natural candidate for
capturing the heap model of separation logic. However, we could not find any PASL
formula that requires cross-split to prove. On the other hand, we found many sepa-
ration logic formulae that require cross-split to prove. For the purpose of the exper-
iments in this section, we thus target PASL with disjointness (denoted as PASLD) in-
stead. We discuss here an implementation of the proof system LSPASL + D for PASLD.
It turns out that the AC rule is admissible in this system; in fact it is admissible in the
subsystem LSPASL, as shown next. So we do not implement the AC rule.

Proposition 6.5.1. The AC rule is admissible in LSPASL.

Proof. We show that every derivation in LSPASL can be transformed into one with no
applications of AC. It is sufficient to show that we can eliminate a single application of
AC; then we can eliminate all AC in a derivation successively starting from the topmost
AC application. So suppose we have a derivation in LSPASL of the form:

Π
(x, w . x); (y, y . w); (x, y . x);G; Γ ` ∆

AC

(x, y . x);G; Γ ` ∆

where w is a new label not in the root sequent. This is transformed into the following
derivation:
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Π′

(x, ε . x); (ε, ε . ε);G[ε/y]; Γ[ε/y] ` ∆[ε/y]
U

(x, ε . x);G[ε/y]; Γ[ε/y] ` ∆[ε/y]
C

(x, ε . x); (x, y . x);G; Γ ` ∆
U

(x, y . x);G; Γ ` ∆

where Π′ is obtained by applying the substitutions [ε/y] and [ε/w] to Π (by using
Lemma 6.1.2). Note that since w does not occur in the root sequent, G[ε/y][ε/w] =
G[ε/y], Γ[ε/y][ε/w] = Γ[ε/y] and ∆[ε/y][ε/w] = ∆[ε/y]. These substitutions do not
introduce new instances of AC.

On the other hand, we restrict the rule U to create the identity relational atom
(w, ε . w) only if w occurs in the conclusion (denoted as U′ below). This does not
reduce the power of LSPASL, as will be shown next.

Lemma 6.5.2. If G; Γ ` ∆ is derivable in LSPASL, then it is derivable in LSPASL −U + U′.

Proof. The original U rule can be separated into two cases:

• U′, with the restriction as described above and
• U′′, where the created relational atom (x, ε . x) satisfies that x does not occur in

the conclusion.

We show that the rule U′′ is admissible, therefore using the rule U′ alone does not
affect provability.

This is proved by a simple induction on the height n of the derivation for G; Γ ` ∆.
Suppose U′′ is the last rule in the derivation, with a premise:

(x, ε . x);G; Γ ` ∆

where x is a fresh label. Assume that the conclusion is not an empty sequent, hence
there must be some label w that occurs in conclusion. By Lemma 6.1.2, replacing x by
w, we obtain that

(w, ε . w);G; Γ ` ∆

is derivable in n− 1 steps. By the induction hypothesis, there is a U′′-free derivation
of this sequent, which leads to the derivation of G; Γ ` ∆ by applying the restricted
rule U′.

Our implementation applies the first applicable item in the following list:

1. Try to close the branch by rules id,⊥L,>∗R,>∗R.
2. Apply all possible Eq1, Eq2, P, C, IU, D rule applications to unify labels 2.
3. Apply invertible rules ∧L, ∧R,→ L,→ R, ∗L, −∗ R, >∗L in all possible ways.

2Although IU is admissible, we keep it because it simplifies proof search.
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4. Try ∗R or −∗ L by choosing from an existing relational atom that has not been
used in the same rule application.

5. Apply structural rules on the set G0 of relational atoms in the sequent as follows.

(a) Use E to generate all commutative variants of existing relational atoms in
G0, giving a set G1.

(b) Apply A for each applicable pair in G1, generating a set G2.

(c) Use U′ to generate all identity relational atoms for each label in G2, giving
the set G3.

6. If none of above is applicable, fail.

Step (2) is terminating, because each substitution eliminates a label, and we only have
finitely many labels. Step (5) is not applicable when G3 = G0, it is also clear that
step (5) is terminating. Note that we forbid applications of the rule A to the pair
{(x, y . z), (u, v . x)} of relational atoms when {(u, w . z), (y, v . w)}, for some label w,
(or any commutative variants of this pair, e.g., {(w, u . z); (v, y . w)} ) is already in the
sequent. This is because the created relational atoms in such an A application can be
unified to existing ones by using rules P, C.

In the implementation we view Γ, ∆ in a sequent G; Γ ` ∆ as lists, and each time
a logical rule is applied backwards, we place the created new labelled formulae in
the front of the list. Thus our proof search has a “focusing flavour” that always tries
to decompose the subformulae of a principal formula if possible. To guarantee com-
pleteness, each time we apply a ∗R or −∗ L rule, the principal formula is moved to the
end of the list, so that each principal formula for non-deterministic rules ∗R,−∗ L is
considered fairly, i.e., applied in turn.

We incorporate a number of optimisations in the proof search.

• Back jumping [3] is used to collect the “unsatisfiable core” along each branch.
When one premise of a binary rule has a derivation, we try to derive the other
premise only when the unsatisfiable core is not included in that premise.

• A search strategy discussed by Park et al [77] is also adopted. For ∗R and −∗ L
applications, we forbid the search to consider applying the rule twice with the
same pair of principal formula and principal relational atom, since the effect is
the same as contraction, which is admissible.

• Previous work on theorem proving for BBI has shown that associativity of ∗ is a
source of inefficiency in proof search [77, 53]. We utilise our idea of the heuristic
method presented in Section 4.5 to quickly solve certain associativity instances.
When we detect z : A ∗ B on the right hand side of a sequent, we try to search for
possible worlds (labels) for the subformulae of A, B in the sequent, and construct
a binary tree using these labels. For example, if we can find x : A and y : B in the
sequent, we will take x, y as the children of z. When we can build such a binary
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Formula BBeye FVLSBBI Separata
(opt) (heuristic) (PASL)

(1) (a−∗ b) ∧ (> ∗ (>∗ ∧ a))→ b 0.076 0.002 0.002
(2) (>∗−∗ ¬(¬a ∗ >∗))→ a 0.080 0.004 0.002
(3) ¬((a−∗ ¬(a ∗ b)) ∧ ((¬a−∗ ¬b) ∧ b)) 0.064 0.003 0.002
(4) >∗ → ((a−∗ (b−∗ c))−∗ ((a ∗ b)−∗ c)) 0.060 0.003 0.002
(5) >∗ → ((a ∗ (b ∗ c))−∗ ((a ∗ b) ∗ c)) 0.071 0.002 0.004
(6) >∗ → ((a ∗ ((b−∗ e) ∗ c))−∗ ((a ∗ (b−∗ e)) ∗ c)) 0.107 0.004 0.008
(7) ¬((a−∗ ¬(¬(d−∗ ¬(a ∗ (c ∗ b))) ∗ a)) ∧ c ∗ (d ∧ (a ∗ b))) 0.058 0.002 0.006
(8) ¬((c ∗ (d ∗ e)) ∧ B) where 0.047 0.002 0.013

B := ((a−∗ ¬(¬(b−∗ ¬(d ∗ (e ∗ c))) ∗ a)) ∗ (b ∧ (a ∗ >)))
(9) ¬(C ∗ (d ∧ (a ∗ (b ∗ e)))) where 94.230 0.003 0.053

C := ((a−∗ ¬(¬(d−∗ ¬((c ∗ e) ∗ (b ∗ a))) ∗ a)) ∧ c)
(10) (a ∗ (b ∗ (c ∗ d)))→ (d ∗ (c ∗ (b ∗ a))) 0.030 0.004 0.002
(11) (a ∗ (b ∗ (c ∗ d)))→ (d ∗ (b ∗ (c ∗ a))) 0.173 0.002 0.002
(12) (a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (d ∗ (a ∗ (b ∗ c)))) 1.810 0.003 0.002
(13) (a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (b ∗ (a ∗ (c ∗ d)))) 144.802 0.003 0.002
(14) >∗ → (a ∗ ((b−∗ e) ∗ (c ∗ d))−∗ ((a ∗ d) ∗ (c ∗ (b−∗ e)))) 6.445 0.003 0.044
(15) ¬(>∗ ∧ (a ∧ (b ∗ ¬(c−∗ (>∗ → a))))) T/O 0.003 0.003
(16) ((D → (E−∗ (D ∗ E)))→ 0.039 0.005 8.772

(b−∗ ((D → (E−∗ ((D ∗ a) ∗ a))) ∗ b))), where
D := >∗ → a and E := a ∗ a

(17) ((>∗ → (a−∗ (((a ∗ (a−∗ b)) ∗ ¬b)−∗ T/O fail 49.584
(a ∗ (a ∗ ((a−∗ b) ∗ ¬b))))))→
((((>∗ ∗ a) ∗ (a ∗ ((a−∗ b) ∗ ¬b)))→
(((a ∗ a) ∗ (a−∗ b)) ∗ ¬b)) ∗ >∗))

(18) (F ∗ F)→ F, where F := ¬(>−∗ ¬>∗) invalid invalid 0.004
(19) (>∗ ∧ (a ∗ b))→ a invalid invalid 0.003

Table 6.1: Experiment 1 results.

tree of labels, the corresponding relational atoms given by the binary tree will
be used (if they are in the sequent) as the prioritised ones when decomposing
z : A ∗ B and its subformulae. Without a free-variable system, our handling of
this heuristic method is just a special case of the original one, but this approach
can speed up the search in certain cases.

The experiments in this section are conducted on a Dell Optiplex 790 desktop with
Intel CORE i7 2600 @ 3.4 GHz CPU and 8GB memory, running Ubuntu 13.04. The
theorem provers are written in OCaml.

Experiment on Formulae in the Literature We tested our prover Separata for the
logic LSPASL + D on the formulae listed in Table 6.1; the times displayed are in sec-
onds. We compare the results with provers for BBI, BBeye [77] and the incomplete
heuristic-based FVLSBBI [53], when the formula is valid in BBI. We run BBeye in an it-
erative deepening way, and the time counted for BBeye is the total time it spends. The
timeout for each prover is 1000 seconds, we write “T/O” in the table if a prover times
out on a formula. The prover based on FVLSBBI and the heuristic constraint solving
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method is not complete, we use “fail” to indicate that the prover terminates but fails to
find a proof. We write “invalid” for those formulae that are not valid in BBI, we do not
test them on BBI provers. Formulae (1-14) are used by Park et al. to test their prover
BBeye for BBI [77]. We can see that for formulae (1-14) the performance of Separata
is comparable with the heuristic based prover for FVLSBBI. Both provers are generally
faster than BBeye. Formula (15) is one that BBeye had trouble with [53], but Separata
handles it trivially. However, there are cases where BBeye is faster than Separata, for
example, formula (16) found from a set of testings on randomly generated BBI theo-
rems. Formula (17) is a converse example where a randomly generated BBI theorem
causes BBeye to time out and FVLSBBI with heuristics to terminate within the timeout
but without finding a proof due to its incompleteness. Formula (18) is valid only when
the monoid is partial [62], and formula (19) is the axiom of indivisible unit. Both For-
mula (18) and (19) cannot be proved by BBeye and the heuristic-based FVLSBBI prover
within the timeout.

Experiment on Randomly Generated Formulae In this experiment we use randomly
generated BBI theorems. Of course, these randomly generated theorems are not truly
random. There could be some proof search mechanism to take advantage our random
generation method. We generate theorems that are “random” to some extend. As
mentioned before, there does not exist a Hilbert system for PASL because the logic is
not axiomatisable. BBI theorems are a subset of theorems in PASLD, thus our prover
based on LSPASL + D should be able to prove BBI theorems. This test may not show
the full power of our prover Separata, but we can see how Separata scales compared to
the BBI prover BBeye [77]. Recall the BBI Hilbert system from Section 2.2 in Figure 6.3.
We will use these axioms and deduction rules to generate BBI theorems in this test.

Axioms:
A→ (B→ A) A→ A ∨ B B→ A ∨ B
A ∧ B→ A A ∧ B→ B A→ (B→ (A ∧ B))
(A→ (B→ C))→ ((A→ B)→ (A→ C)) ⊥ → A
(A→ C)→ ((B→ C)→ (A ∨ B→ C)) ¬¬A→ A
A→ (>∗ ∗ A) (>∗ ∗ A)→ A
(A ∗ B)→ (B ∗ A) (A ∗ (B ∗ C))→ ((A ∗ B) ∗ C)

Deduction Rules:
` A ` A→ B MP` B

` A→ C ` B→ D ∗
` (A ∗ B)→ (C ∗ D)

` A→ (B−∗ C)
−∗ 1` (A ∗ B)→ C

` (A ∗ B)→ C
−∗ 2` A→ (B−∗ C)

Figure 6.3: The Hilbert system for BBI.

A common way to generate random theorems is to simply globally replace a sub-
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Test n i BBeye BBeye Separata Separata
proved avg. time proved avg. time

1 10 20 74% 0.27s 78% 0.19s
2 15 30 72% 4.63s 66% 2.40s
3 20 30 61% 8.88s 56% 8.76s
4 20 50 55% 12.39s 53% 0.88s
5 30 50 49% 11.81s 50% 6.26s
6 50 50 31% 11.82s 31% 3.79s

Table 6.2: Experiment 2 results.

formula in a theorem by a longer random formula. We avoid this method on purpose,
since we can easily “cheat” by forcing our prover not to expand those sub-formulae
until necessary. For example, we can globally replace A by p∧ q, and replace B by r∨ t
in the BBI theorem (A ∗ B)→ (B ∗ A), obtaining a longer theorem ((p∧ q) ∗ (r∨ t))→
((r ∨ t) ∗ (p ∧ q)). But then we can build in a mechanism in our prover that given
a formula F, it searches for any sub-formula F′ that occurs multiple times in F, and
replaces F′ by a “pseudo-proposition”, which is only allowed to be decomposed when
the prover cannot find a derivation. In this way, no matter how large the generated
theorem is, the prover uses constant time to prove it. The only difference would be the
time used to search for sub-formulae.

We create random BBI theorems by first generating some random formulae (not
necessarily theorems) of length n, and perform global substitution of these formulae
to certain places in a BBI axiom schema; then we use the deduction rules −∗ 1 and
−∗ 2 in Figure 2.3 to mutate the resultant formula in random places, repeat this step
by i iterations, resulting in the final theorem.

When generating random theorems, our procedure randomly chooses axioms (and
deduction rules), but is biased to use the axioms in Figure 2.3 more often rather than
the classical axioms. Given the parameter n (resp. i) as in the previous paragraph, our
procedure chooses a random number ranging from 1 to n (resp. i) and proceeds as
above. The mutation step is vital to generate theorems with −∗ , since BBI axioms do
not involve −∗ at all. Moreover, the “cheat” mechanism would more often fail when
we use the deduction rules to mutate the formula, because the internal structure of
the formula is changed. Our random theorem generation does not create theorems of
a fixed length, but the length grows as n increases.

We compare the performance of Separata with Park et al.’s BBI prover BBeye
against our randomly generated theorem suites in Table 6.2. As said previously, the
parameter n is the maximum length of random formulae to be substituted into a BBI
axiom, i is the maximum iteration of mutation. Each test suite contains 100 BBI theo-
rems, the “proved” column for each prover gives the percentage of successfully proved
formulae within the time out, and the “avg. time” column is the average time used
when a formula is proved. We set the time out as 200 seconds. If the prover cannot
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prove a formula within 200 seconds, the time is not counted in the average time. To
give a rough idea of how long the tested formulae are, the formulae in test suite 1
have 20 to 30 binary connectives on average. These numbers are about 100 to 150 for
the formulae in test suite 6. The two provers have similar successful rates in these
tests, average time used on successful attempts increase for BBeye, but fluctuates for
Separata. In fact, both provers spent less than 1 second on most successful attempts
(even for test suite 6), but there are some “difficult” formulae that took them over
100 seconds to prove. The reason “avg. time” for Separata is slightly shorter is that
there are fewer formulae that are “difficult” for it. But in test suites 2,3,4, Separata
proved fewer formulae in time. It seems that the theorems we generate are either too
easy or too difficult to prove, there are very few medium difficulty ones. As another
fact, although the success rates for both provers are similar, the proved formulae are
sometimes different. The two provers may be good at proving different theorems, a
phenomenon that was also shown in previous work for BBI [53]. Lastly, we emphasise
that Separata and BBeye are designed for different logics, thus comparing their per-
formance may not be fair, we do so only because there are no other provers for PASL
to compete with. For example, indivisible unit and disjointness may make Separata
prove some formulae much faster, because they unify a lot of labels to ε, and signifi-
cantly simplify the set of ternary relational atoms.

6.6 Discussion and Related Work

Although several propositional abstract separation logics and their relationships with
BBI had been discussed in the literature, two important aspects were missing: there
was no uniform proof method; and there were no automated reasoning tools for these
abstract separation logics. This chapter solves both of these open problems by de-
veloping a modular proof method for various propositional abstract separation logics
using labelled sequent calculi [73], and showing that the resulting sequent calculus can
be used for effective backward proof search, thereby giving a modular semi-decision
procedure for all of these logics using labelled sequents. Our implementation is the
first automated theorem prover that can handle many of these propositional abstract
separation logics.

Sequent calculi are amenable to backward proof-search only if the cut rule is re-
dundant. We have shown in Section 4.2 an explicit cut-elimination theorem for LSBBI
to show that any sequent that is derivable with cut is also derivable without using
cut. We then obtain the completeness of LSBBI by mimicking derivations in the Hilbert
axiomatisation of BBI, but this avenue is no longer viable for LSPASL because partial-
determinism and cancellativity are not axiomatisable in the language of PASL (which
is precisely the language of BBI), as proved by Brotherston and Villard [22]; that paper
goes on to give a sound and complete Hilbert axiomatisation of these properties by
extending BBI with techniques from hybrid logic. As a consequence, there cannot be
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a Hilbert system in the language of PASL that is sound and complete for partially-
deterministic and cancellative separation algebras.

Instead, we proved cut-free completeness of our labelled sequent calculi via a
counter-model construction procedure which shows that if a formula is not cut-free
derivable in our sequent calculus then it is falsifiable in some PASL-model. The redun-
dancy of the cut rule then follows. A novelty of our counter-model construction is that
it can be modularly extended to handle extensions and sublogics of PASL. Labelled
sequent calculi, with their explicitly semantics-based rules, provide good support for
this modularity, as rules for the various properties can be added and removed as re-
quired. We showed how the abstract properties suggested for separation algebras by
various authors [24, 32, 45] can be combined or omitted without sacrificing our cut-free
completeness result.

We have also implemented proof search using our calculus. As stated previously,
no decision procedure for PASL is possible [16], so our prover realises a semi-decision
procedure. Experimental results show that our prover is usually faster than other
provers for BBI when testing against the same benchmarks of BBI formulae, partly
because the extra properties (indivisible unit, disjointness, etc.) we consider sometimes
simplify the proof search.

To our knowledge this is the first proof to be presented for the cut-free complete-
ness of a modular proof system for PASL and some variants with the properties men-
tioned previously. Our implementation is the first automated theorem prover for PASL
and its neighbours.

While we work with abstract models of separation logics, the reasoning principles
behind our proof-theoretic methods should be applicable to concrete models also, so
in the next chapter we investigate how concrete predicates such as 7→ for the heap
model might be integrated into our approach. Proof search strategies that come out
of our proof-theoretic analysis could also potentially be applied to guide proof search
in various encodings of separation logics [2, 94, 68] in proof assistants: that is, they
can guide the constructions of proof tactics needed to automate the reasoning tasks in
those embeddings.

There are many more automated tools, formalisations, and logical embeddings for
separation logics than can reasonably be surveyed within the scope of this dissertation,
almost all are not directly comparable to this chapter because they deal with separation
logic for some concrete semantics.

One exception to this concrete approach is Holfoot [95], a HOL mechanisation with
support for automated reasoning about the ‘shape’ of SL specifications – exactly those
aspects captured by abstract separation logic. However, unlike Separata, Holfoot does
not support magic wand. This is a common restriction when developing automated
reasoning tools for SL, because −∗ is a source of undecidability [14]. Conversely, the
mechanisations and embeddings that do incorporate magic wand tend to give little
thought to (semi-) decision procedures. An important exception to this is the tableaux
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of Galmiche and Méry [37], which are designed for the decidable fragment of the
assertion language of concrete separation logic with −∗ , but may also be extendable
to capture = and quantifiers. These methods have not been implemented, and given
the difficulty of the development we expect that practical implementation would be
non-trivial. Another partial exception to the trend to omit −∗ is SmallfootRG [25],
which supports automation yet includes septraction [98]. However SmallfootRG does
not support additive negation nor implication, and so −∗ cannot be recovered; indeed
in this setting septraction is mere syntactic sugar that can be eliminated.

The denigration of magic wand is not without cost, as the connective, while surely
less useful than ∗, has found applications. A non-exhaustive list follows: generating
weakest preconditions via backward reasoning [54]; specifying iterators [78, 59, 46];
reasoning about parallelism [33]; and various applications of septraction, such as the
specification of iterators and buffers [27]. For a particularly deeply developed example,
see the correctness proof for the Schorr-Waite Graph Marking Algorithm of Yang [100],
which involves non-trivial inferences involving −∗ (Lems. 78 and 79). These examples
provide ample motivation to build proof calculi and tool support that include magic
wand. Undecidability, which in any case is pervasive in program proof, should not
deter us from seeking practically useful automation.

Also related, but so far not implemented, are the tableaux for partial-deterministic
(PD) BBI of Larchey-Wendling and Galmiche [61, 60], which, as mentioned in Sec-
tion 4.7, was claimed to be extendable with cancellativity to attain PASL via a “rather
involved” proof. The authors recently showed that when partial-deterministic is as-
sumed, no BBI-formula can distinguish between a cancellative model and a non-
cancellative one [64]. This means that their tableau method for PD-BBI is actually
complete for PASL. They also stated that the rule C in our system was admissible.
Nevertheless, we intended to keep our rule C in the system because experiences in sep-
aration logic with concrete semantics show that cancellativity may not be admissible
for more complicated semantics, see Example 5.2.8 for instances, or more specifically,
see Gotsman et al.’s discussion [45]:

It is well-known that if ∗ is cancellative, then for a precise q in P(Σ) and
any p1, p2 in P(Σ), we have (p1 ∧ p2) ∗ q = (p1 ∗ q) ∧ (p2 ∗ q)

where a predicate is “precise” if it “unambiguously carves out an area of the heap”.
The differences made in the above examples would not exist if cancellativity does not
add new valid formulae to partial-determinism semantics. So our C rule may indeed
play an important role when we extend our method to handle concrete semantics. It is
unknown how Larchey-Wendling and Galmiche’s tableau method can be extended to
handle concrete semantics without an explicit rule for cancellativity. Moreover, their
latest result does not include any treatment for non-deterministic BBI, nor for prop-
erties such as splittability and cross-split. In contrast, the relative ease with which
certain properties can be added or removed from labelled sequent calculi is an impor-
tant benefit of our approach; this advantage comes from structural rules which directly
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capture the conditions on Kripke relational frames and handle the equality of worlds
by explicit global substitutions.



Chapter 7

From Abstract to Concrete
Separation Logic

Following the work on propositional abstract separation logics in the previous chapter,
one natural (although orthogonal) question to ask is, can we apply our method to sep-
aration logics with concrete semantics such as the heap model etc.? This question is
hard to answer because there are too many separation logics. For instance, separation
logic for higher-order store [86], bunched typing [9], concurrency [15], owned vari-
ables [12, 80], rely/guarantee reasoning [98], abstract data types [57], amongst many.
In this chapter we choose the separation logic with Reynolds’s original semantics, but
without features such as address arithmetic and arbitrary predicates. The logic we
consider is foreshadowed in Section 5.1.2.2. Since most separation logic variants are
based on the original one, Reynolds’s heap model semantics is widely used and re-
spected in many other variants, so a “case study” on Reynolds’s separation logic may
also be useful for other separation logics. Although not as powerful as Reynolds’s
original logic, our fragment does support all the logical connectives, including the
“almighty” magic wand −∗ [14], which is excluded in almost all automated tools we
can compare with. As a result, the logic we consider is not even recursively enumer-
able [26], so no finite, sound, and complete proof system can be devised. This chapter
relaxes the demand for completeness and focuses on realising a sound proof method
that is useful in real world program verification problems.

Our labelled sequent calculus for separation logic extends LSPASL + D + CS with
rules to handle the 7→ predicate, =, and quantifiers, as will be shown in Section 7.1.
We then discuss several deficiencies of existing work in Section 7.2 and show how our
system overcomes these problems. Capturing data structures is essential for program
verification, thus we further extend our method to handle singly linked lists and bi-
nary trees in Section 7.3. Proof search and implementation are discussed in Section 7.4,
where we also show that with slight adaptations, our proof calculus is sound, com-
plete, and terminating for the most popular fragment of SL called symbolic heap [8].
Although termination is not practical in our implementation when the formulae are
too large, our prover deals with a much more expressive language. Experiments are
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shown in Section 7.5 and Section 7.6 concludes this chapter.
This chapter extends a paper by Hóu, Goré, and Tiu [52].

7.1 LSSL: A Labelled Sequent Calculus for Separation Logic

This section presents our proof system for a fragment of Reynolds’s separation logic.
Recall Reynolds’s original assertion logic in Section 5.1.2.1 and our fragment in Sec-
tion 5.1.2.2. Our proof system is based on LSPASL (cf. Section 6.1), which in turn
employs the definitions of labels, labelled formulae, relational atoms, label substitu-
tion, etc. in LSBBI (cf. Section 4.1). In the following we only give the definitions that
are different or new.

Labels in our proof system represent heaps in the separation logic model, so we
naturally use lower case h, possibly decorated by a subscript or a superscript, to de-
note label variables in LVar. Moreover, the formula e 7→ e′ in SL represents a singleton
heap, so we may loosely call a label h or a 7→ atomic formula a heap in the sequel.
The label constant ε corresponds to the empty heap in the semantics. We explicitly
use ternary relational atoms such as (h1, h2 . h3) in our proof system to indicate that
the composition of the heaps represented by h1, h2 gives the heap represented by h3,
i.e., h1 ◦ h2 = h3. We shall use e, e′, e1, e2, · · · to range over expressions, which can be
program variables (variables defined in computer programs) or arithmetic expressions
that involve program variables. However, we shall only consider expressions as atomic
objects in our language. We have established the admissibility of weakening and con-
traction for our labelled calculi in the previous chapters. The former has always been
built in our zero-premise rules, now we build in the latter by defining the sequent as
a combination of sets instead of multisets. A sequent takes the form

G; Γ ` ∆

where G is a set of ternary relational atoms, Γ, ∆ are sets of labelled formulae, and ;
denotes set union. For example, Γ; h : A is the union of Γ and {h : A}.

The labelled sequent calculus LSSL consists of inference rules taken from LSPASL +
D + CS [51] with the addition of a special id2 rule, a cut rule for =, and the general
rules for ∃ and =, as shown in Figure 7.1, and the rules for the 7→ predicate, as shown
in Figure 7.2, which are new to this Chapter. The inference rules for the points-to
predicate with two fields are analogous to the rules in Figure 7.2, as given in Figure 7.3.
Note that the rules in Figure 7.3 are for the semantics where points-to with multiple
fields is deemed as a singleton heap. In the semantics where e 7→ e1, e2 is a heap of
size two, the rules in Figure 7.3 are unsound and unnecessary. The side conditions
for pointer rules mainly are based on the semantic reading of those rules. That is,
whenever we want to express “there exists”, we create a fresh expression or heap in
the premise. In these figures we write A, B for formulae. We use [h′1/h1, . . . , h′n/hn] to
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Identity and cut:

id
G; Γ; h : e1 7→ e2 ` h : e1 7→ e2; ∆

id2G; Γ; h : e1 7→ e2, e3 ` h : e1 7→ e2, e3; ∆

G; Γ[e1/e2] ` ∆[e1/e2] G; Γ ` h : e1 = e2; ∆
cut=G; Γ ` ∆

Logical Rules:

⊥L
G; Γ; h : ⊥ ` ∆

G[ε/h]; Γ[ε/h] ` ∆[ε/h]
>∗L

G; Γ; h : >∗ ` ∆
>∗R

G; Γ ` ε : >∗; ∆
G; Γ; h : A[y/x] ` ∆

∃L
G; Γ; h : ∃x.A ` ∆

G; Γ ` h : A; ∆ G; Γ; h : B ` ∆
→ L

G; Γ; h : A→ B ` ∆
G; Γ; h : A ` h : B; ∆

→ R
G; Γ ` h : A→ B; ∆

G; Γ ` h : A[e/x]; h : ∃x.A; ∆
∃R

G; Γ ` h : ∃x.A; ∆

(h1, h2 . h0);G; Γ; h1 : A; h2 : B ` ∆
∗L

G; Γ; h0 : A ∗ B ` ∆
(h1, h0 . h2);G; Γ; h1 : A ` h2 : B; ∆

−∗ R
G; Γ ` h0 : A−∗ B; ∆

G; Γθ ` ∆θ
= L

G; Γ; h : e1 = e2 ` ∆

(h1, h2 . h0);G; Γ ` h1 : A; h0 : A ∗ B; ∆ (h1, h2 . h0);G; Γ ` h2 : B; h0 : A ∗ B; ∆
∗R

(h1, h2 . h0);G; Γ ` h0 : A ∗ B; ∆
= R

G; Γ ` h : e = e; ∆

(h1, h0 . h2);G; Γ; h0 : A−∗ B ` h1 : A; ∆ (h1, h0 . h2);G; Γ; h0 : A−∗ B; h2 : B ` ∆
−∗ L

(h1, h0 . h2);G; Γ; h0 : A−∗ B ` ∆

Structural Rules:

(h, ε . h);G; Γ ` ∆
U

G; Γ ` ∆
(h3, h5 . h0); (h2, h4 . h5); (h1, h2 . h0); (h3, h4 . h1);G; Γ ` ∆

A
(h1, h2 . h0); (h3, h4 . h1);G; Γ ` ∆

(h2, h1 . h0); (h1, h2 . h0);G; Γ ` ∆
E

(h1, h2 . h0);G; Γ ` ∆
(ε, ε . h2);G[ε/h1]; Γ[ε/h1] ` ∆[ε/h1]

D
(h1, h1 . h2);G; Γ ` ∆

(ε, h2 . h2);G[h2/h1]; Γ[h2/h1] ` ∆[h2/h1]
Eq1

(ε, h1 . h2);G; Γ ` ∆
(ε, h1 . h1);G[h1/h2]; Γ[h1/h2] ` ∆[h1/h2]

Eq2
(ε, h1 . h2);G; Γ ` ∆

(h1, h2 . h0)[h0/h3];G[h0/h3]; Γ[h0/h3] ` ∆[h0/h3]
P

(h1, h2 . h0); (h1, h2 . h3);G; Γ ` ∆
(h1, h2 . h0)[h2/h3];G[h2/h3]; Γ[h2/h3] ` ∆[h2/h3]

C
(h1, h2 . h0); (h1, h3 . h0);G; Γ ` ∆

(h5, h6 . h1); (h7, h8 . h2); (h5, h7 . h3); (h6, h8 . h4); (h1, h2 . h0); (h3, h4 . h0);G; Γ ` ∆
CS

(h1, h2 . h0); (h3, h4 . h0);G; Γ ` ∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be nil.
In = L, θ = mgu({(e1, e2)}).
In ∗L and −∗ R, the labels h1 and h2 do not occur in the conclusion.
In ∃L, y is not free in the conclusion.
In A, the label h5 does not occur in the conclusion.
In CS, the labels h5, h6, h7, h8 do not occur in the conclusion.

Figure 7.1: Logical rules and structural rules in LSSL.
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7→ L1G; Γ; ε : e1 7→ e2 ` ∆
(h1, h0 . h2);G; Γ; h1 : e1 7→ e2 ` ∆

HE
G; Γ ` ∆

(ε, h0 . h0);G[ε/h1, h0/h2]; Γ[ε/h1, h0/h2]; h0 : e1 7→ e2 ` ∆[ε/h1, h0/h2]

(h0, ε . h0);G[ε/h2, h0/h1]; Γ[ε/h2, h0/h1]; h0 : e1 7→ e2 ` ∆[ε/h2, h0/h1]
7→ L2

(h1, h2 . h0);G; Γ; h0 : e1 7→ e2 ` ∆

7→ L3
(h1, h2 . h0);G; Γ; h1 : e 7→ e1; h2 : e 7→ e2 ` ∆

G; Γθ; h : e1θ 7→ e2θ ` ∆θ
7→ L4G; Γ; h : e1 7→ e2; h : e3 7→ e4 ` ∆

G[h1/h2]; Γ[h1/h2]; h1 : e1 7→ e2 ` ∆[h1/h2]
7→ L5G; Γ; h1 : e1 7→ e2; h2 : e1 7→ e2 ` ∆

NIL
G; Γ; h : nil 7→ e ` ∆

(h3, h4 . h1); (h5, h6 . h2);G; Γ; h3 : e1 7→ e2; h5 : e1 7→ e3 ` ∆ (h1, h2 . h0);G; Γ ` ∆
HC

G; Γ ` ∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be nil.
In 7→ L4, θ = mgu({(e1, e3), (e2, e4)}).
In HE, h0 occurs in conclusion, h1, h2, e1 are fresh.
In HC, h1, h2 occur in the conclusion, h0, h3, h4, h5, h6, e1, e2, e3 are fresh in the premise.

Figure 7.2: Pointer rules in LSSL.

G; Γ; ε : e1 7→ e2, e3 ` ∆ (h1, h2 . h0);G; Γ; h1 : e 7→ e1, e3; h2 : e 7→ e2 ` ∆

G; Γ; h : nil 7→ e, e′ ` ∆ (h1, h2 . h0);G; Γ; h1 : e 7→ e1, e3; h2 : e 7→ e2, e4 ` ∆

G; Γ; h : e1 7→ e2, e5; h : e3 7→ e4 ` ∆
G[h1/h2]; Γ[h1/h2]; h1 : e1 7→ e2, e3 ` ∆[h1/h2]

G; Γ; h1 : e1 7→ e2, e3; h2 : e1 7→ e2, e3 ` ∆

G; Γθ; h : e1 7→ e2, e5 ` ∆θ

G; Γ; h : e1 7→ e2, e5; h : e3 7→ e4, e6 ` ∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be nil.
In the last rule, θ = mgu({(e1, e3), (e2, e4), (e5, e6)}).

Figure 7.3: Inference rules for 7→ with two fields.
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denote a label substitution which maps hi to h′i where 1 ≤ i ≤ n. Label substitutions
are extended to mappings between labelled formulae and labelled sequents in the
obvious way. An expression substitution is defined similarly, where the domain is the
union of program variables and expressions, and the range is the set of expressions.
We use θ (possibly with subscripts) to range over expression substitutions, and we
write eθ to denote the result of applying θ to e. Given a set of pairs of expressions
E = {(e1, e′1), . . . , (en, e′n)}, a unifier for E is an expression substitution θ such that
eiθ = e′iθ, for all 1 ≤ i ≤ n. We assume the usual notion of most general unifier (mgu)
from logic programming. We denote with mgu(E) the most general unifier of E when
it exists.

Logical and structural rules in LSSL are quite straightforward as the assertion logic
naturally has the following properties in DHA separation theory: identity, commu-
tativity, associativity, partial-determinism, cancellativity, indivisible unit, disjointness,
and cross-split. These properties can be defined as first-order formulae, from which
one can then derive the corresponding structural rules; see the discussion in Sec-
tion 4.7. Previously we have shown that the structural rules in Figure 7.1 are complete
for DHA separation theory with the said properties. However, that result only holds
in the abstract semantics, not in the concrete heap semantics. Also shown in our previ-
ous work is the advantage of our formulation of structural rules: if someone requires a
different separation logic with respect to some other separation theory, we can simply
add or remove some structural rules to obtain a proof system for that separation logic.
As mentioned before, here we only concentrate on a specific separation logic rather
than a range of separation logics, as the latter has already been studied in Chapter 6.

We give some intuitions about the pointer rules here. The rules 7→ L1, 7→ L2 specify
that e1 7→ e2 is a singleton heap, so it cannot be empty, nor a composite heap. The rule
7→ L4 ensures that the singleton heap is a valid function that sends exactly one address
to one value. These are all forecast in the future work section of a previous paper on
PASL [51]. However, the 7→ L3 rule proposed in that paper, which says that any two
singleton heaps with the same address are identical, is unsound for the considered
concrete semantics. The corresponding 7→ L3 rule in Figure 7.2 is correct, which states
that it is fine to have two singleton heaps with the same address, but they cannot be
combined to form another heap. The rule 7→ L5 is also new. It and 7→ L4 state that
singleton heaps are uniquely determined by the 7→ relation. The rule NIL states that
nil cannot be in the domain of a heap.

The situation becomes much more complicated when we consider composite heaps.
Since the set of addresses is infinite, it is guaranteed that we can extend any existing
heaps with fresh addresses, thus we have the rule HE. To capture the heap composi-
tion operator ◦ in the semantics, we use the rule HC, which says that given any two
heaps h1, h2, either they can be combined, giving the right premise; or they cannot be
combined, from which we deduce that the domains of h1 and h2 intersect, hence there
is some expression e1 whose value is in both the domains of h1 and h2, yielding the left
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premise. To our knowledge, proof systems for SL in the literature do not have rules
similar to HE and HC, which enable us to prove many formulae that no other systems
can prove.

Finally, we note that the cut= rule is admissible in LSSL. However, cut= is needed
when we add rules for data structures (Section 7.3).

Lemma 7.1.1. The cut= rule is admissible in LSSL.

Proof. (Outline.) Note that there is only one rule in LSSL that uses = of expressions
on the right hand side: = R. Therefore if the right premise of cut = is not the
conclusion of = R, we can permute cut = upwards over that rule. We can repeat this
until the cut = instance permutes over a zero-premise rule, making the cut = instance
admissible.

If the right premise of cut = is the conclusion of = R, we distinguish two cases:
(1) If the cut formula is the principal formula of = R, then the cut formula must be
h : e = e for some h and e. This means that the global substitution on the left premise
is the identity substitution. Thus the derivation for the left premise is enough to derive
the end sequent. (2) If the cut formula is not the principal formula of = R, we must
be able to apply = R directly on the end sequent. Therefore the cut = instance is
eliminated.

Similar to the previous chapters, a formula F is provable or derivable if there is a
derivation of the sequent ` h : F for some arbitrary label h.

A label mapping ρ is a function L → H such that ρ(ε) = ∅. Recall that a separation
logic model is defined as a pair (S, H) of stores and heaps. We define an extended
separation logic model (S, H, s, ρ) as a separation logic model plus a store s ∈ S and a
label mapping ρ. Falsifiability of a sequent is then defined as below.

Definition 7.1.1 (Sequent falsifiability). A sequent G; Γ ` ∆ is falsifiable if there is an
extended separation logic model (S, H, s, ρ) such that ρ(h1) ◦ ρ(h2) = ρ(h3) for every (h1, h2 .
h3) ∈ G; s, ρ(h) 
 A for every h : A ∈ Γ; and s, ρ(h′) 6
 B for every h′ : B ∈ ∆.

As in previous work for BBI and PASL, we prove the soundness of LSSL by show-
ing that each rule preserves falsifiability upwards: assuming the conclusion of a rule
is falsifiable, we show that each premise is also falsifiable. Then a simple proof by
contradiction gives the following theorem:

Theorem 7.1.2 (Soundness). For any formula F, and for an arbitrary label h, if the sequent
` h : F is derivable in LSSL, then F is valid in Reynolds’s semantics.

Proof. The cases for most logical rules and structural rules are straightforward adap-
tations from the soundness proofs in previous chapters (Theorem 4.1.1 and Theo-
rem 6.1.1), here we show the cases for the new rules.
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For cut=: suppose the conclusion is falsifiable. The formula h : e1 = e2 is either
true or false, if it is true, then we can safely substitute e2 with e1, as in the left premise;
otherwise h : e1 = e2 is false, thus at least one of the premises is falsifiable.

For ∃L, if the conclusion is falsifiable, h : ∃x.A must be true, thus there is a value v
for x that makes A true in the heap ρ(h). Let y be valuated as v in the store. Since y is
fresh, this does not affect other value mappings in the store. Now locally replacing x
with y in A preserves falsifiability.

For ∃R, if the conclusion is falsifiable, then h : ∃x.A is false. That is, any value for
x occurring in A does not make A true in the heap ρ(h). So it is safe to replace x by
any expression e in A, and A[e/x] must be false in the heap ρ(h), so the premise is
also falsifiable.

For = L, assume that the conclusion is falsifiable, then h : e1 = e2 must be true,
thus replacing e2 with e1, as used in θ, preserves falsifiability.

For = R, if the conclusion is falsifiable, then h : e = e is false, but e = e is universally
true in every heap, so we obtain a contradiction. Therefore the conclusion cannot be
falsifiable, and this zero-premise rule is sound.

For 7→ L1, the conclusion cannot be falsifiable as e1 7→ e2 represents a singleton
heap, so it cannot be true in ρ(ε) = ∅, which is an empty heap.

For 7→ L2, if the conclusion is falsifiable, then h0 : e1 7→ e2 is true and ρ(h1) ◦
ρ(h2) = ρ(h0). But ρ(h0) is a singleton heap, thus either ρ(h1) is empty, giving the
first premise, or ρ(h2) is empty, giving the second premise. So the rule preserves
falsifiability upwards.

For 7→ L3, the conclusion is not falsifiable, as ρ(h1) and ρ(h2) are two singleton
heaps with the same domain, so they cannot be combined to form ρ(h0).

For 7→ L4, if the conclusion is falsifiable, then both h : e1 7→ e2 and h : e3 7→ e4 are
true, so e1 7→ e2 and e3 7→ e4 represent the same singleton heap, hence e1 = e3 and
e2 = e4, therefore the substitution on the premise preserves falsifiability.

For 7→ L5, if the conclusion is falsifiable, then both h1 : e1 7→ e2 and h2 : e1 7→ e2

are true. Thus h1 and h2 are actually the same mapping from address to value, so by
definition they are the same heap, therefore ρ(h1) = ρ(h2). The substitution [h1/h2]
hence preserves falsifiability.

The rule NIL is obviously sound, as we do not allow nil to be valuated as an
address, so no heaps can make nil 7→ e true.

In HE, for any heap ρ(h0), since it has a finite domain, but the set of addresses is
infinite, we must be able to find some addresses that are not in the domain of ρ(h0).
Therefore we can let the store map the fresh expression e1 to be an address disjoint
from ρ(h0), then ρ(h1) must be disjoint from ρ(h0), thus can be combined with ρ(h0)
and obtain a new heap ρ(h2). So we have found mappings to make (h1, h0 . h2) and
h1 : e1 7→ e2 true. Therefore HE preserves falsifiability upwards.

In HC, for any two heaps ρ(h1) and ρ(h2), either they can be combined or they
cannot be combined. In the former case, we can obtain a combination of the two
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heaps, and map h0 to the combined heap, giving the right premise. In the latter case,
there must be an intersection in the domain of ρ(h1) and ρ(h2). So we can find some
expression e1 whose value is in the intersection. This means that there is a subheap
of ρ(h1), namely ρ(h3), whose domain only contains the value of e1. Similarly, we can
find some subheap ρ(h5) of ρ(h2) such that the domain of ρ(h5) is also the value of e1.
Now it is obvious that (h3, h4 . h1); (h5, h6 . h2); h3 : e1 7→ e2; h5 : e1 7→ e3 are true in
this setting. So if the conclusion is falsifiable, at least one of the premises is falsifiable.

The rules for 7→ with two fields can be proved similarly.

7.2 Comparison with Existing Proof Calculi

This section serves two purposes. Firstly, we give some example derivations to show
how our labelled calculus works, especially for the pointer rules. Secondly, we com-
pare and contrast our calculus with existing proof calculi for “separation logics” and
point out some subtleties in the literature.

Derivations in this section may involve some derived rules from LSSL, for example,
the derived rules for ¬, ∧, ∨, > are just the same as those rules for LSBBI, cf. Sec-
tion 4.1.1 and 4.1.3. If it is obvious, we may use r × n to indicate that the rule r is
applied n times on a sequent. We may also leave out some non-essential parts in a
derivation to make the derivations more presentable.

Formula 7.1 is inspired by Vafeiadis and Parkinson’s work on septraction [98]:

>∗ → ¬((e1 7→ e2)−∗ ¬(e1 7→ e2)) (7.1)

This formula states that if the current heap is the empty heap, then it is impossible that
the combination of the empty heap and a heap (e1 7→ e2) is not (e1 7→ e2). The above is
valid if one assumes that every value is an address, as in Galmiche and Méry’s resource
graph tableaux [37], Lee and Park’s labelled system [65], and of course, Vafeiadis
and Parkinson’s combination of rely/guarantee and separation logic [98]. To prove
Formula 7.1, one needs to create a singleton heap e1 7→ e2, even though it may not
have appeared in backward proof search. This is captured by the following rule:

G; Γ; h : e1 7→ e2 ` ∆
H

G; Γ ` ∆
where h is a fresh label.

There are no conditions on expressions e1, e2, so they can be fresh or existing ones. If
every value is an address, then the value of e1 must be an address, too. So e1 7→ e2 must
be a legitimate heap in Reynolds’s semantics. We cannot prove Formula 7.1 using Lee
and Park’s labelled system nor the original resource graph tableaux, although both
claimed to be complete. But the latter can be modified to do so1, and it is not hard
for the former to include a new rule like H. In our setting, however, Formula 7.1 is

1Confirmed via private communication.
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not valid and the rule H is unsound, because we allow a set Atoms of unaddressible
values, it is possible that the value of e1 is in Atoms, thus e1 7→ e2 does not represent a
legitimate heap in Reynolds’s semantics.

Following the above reasoning, if e1 7→ e2 and e3 7→ e4 represent two legitimate and
disjoint heaps, i.e., e1, e3 denote distinct addresses, then we should be able to prove

>∗ → ¬(((e1 7→ e2) ∗ (e3 7→ e4))−∗ ¬((e1 7→ e2) ∗ (e3 7→ e4))).

Formula 7.2 captures this idea:

(>∗ ∧ ¬(e1 = e3))→ (((e1 7→ e2)−∗ ⊥) ∨ ((e3 7→ e4)−∗ ⊥)∨
¬(((e1 7→ e2) ∗ (e3 7→ e4))−∗ ¬((e1 7→ e2) ∗ (e3 7→ e4)))) (7.2)

To prove Formula 7.2, we have to combine two heaps e1 7→ e2 and e3 7→ e4 to create a
larger heap, as achieved by our rule HC. We are not aware of any other proof methods
for separation logic that have explicit rules like HC. The resource graph tableaux [37]
could be modified to achieve a similar effect. However, unlike our calculus which
has explicit inference rules, the resource graph tableau only has rules for logical con-
nectives and points-to. The other aspects of the logic are captured via a background
theory outside the logical system. As a consequence, their proofs are hard to auto-
mate. A partial derivation for Formula 7.2 is given in Figure 7.4. From the top sequent

(ε, h1 . h1); (ε, h3 . h3); · · · ; h1 : (e1 7→ e2); h3 : (e3 7→ e4); ε : B ` · · · ; ε : (e1 = e3)
Eq2 × 2

(ε, h1 . h2); (ε, h3 . h4); · · · ; h1 : (e1 7→ e2); h3 : (e3 7→ e4); ε : B ` · · · ; ε : (e1 = e3)
E× 2

(h1, ε . h2); (h3, ε . h4); h1 : (e1 7→ e2); h3 : (e3 7→ e4); ε : B ` h2 : ⊥; h4 : ⊥; ε : (e1 = e3)
−∗ R× 2

; ε : B ` ε : (e1 = e3); ε : (e1 7→ e2)−∗ ⊥; ε : (e3 7→ e4)−∗ ⊥
¬R

;` ε : (e1 = e3); ε : (e1 7→ e2)−∗ ⊥; ε : (e3 7→ e4)−∗ ⊥; ε : ¬B
∨R× 2

;` ε : (e1 = e3); ε : A
¬L

; ε : ¬(e1 = e3) ` ε : A
>∗L

; h0 : >∗; h0 : ¬(e1 = e3) ` h0 : A
∧L

; h0 : (>∗ ∧ ¬(e1 = e3)) ` h0 : A
→ R

;` h0 : (>∗ ∧ ¬(e1 = e3))→ A

A ::=(((e1 7→ e2)−∗ ⊥) ∨ ((e3 7→ e4)−∗ ⊥)∨
¬(((e1 7→ e2) ∗ (e3 7→ e4))−∗ ¬((e1 7→ e2) ∗ (e3 7→ e4))))

B ::=((e1 7→ e2) ∗ (e3 7→ e4))−∗ ¬((e1 7→ e2) ∗ (e3 7→ e4))

Figure 7.4: A partial derivation for Formula 7.2.

in Figure 7.4, we apply HC on h1 and h3, obtaining two branches:

1. (h6, h7 . h1); (h8, h9 . h3); · · · ; h6 : (e5 7→ e6); h8 : (e5 7→ e7); h1 : (e1 7→ e2); h3 :
(e3 7→ e4); · · · ` · · · ; ε : (e1 = e3)
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2. (h1, h3 . h5); (ε, h1 . h1); (ε, h3 . h3); · · · ; h1 : (e1 7→ e2); h3 : (e3 7→ e4); ε : ((e1 7→
e2) ∗ (e3 7→ e4))−∗ ¬((e1 7→ e2) ∗ (e3 7→ e4)) ` · · · ; ε : (e1 = e3)

To close branch 1, we apply 7→ L2 on h1, further obtaining two branches respectively
with substitutions (1.1) [ε/h6] and (1.2) [ε/h7]. Branch (1.1) is closed by applying 7→ L1

on ε : (e5 7→ e6). For branch (1.2), we unify e5 with e1 by using 7→ L4, then we apply
7→ L2 again on h3, and get two branches respectively with substitutions (1.2.1) [ε/h8]
and (1.2.2) [ε/h9]. Branch (1.2.1) can be closed by 7→ L1. For branch (1.2.2), we use
7→ L4 to unify e5 with e3. Now e1, e3, e5 are all the same. Then we close the branch
by apply = R on ε : (e1 = e3). On branch 2, we use U to obtain (h5, ε . h5), then use
this ternary relational atom and the (only) −∗ formula to apply −∗ L, obtaining two
branches, both of which can be easily shown to have h5 : (e1 7→ e2) ∗ (e3 7→ e4) in the
succedent. After an application of ∗R on this ∗ formula and (h1, h3 . h5), the id rule
can be used to close all of the remaining branches.

In the literature, the heaps in separation logic are often restricted to have finite
domains, and the set of addresses is usually infinite. This is to guarantee that heap
allocation can always succeed [55]. So for any heap h, no matter how large its domain
is, we should always be able to combine it with some other heaps, because we can
always find addresses that are not in the domain of h. Formula 7.3 says that any heap
can be combined with a composite heap:

¬(((¬>∗) ∗ (¬>∗))−∗ ⊥) (7.3)

The key to prove this formula is to extend a heap with a fresh address. To our knowl-
edge, current proof systems for separation logic lack this kind of mechanism. It is
possible to prove this formula by changing or adding some rules in resource graph
tableaux [37], but their proof relies on the fact that their language is restricted to a
fragment in which every l occurring in (l 7→ e) is an address. Thus their method
cannot be used in a more general situation like ours. Our derivation utilises the rule
HE, as shown in Figure 7.5.

Formula 7.4 is another interesting example, which is not valid in Reynolds’s sepa-
ration logic and not provable in LSSL, but is provable in Lee and Park’s system [65].

(((e1 7→ e2) ∗ >)−∗ ⊥) ∨ (((e1 7→ e3) ∗ >)−∗ ¬((e1 7→ e2)−∗ ⊥)) ∨ (e2 = e3) (7.4)

The meaning of the above formula may not be straightforward, but we can construct a
counter-model in Reynolds’s semantics for Formula 7.4 by trying to derive it in LSSL.
The following sequent (we do not show > in the antecedent and ⊥ in the succedent)
will occur in the backward proof search for Formula 7.4:

(h5, h6 . h1); (h7, h8 . h3); (h1, h0 . h2); (h3, h0 . h4);
h5 : (e1 7→ e2); h7 : (e1 7→ e3); h4 : (e1 7→ e2)−∗ ⊥ ` h0 : (e2 = e3)

It is easy to find a mapping ρ from each label to a legitimate heap, so that everything
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⊥L
· · · ; · · · h4 : ⊥ `

Π

7→ L1
(ε, ε . ε); · · · ; · · · h1 : e1 7→ e2; ε : e3 7→ e4 ` · · ·

Eq1
(ε, h3 . ε); · · · ; · · · h1 : e1 7→ e2; h3 : e3 7→ e4 ` · · ·

>∗L
(h3, h1 . h5); · · · ; · · · h1 : e1 7→ e2; h3 : e3 7→ e4; h3 : >∗ ` · · ·

¬R
(h3, h1 . h5); · · · ; · · · h1 : e1 7→ e2; h3 : e3 7→ e4 ` h3 : ¬>∗; · · ·

∗R
(h3, h1 . h5); · · · ; · · · h1 : e1 7→ e2; h3 : e3 7→ e4 ` h5 : ((¬>∗) ∗ (¬>∗))

−∗ L
(h5, h0 . h4); (h3, h1 . h5); · · · ; h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥; h1 : e1 7→ e2; h3 : e3 7→ e4 `

E
(h0, h5 . h4); (h3, h1 . h5); · · · ; h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥; h1 : e1 7→ e2; h3 : e3 7→ e4 `

A
(h2, h3 . h4); (h0, h1 . h2); h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥; h1 : e1 7→ e2; h3 : e3 7→ e4 `

HE
(h0, h1 . h2); h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥; h1 : e1 7→ e2 `

HE
; h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥ `

¬R
;` h0 : ¬(((¬>∗) ∗ (¬>∗))−∗ ⊥)

N.B. The sub-derivation Π is similar to the other branch of the ∗R rule application

Figure 7.5: A derivation for Formula 7.3 in LSSL.

in the antecedent is true and everything in the succedent is false. In particular, the
mapped heap ρ(h4) makes (e1 7→ e2)−∗ ⊥ true because the domain of ρ(h4) already
contains the value of expression e1, so ρ(h4) cannot be combined with the singleton
heap e1 7→ e2. In Lee and Park’s system, their rule Disj−∗ plays an important role in
proving Formula 7.4. With this rule, we can obtain the following relational atoms:

(h10, h4 . h9); (h2, h12 . h9); (h10, h11 . h1); (h11, h12, .h3)

Informally, since h5 : (e1 7→ e2) is a part of the heap h1, the heap h5 is either in h10 or in
h11. But h1 cannot be in h10, because h7 : (e1 7→ e3) is in h3, which is in h4; and h10 can
be combined with h4 to form h9. The heaps h5 and h7 certainly cannot be combined.
So h1 must be in h11. Symmetrically, h7 must also be in h11. But again, h5 and h7 cannot
co-exist in a heap. We obtain a contradiction (derivation).

The rule Disj−∗ , however, is not sound in Reynolds’s semantics, because when
assuming two heaps can be combined, their rule only ensures that the two heaps do
not have a common subheap, but it is possible for two heaps to have intersecting
domains without having a common subheap in Reynolds’s semantics.

The rule 7→ L5 in LSSL is needed when proving Formula 7.5:

((e1 7→ e2)−∗ ¬((e3 7→ e4) ∗ >)) ∨ ((e1 7→ e2)−∗ ¬((e3 7→ e5) ∗ >)) ∨ (e4 = e5) (7.5)

This formula says that if the current heap can be extended with two heaps, both of
which satisfy (e1 7→ e2), and the result of both extension contains (e3 7→ e4) and
(e3 7→ e5) respectively, then (e4 = e5). Proof search for this formula requires us to
identify that the two added heaps satisfying (e1 7→ e2) are indeed the same heap. This
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can be done with 7→ L5, which is neglected in the set of putative rules from previous
work [51]. We give a partial derivation for this formula in Figure 7.6.

(h5, h6 . h2); (h7, h8 . h2); (h1, h0 . h2); h1 : (e1 7→ e2); h5 : A; h7 : B ` h0 : (e4 = e5)
P

(h5, h6 . h2); (h7, h8 . h4); (h1, h0 . h2); (h1, h0 . h4); h1 : (e1 7→ e2); h5 : A; h7 : B ` h0 : (e4 = e5) 7→ L5
(h5, h6 . h2); (h7, h8 . h4); · · · ; h1 : (e1 7→ e2); h3 : (e1 7→ e2); h5 : A; h7 : B ` h0 : (e4 = e5)

∗L× 2
(h1, h0 . h2); (h3, h0 . h4); h1 : (e1 7→ e2); h3 : (e1 7→ e2); h2 : A ∗ >; h4 : B ∗ > ` h0 : (e4 = e5)

¬R× 2
(h1, h0 . h2); (h3, h0 . h4); h1 : (e1 7→ e2); h3 : (e1 7→ e2) ` h2 : ¬(A ∗ >); h4 : ¬(B ∗ >); h0 : (e4 = e5)

−∗ R× 2
;` h0 : ((e1 7→ e2)−∗ ¬(A ∗ >)); h0 : ((e1 7→ e2)−∗ ¬(B ∗ >)); h0 : (e4 = e5)

∨L× 2
;` h0 : ((e1 7→ e2)−∗ ¬(A ∗ >)) ∨ ((e1 7→ e2)−∗ ¬(B ∗ >)) ∨ (e4 = e5)

A ::=(e3 7→ e4)

B ::=(e3 7→ e5)

Figure 7.6: A partial derivation for Formula 7.5 in LSSL.

From the top sequent in Figure 7.6, we apply CS on (h5, h6 . h2); (h7, h8 . h2), gen-
erating (h9, h10 . h5);(h11, h12 . h6);(h9, h11 .h7);(h10, h12 . h8). Since h5 is the label of
(e3 7→ e4), we apply 7→ L2 on (h9, h10 . h5), obtaining two branches with substitutions
(1) [ε/h9], (2) [ε/h10] respectively. For branch (1), we apply 7→ L2 again on (h9, h11 . h7),
further obtaining two branches with substitutions (1.1) [ε/h9], (1.2) [ε/h11] respectively.
On branch (1.1), we apply Eq rules to unify [h5/h10] and [h7/h11], followed by E, A ap-
plications to generate a ternary relation of the form (h7, h5 . ·), then close this branch
by 7→ L3. On the branch (1.2), we unify ε and h7 by applying Eq rules, then use 7→ L1

to close this branch. The derivation for branch (2) is similar.
The derivation for Formula 7.5 requires the cross-split rule CS. So do Formula 7.6

and 7.7, both are crafted quite artificially. We present them as below.

(((e1 7→ e2) ∗ (¬((e3 7→ e4) ∗ >))) ∧ ((e3 7→ e4) ∗ >)) → (e1 = e3) (7.6)

(((e1 7→ e2) ∗ >) ∧ ((e3 7→ e4) ∗ >))→
((e1 = e3) ∨ (((e1 7→ e2) ∗ (e3 7→ e4)) ∗ >)) (7.7)

As mentioned before, our proof system is not complete. For a valid example that
cannot be proved by LSSL, consider Formula 7.8:

>∗ ∨ (∃e1, e2.(e1 7→ e2)) ∨ ((¬>∗) ∗ (¬>∗)) (7.8)

This formula is valid because any heap can only be in one of the following forms:
either (1) it is the empty heap, or (2) it is a singleton heap, or (3) it is a composite
heap. Recall that LSSL does not have any 7→ right rules, but this formula requires one
to analyse what may happen when a 7→ predicate occurs in the succedent. Thus LSSL
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cannot prove this formula. To prove Formula 7.8, we can add a 7→ R rule with four
premises:

(h1, h2 . h); (h1 6= ε); (h2 6= ε);G; Γ ` h : e1 7→ e2; ∆
G; Γ; h : e1 7→ e3 ` h : e2 = e3; h : e1 7→ e2; ∆
G; Γ; h : e3 7→ e4 ` h : e1 = e3; h : e1 7→ e2; ∆
G[ε/h]; Γ[ε/h] ` ε : e1 7→ e2; ∆[ε/h]

7→ R
G; Γ ` h : e1 7→ e2; ∆

The rule 7→ R essentially negates the semantics for 7→, obtaining four possibilities
when e1 7→ e2 is false at a heap h: (1) h is a composite heap, so it is possible to split
it into two non-empty heaps; (2) h is a singleton heap, its address is the value of e1,
but it does not map this address to the value of e2; (3) h is a singleton heap, but its
address is not the value of e1; (4) h is the empty heap. We will also need a new type
of structure, namely inequality of labels as shown in the first premise. This structure
was also introduced in the rules for Splittability in Section 6.3. Now Formula 7.8
is provable, but there would be other formulae that require us to add more rules,
and one can never give enough rules for this logic. For efficiency reasons we do not
include the rule 7→ R into our labelled calculus. Our method, however, is able to prove
simpler properties such as “every heap is either empty or non-empty”, which can be
formulated as >∗ ∨ ¬>∗ and can be proved trivially.

7.3 Inference Rules for Data Structures

Many data structures can be defined inductively by using separation logic’s assertion
language [18]. Numerous original tools for separation logic, such as Smallfoot, use
hard-coded inductive prediaces because it is possible to do so and still obtain a com-
plete and decidable theory. However, more recent tools, including CyclistSL [19], pro-
vide facilities for arbitrary user-defined inductive predicates. In such setting, the logic
is known not to be decidable any more [1]. The performance of tools not specifically
designed for decidable fragments is generally worse on those fragments than those
that are so specifically designed. In this section we take the hard-coded approach and
focus on two widely used data structures: singly linked lists and binary trees. We take
several rules from Berdine et al.’s method for symbolic heap entailment [8] and give
corresponding labelled versions, then we extend these rules with new labelled rules
for separation logic in general.

Linked lists are defined in several ways in the literature. Here we use the definition
in provers for symbolic heap [18, 8], given below, to facilitate comparison between our
prover and those provers.

ls(e1, e2) ⇐⇒ (e1 = e2 ∧>∗) ∨ (e1 6= e2 ∧ ∃x.(e1 7→ x ∗ ls(x, e2)))
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In this definition, a linked list (segment) ls(e1, en) is in the form

(e1 7→ e2) ∗ (e2 7→ e3) ∗ · · · ∗ (en−2 7→ en−1) ∗ (en−1 7→ en)

where e1, · · · en are all mapped to distinct values by the store. A complete list that
starts with e is defined as ls(e, nil). Cycles are not allowed in this definition, since any
list denoted by ls(e, e) or ls(nil, nil) is an empty list, and any heaps with intersecting
domains are not allowed to be combined. More specifically, for a non-empty list seg-
ment ls(e1, en), suppose there is a cycle from ei to ei, with at least one singleton heap
in between, there are two possibilities:

1. If the last occurrence of ei is not at the end of the list, i.e., ei 6= en, then it must
be the address of a singleton heap, otherwise the next singleton heap also has
address ei.

(a) If the first occurrence of ei is the content of a singleton heap, then the next
singleton heap has address ei, and this singleton heap cannot be the one
where ei occurs last, because they are disjoint, we obtain a contradiction
because two singleton heaps with the same address are combined.

(b) Otherwise the first occurrence of ei is the address of a singleton heap, we
obtain the same contradiction.

2. If the last occurrence of ei is the end of the list, then by the inductive definition,
the list ls(e1, ei) will be parsed to have a tail ls(ei, ei), which is equivalent to an
empty list, rather than having a series of singleton heaps with a cycle.

To represent binary trees we need the pointer predicate with two fields, i.e., (e 7→
e1, e2). The two fields are for the left subtree and right subtree respectively, the empty
tree is given by nil. The binary tree structure is defined as:

tr(e) ⇐⇒ ((e = nil) ∧>∗) ∨ (∃x, y.((e 7→ x, y) ∗ tr(x) ∗ tr(y)))

The ∗ connective ensures that there is no sharing and cycles between the two subtrees.
One can also define doubly linked lists, reverse linked lists etc., and give inference

rules for these data structures. But as they are less frequently used, we leave them as
future work.

We give the first part of the inference rules for data structures in Figure 7.7. Some
of these rules are just labelled versions of the rules in the entailment checking system
in Smallfoot [8], but we also extend their rules with some new ones for non-symbolic
heaps. For example, the rules LS6 and LS7 are for overlaid data structures that cannot
be expressed in symbolic heap fragment. The abbreviation ds(e, e′) stands for a data
structure where the first address is the value of e and the last content is the value of
e′. Examples of ds(e, e′) are (e 7→ e′) and ls(e, e′). We use ad(e) for a data structure
that may contain the address of value of e, i.e., (e 7→ e′), (e 7→ e′, e′′), ls(e, e′), or tr(e),
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G; Γ[e1/e2] ` ∆[e1/e2]
LS1

G; Γ; ε : ls(e1, e2) ` ∆
LS2

G; Γ ` ε : ls(e, e); ∆
G; Γ; h : >∗ ` ∆

LS3
G; Γ; h : ls(e, e) ` ∆

G; Γ[nil/e]; h : >∗ ` ∆[nil/e]
LS4

G; Γ; h : ls(nil, e) ` ∆
idaG; Γ; h : A ` h : A; ∆

G; Γθ1; h : >∗ ` ∆θ1 G; Γθ2; h : ls(e1θ2, e2θ2) ` ∆θ2
LS5

G; Γ; h : ls(e1, e2); h : ls(e3, e4) ` ∆

(h1, h2 . h0);G; Γ; h1 : ds(e1, e2); h0 : ls(e1, e3); h2 : ls(e2, e3) ` ∆
LS6

(h1, h2 . h0);G; Γ; h1 : ds(e1, e2); h0 : ls(e1, e3) ` ∆

(h1, h2 . h0);G; Γ; h1 : ds(e2, e3); h0 : ls(e1, e3); h2 : ls(e1, e2) ` ∆
LS7

(h1, h2 . h0);G; Γ; h1 : ds(e2, e3); h0 : ls(e1, e3) ` ∆

(h1, h2 . h0); (h1, h3 . h4);G; Γ; h1 : ds(e1, e2); h3 : ad(e3) ` h2 : ls(e2, e3); h0 : ls(e1, e3); h : G(ad(e3)); ∆
LS8

(h1, h2 . h0); (h1, h3 . h4);G; Γ; h1 : ds(e1, e2); h3 : ad(e3) ` h0 : ls(e1, e3); h : G(ad(e3)); ∆

IC
(h1, h2 . h0);G; Γ; h1 : ad(e1); h2 : ad(e1)

′ ` h3 : G(ad(e1)); h4 : G(ad(e1)
′); ∆

Abbreviations and side conditions:
ds(e, e′) is either (e 7→ e′) or ls(e, e′).
ad(e) stands for one of (e 7→ e′), (e 7→ e′, e′′), ls(e, e′), or tr(e), for some e′, e′′. Similarly for ad(e)′.
G(ad(e)) is defined as G(e 7→ e′) ≡ G(e 7→ e′, e′′) ≡ ⊥, G(ls(e, e′)) ≡ (e = e′), G(tr(e)) ≡ (e = nil).
In LS5, θ1 = mgu({(e1, e2), (e3, e4)}) and θ2 = mgu({(e1, e3), (e2, e4)}).
In LS8, if e3 is nil, then (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion are optional.
In LS8, if ds(e1, e2) is (e1 7→ e2), then (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion are
optional, on the condition that h′ : (e1 = e3) occurs in the RHS of the conclusion, for some h′.

Figure 7.7: Data structure rules part 1.

for some e′, e′′. In the case that e = e′, the data structure ls(e, e′) actually is empty and
does not contain e. We use G(ad(e)) on the right hand side of the sequent to ensure
that the data structure ad(e) is non-empty. Since the pointer predicate is guaranteed
to be non-empty by the semantics, G(e 7→ e′) ≡ G(e 7→ e, e′′) ≡ ⊥. By the definition of
lists and trees, G(ls(e, e′)) ≡ (e = e′), and G(tr(e)) ≡ (e = nil). For example, if ls(e, e′)
is empty, then G(ls(e, e′)) ≡ (e = e′) on the right hand side will immediately close the
branch. Here we assume that ⊥ is false everywhere, so h : ⊥ ∈ ∆ for every label h,
although this is not shown explicitly.

While other rules in Figure 7.7 are intuitive, the rule LS8 is extraordinarily com-
plicated and needs some explanation. For simplicity, in the following we will say an
expression e is an “address” without saying the fact that it needs to be valuated by the
store. Suppose the heap h1 is a data structure from address e1 to e2, and h3 is a data
structure that talks about address e3. By G(ad(e3)) in the succedent, we know that h3

is non-empty and indeed contains the address e3. Since (h1, h3 . h4) holds, we know
that the address e3 is not in the domain of h1. The labelled formula h0 : ls(e1, e3) in the
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succedent now tells us that h0 should also make ds(e1, e2) ∗ ls(e2, e3) false, no matter in
which form the ds(e1, e2) in the antecedent is. Thus by an ∗R application on this for-
mula using (h1, h2 . h0), the branch with h1 : ds(e1, e2) in the succedent can be closed,
and we only have the other branch with h2 : ls(e2, e3) in the succedent. There are two
special cases as indicated by the side conditions. First, if e3 is nil, then we do not need
to worry about it appearing in the addresses of ds(e1, e2), because nil can never be an
address. So we do not need (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion.
Second, if ds(e1, e2) is a singleton heap (e1 7→ e2), then we only require that e3 does
not have the same value as e1, thus (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) can be
neglected as long as (e1 = e3) occurs in the succedent.

The rules IC and ida are respectively the generalised versions of 7→ L3 and id.
That is, IC captures that two data structures that contain the same address cannot be
composed by ∗, and ida simply forbids a heap to make a formula both true and false.

G; Γ[nil/e] ` ∆[nil/e]
TR1

G; Γ; ε : tr(e) ` ∆
G; Γ[e1/e2]; h : tr(e1) ` ∆[e1/e2]

TR4
G; Γ; h : tr(e1); h : tr(e2) ` ∆

TR2
G; Γ ` ε : tr(nil); ∆

(h1, h2 . h0);G; Γ; h1 : e 7→ e1, e2; h0 : tr(e); h2 : tr(e1) ∗ tr(e2) ` ∆
TR5

(h1, h2 . h0);G; Γ; h1 : e 7→ e1, e2; h0 : tr(e) ` ∆

G; Γ; h : >∗ ` ∆
TR3

G; Γ; h : tr(nil) ` ∆
(h1, h2 . h0);G; Γ; h1 : e 7→ e1, e2 ` h2 : tr(e1) ∗ tr(e2); h0 : tr(e); ∆

TR6
(h1, h2 . h0);G; Γ; h1 : e 7→ e1, e2 ` h0 : tr(e); ∆

Figure 7.8: Data structure rules part 2.

The second collection of rules are for binary trees, as shown in Figure 7.8. Similarly,
the rules TR1, TR2, TR3, TR6 can be found in similar forms in the Smallfoot system [8],
but TR4 and TR5 are for non-symbolic heaps, respectively are analogous to LS5 and
LS6 for linked lists. Note that TR4 only needs one premise, because the case where
two trees are empty (e1 = e2 = nil) implies the case that the two trees are the same
(e1 = e2), so only the latter case is used as the premise. In the rule TR6, we implicitly
unfold tr(e) to (e 7→ e1, e2) ∗ tr(e1) ∗ tr(e2) as is done by Berdine et al. [8], and apply
∗R on this formula, the branch with (e 7→ e1, e2) is immediately closed, leaving only
the branch with tr(e1) ∗ tr(e2), thus the formula tr(e) is also copied to the premise by
the ∗R application.

Note also that the rule cut= in LSSL is required when we consider data structures.
For example, when proving the following formula which says that the current heap
consists of a list ls(e2, e3) and a list ls(e1, e2), and the latter can be extended with an
non-empty list ls(e3, e4), then the current heap forms a list ls(e1, e3):

((ls(e1, e2) ∧ ¬((ls(e3, e4) ∧ ¬>∗)−∗ ⊥)) ∗ ls(e2, e3))→ ls(e1, e3) (7.9)

The above formula would not be valid if we do not have the subformula ¬>∗, which
ensures that the list ls(e3, e4) is non-empty and the address e3 is indeed disjoint from
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G; Γ; h : e 7→ ω, ω′ ` h : e 7→ ω; ∆
G; Γθ; h : e1 7→ ω ` ∆θ

G; Γ; h : e1 7→ ω; h : e2 7→ ω′ ` ∆

θ is the mgu that unifies e1 with e2 and ω with ω′.

G; Γ; ε : e 7→ ω ` ∆ G; Γ; h : nil 7→ ω ` ∆

(ε, h0 . h0);G[ε/h1][h0/h2]; Γ[ε/h1][h0/h2]; h0 : e1 7→ ω ` ∆[ε/h1][h0/h2]

(h0, ε . h0);G[ε/h2][h0/h1]; Γ[ε/h2][h0/h1]; h0 : e1 7→ ω ` ∆[ε/h2][h0/h1]

(h1, h2 . h0);G; Γ; h0 : e1 7→ ω ` ∆

G[h1/h2]; Γ[h1/h2]; h1 : e1 7→ ω, ω′; h1 : e1 7→ ω ` ∆[h1/h2]

G; Γ; h1 : e1 7→ ω, ω′; h2 : e1 7→ ω ` ∆

Figure 7.9: Generalised rules for 7→ with arbitrary fields in non-Reynolds’s semantics.

the heap that denotes ls(e1, e2). It is essential to use cut= to split the case of e3 = e4

and e3 6= e4 in the proof of this formula.
We refer to the labelled system LSSL plus the rules introduced in Figure 7.7 and 7.8

as LSSL + DS. The soundness of LSSL + DS for Reynolds’s semantics can be proved in
the same way as previously showed for BBI.

Before we discuss the completeness w.r.t. the symbolic heap fragment, let us recall
from the end of Section 5.1.2.1 that symbolic heap employs slightly different semantics
for the multi-field points-to predicate, and treat it as a singleton heap. This reading
would not make sense in our setting because our logic is based on Reynolds’s se-
mantics. Here we develop a branch of our system by compromising both kinds of
semantics and viewing (e1 7→ e2, e3) as a singleton heap that maps the value of e1

to the value of e2, and the next address contains the value of e3. Thus we need the
following rule to match up with Smallfoot:

id3G; Γ; h : e1 7→ e2, e3 ` h : e1 7→ e2; ∆

This rule, however, is not sound in Reynolds’s semantics in which e1 7→ e2, e3 is a heap
of size two thus is not contradictory when e1 7→ e2 is not true at that heap.

We can even generalise the above to the case for the points-to predicate with arbi-
trary number of fields. We give the generalised 7→ rules for non-Reynolds’s semantics
in Figure 7.9 where ω, ω′ denote any number of fields.

In the non-Reynolds’s semantics, the rules in Figure 7.7 need to be adjusted so
that ds(e1, e2) now considers (e1 7→ e2, ω) and ad(e) considers (e 7→ ω). Similarly, the
h1 : e 7→ e1, e2 in Figure 7.8 should be changed to h1 : e 7→ e1, e2, ω. We refer to the
variant of LSSL + DS with these changes, the addition of rules in Figure 7.9 and the
exclusion of rules in Figure 7.3 as LS′SL + DS. In the following we list some important
lemmas for proving the completeness of LS′SL + DS for the symbolic heap fragment.
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Lemma 7.3.1 (Global substitution of labels). If a sequent G; Γ ` ∆ is derivable in LS′SL +
DS, then G[h′/h]; Γ[h′/h] ` ∆[h′/h] is also derivable in LS′SL + DS with at most the same
height, where h, h′ are two labels and h 6= ε.

Proof. The proof is similar to Lemma 4.2.2. We do an induction on the height of the
derivation for the original sequent. The base case is when the original sequent can be
derived in 1 step, i.e., by a zero-premise rule. It is easy to check that we can also apply
the corresponding zero-premise rule on the substituted sequent.

For the inductive case, consider the last (bottom) rule application in the derivation
for the original sequent. The rules with only substitutions in LS′SL + DS can be shown
by similar arguments for Eq1, Eq2 in Lemma 4.2.2. The rules that create fresh labels
(HE and HC) can be shown by using the argument for ∗L,−∗ R in Lemma 4.2.2. Most
other rules are easy to show, we give an example here for LS5, which not only involves
substitutions, but also creates new labelled formulae in the left premise. Suppose the
derivation for the original sequent is as below, where e2 6= e4 and e3 6= e4 (the case
when e3 = e4 is similar, but we need to use [e3/e1][e3/e2] instead on the right premise;
when e2 = e4, use [e2/e1][e2/e3] instead on the left premise):

Π1

G; Γ[e1/e2][e3/e4]; h : >∗ ` ∆[e1/e2][e3/e4]

Π2

G; Γ[e1/e3][e2/e4]; h : ls(e1, e2) ` ∆[e1/e3][e2/e4]
LS5

G; Γ; h : ls(e1, e2); h : ls(e3, e4) ` ∆

Our objective is to derive G[h1/h2]; Γ[h1/h2]; h : ls(e1, e2)[h1/h2]; h : ls(e3, e4)[h1/h2] `
∆[h1/h2], for some labels h1, h2. We consider the following cases:

1. If neither h1 nor h2 is h, then we can apply LS5 on the substituted sequent, getting
two premises:

• G; Γ[h1/h2][e1/e2][e3/e4]; h : >∗ ` ∆[h1/h2][e1/e2][e3/e4]

• G; Γ[h1/h2][e1/e3][e2/e4]; h : ls(e1, e2) ` ∆[h1/h2][e1/e3][e2/e4]

Since label substitutions and expression substitutions are independent, these two
premises can be derived by using the induction hypothesis on Π1 and Π2 respec-
tively with [h1/h2].

2. If h1 = h and h2 6= h, same as the above case.

3. If h2 = h and h1 6= h, then we need to derive G[h1/h2]; Γ[h1/h2]; h1 : ls(e1, e2); h1 :
ls(e3, e4) ` ∆[h1/h2]. Similar as before, we apply LS5 backwards on this sequent,
and obtain two premises that are exactly the same as those in case 1. Again, we
use the induction hypothesis to apply [h1/h2] on Π1 and Π2 to obtain respec-
tively the derivations for the above two premises.

4. If h1 = h2 = h, the substitution [h1/h2] is the identity substitution, so it does not
change the conclusion at all.
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Global substitution of expressions is similar to global substitution of labels, but in
this case we do not need to consider the set G of relational atoms in a sequent, because
it does not contain any expressions.

Lemma 7.3.2 (Global substitution of expressions). If a sequent G; Γ ` ∆ is derivable in
LS′SL + DS, then G; Γ[e′/e] ` ∆[e′/e] is also derivable in LS′SL + DS with at most the same
height, where e, e′ are two expressions and e 6= nil.

Proof. This proof is similar to the substitution for labels, which is an induction on the
height of the derivation for the original sequent. Both the base case and the inductive
case are easy to check. We only give an example for = L here. Suppose the derivation
for the original sequent is

Π
G; Γ[e2/e1] ` ∆[e2/e1]

= L
G; Γ; h : e1 = e2 ` ∆

We need a derivation for the sequent G; Γ[e′/e]; h : e1 = e2[e′/e] ` ∆[e′/e]. A case
analysis as follows suffices.

1. If e, e′ and e1, e2 are pairwise distinct. Then we only need to apply the induc-
tion hypothesis on Π, swap the two substitutions, and apply = R to derive the
required sequent.

2. If e = e1 and e′ is not e1 nor e2, then the derivation is transformed as below:

Π′

G; Γ[e′/e][e2/e′] ` ∆[e′/e][e2/e′]
= L

G; Γ[e′/e]; h : e′ = e2 ` ∆[e′/e]

where Π′ is obtained by the induction hypothesis on Π with [e2/e′].

3. If e = e2, e′ is not e1 nor e2, this case is similar to the first case.

4. If e′ = e1, e is not e1 nor e2, this case is similar to the second case.

5. If e′ = e2, e is not e1 nor e2, this case is similar to the first case.

6. If e = e1, e′ = e2, we can directly use Π to derive the required sequent.

7. if e = e2, e′ = e1, we can apply the induction hypothesis on Π with [e1/e2] to get
the derivation for the required sequent.

Weakening is built in our zero-premise rules and is easy to check, thus we only
state the lemma as below.

Lemma 7.3.3. If G; Γ ` ∆ is derivable in LS′SL + DS, then for any set G ′ of relational atoms,
any set Γ′ and ∆′ of labelled formulae, the sequent G;G ′; Γ; Γ′ ` ∆; ∆′ is derivable with the
same height in LS′SL + DS.
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Most non-logical rules in LS′SL + DS are either about global substitutions, in which
case the above two lemmas guarantee invertibility, or are trivially invertible, i.e., the
premise(s) includes the conclusion. So the following lemma is not surprising.

Lemma 7.3.4 (Invertibility of rules). If the conclusion of a rule in LS′SL + DS is derivable
in LS′SL + DS, then each premise is also derivable in LS′SL + DS with at most the same height.

Proof. Most of rules in LS′SL + DS can be shown invertible by similar (but longer)
arguments for the same rules in LSBBI. The pointer rules in Figure 7.2 are trivially
invertible, which can be shown by either weakening or substitution lemmas (in case of
zero-premise rules, nothing is required). The same argument holds for the following
rules for data structures: LS1, LS2, LS6, LS7, LS8, TR1, TR2, TR4, TR5, TR6.

For LS3, we prove by induction on the height of the derivation for the conclusion

G; Γ; h : ls(e, e) ` ∆.

If h : ls(e, e) is not principal in the last rule application, then we can apply that rule
backwards on G; Γ; h : >∗ ` ∆, too. If h : ls(e, e) is principal in the last rule application,
we need to look at the last rule application in more details. If the last rule is ida, then
we know that h : ls(e, e) is in ∆. The required sequent can be derived by applying
>∗L backwards, unifying h with ε, then use >∗R to close the branch. If the last rule
is LS1 or LS4, it is trivial to show. If the last rule is LS5, which applies on, e.g.,
G; Γ; h : ls(e, e); h : ls(e3, e4) ` ∆, and gives the derivations for the sequents

Π1 : (G; Γ; h : >∗ ` ∆)[e3/e4]

Π2 : (G; Γ; h : ls(e, e) ` ∆)[e/e3][e/e4]

Now we need to derive G; Γ; h : >∗; h : ls(e3, e4) ` ∆. We use the following derivation:

(G; Γ ` ∆)[ε/h][e3/e4]
LS1

(G; Γ; ε : ls(e3, e4) ` ∆)[ε/h]
>∗L

G; Γ; h : >∗; h : ls(e3, e4) ` ∆

Note that the rule >∗L is also invertible, thus by applying the induction hypothesis on
Π1, we obtain a derivation Π′1 for (G; Γ ` ∆)[e3/e4][ε/h], which is what we need.

If the last rule application is LS6, LS7, LS8, we can simply use the induction hy-
pothesis to derive the required sequent. Finally, if the last rule application is IC, the
guard formula G(ad(e1)) and G(ad(e1)

′) ensures that if h : ls(e, e) is principal, which
means e1 = e, and (e1 = e1) occurs in the succedent, we can use = R to close the
branch. The above includes all possible cases for h : ls(e, e) being a principal formula.

The invertibility of LS4 is similar to that for LS3.
For LS5, if the conclusion is derivable, the left premise is derivable by Lemma 7.3.2

and invertibility of LS3; the right premise is derivable directly by Lemma 7.3.2.
The case for TR3 is similar to that for LS3.
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Since we assume that our sequents consist of sets rather than multisets, contraction
of labelled formulae and relational atoms are built in. To show the completeness w.r.t.
the symbolic heap fragment (defined in Section 5.1.2.3), we only need to give a trans-
lation from the entailment checking system in Smallfoot to our labelled system, and
show that every rule in the former system can be mimicked in the latter system. Since
Smallfoot is complete for the symbolic heap fragment [8], we obtain the completeness
of our system for the symbolic heap fragment.

But before we proceed to prove the completeness for LS′SL + DS, we also need the
following lemma:

Lemma 7.3.5. Let Π ∧ Σ and Π′ ∧ Σ′ be two arbitrary symbolic heaps, then h1 : Π; h2 : Σ `
h3 : Π′; h4 : Σ′ is derivable in LS′SL + DS iff h′1 : Π; h2 : Σ ` h′3 : Π′; h4 : Σ′ is derivable in
LS′SL + DS, for any labels h1, h2, h3, h4, h′1, h′3.

The proof for this lemma is an easy induction on the height of the derivation for
the former sequent. Since Π and Π′ only contain (negated) equality atomic formulae
and > combined by ∧, the labels for Π and Π′ play no role in proof search at all, so
we can replace them with any other labels.

We call ∗R, −∗ L, ∃R positive rules, and the other rules in LS′SL + DS negative rules.
The idea is, negative rules can be applied whenever applicable, but positive rules need
to be applied with the “right” choice (a wrong choice does not make any progress in
proof search). Ideally we would always apply negative rules, and apply positive rules
only if no negative rules are applicable. It is easy to check that applying negative rules
(with the restriction mentioned in Section 7.5) is a terminating procedure. We call a
sequent a negative closure when no negatives rules are applicable to it.

In the following, we shall restrict the ∗R rule in LS′SL so that the principal formula
is not copied to each premise. We call the resulting system LS′′SL + DS, in which the ∗R
rule is not invertible any more. But as we shall see, the invertibility of ∗R is not used
in the completeness proof for LS′′SL + DS, which will then induce the completeness of
the stronger system LS′SL + DS. In the following, we say certain rules are “saturated”
when these rules are not applicable any more.

Lemma 7.3.6. Let G; Γ ` ∆ be a LS′′SL + DS derivable sequent in the proof search for a
symbolic heap formula. Then either

1. it can be derived by only using negative rules, or

2. for each open branch after the negative rules are saturated, let G ′; Γ′ ` ∆′ be the negative
closure of the top sequent, there is some h : Σ′ ∗ Σ′′ ∈ ∆′ and (h1, h2 . h) ∈ G ′ such that
(I) G ′; Γ′ ` h1 : Σ′; ∆′′ and
(II) G ′; Γ′ ` h2 : Σ′′; ∆′′

are both derivable in LS′′SL + DS, where ∆′′ is ∆′ \ {h : Σ′ ∗ Σ′′}.
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Proof. If (1) does not hold, then by the nature of our (negative) inference rules, the
structure ∆′ consists of only atomic labelled formulae and ∗ formulae, and Γ′ con-
sists of only atomic labelled formulae. Since we assume that no negative rules are
applicable on the sequent

(S:) G ′; Γ′ ` ∆′,

this sequent can only be derived by first applying ∗R backwards. So there must be
some (h1, h2 . h) ∈ G ′ which is the “right” choice for this ∗R application on some
h : Σ′ ∗ Σ′′ ∈ ∆′ that leads to a derivation, so

(I) G ′; Γ′ ` h1 : Σ′; ∆′ and
(II) G ′; Γ′ ` h2 : Σ′′; ∆′

are derivable. Note that from now on each branch in the derivation for (I) and (II) can
only be closed by id, id2, ids, >∗R, LS2, or TR2, because if any other zero-premise rules
are applicable, they are applicable on S, too.

Theorem 7.3.7 (Soundness and Completeness w.r.t. symbolic heap). Any symbolic heap
formula provable in LS′SL + DS is valid, and any valid symbolic heap formula is provable in
LS′SL + DS.

Proof. The soundness of the rules in and 7.8 LS′SL + DS are easy to check, by arguing
that each rule preserves falsifiability upwards. The cases for many rules for linked lists
and binary trees are obvious since they are based on the rules in Smallfoot. We give
the cases for LS6, LS7, TR4, TR5 below. From the reading of a sequent, we may loosely
say a labelled formula is “true” when it appears on the left hand side of a sequent,
and say it is “false” if it appears on the right hand side.

LS6: suppose the conclusion is falsifiable, so (h1, h2 . h0), h1 : ds(e1, e2) and h0 :
ls(e1, e2) are true. Hence ρ(h1) ◦ ρ(h2) = ρ(h0). There are two cases for ds(e1, e2):
either (1) (e1 7→ e2, ω) or (2) ls(e1, e2). For the first case, h1 must be a singleton
heap (which means h0 must be non-empty), so h2 would be the subtraction of
h1 from h0, which is a list ls(e2, e3). For the second case, (2.1) if ρ(h0) is empty,
then both ρ(h1) and ρ(h2) are empty by indivisible unit. So by definition of lists
e1 = e2 = e3. Therefore h2 : ls(e2 = e3) is true. (2.2) If ρ(h0) is non-empty but
ρ(h1) is empty, then ρ(h2) = ρ(h0), and e1 = e2. So h2 : ls(e2, e3) is true. (2.3)
If both ρ(h0) and ρ(h1) are non-empty, then ρ(h2), should it be empty or not,
would still make ls(e2, e3) true. Thus the premise is falsifiable as well.

LS7: Similar to LS6.

TR4: Suppose the conclusion is falsifiable, then h : tr(e1); h : tr(e2) are true. If ρ(h) is
an empty heap, then e1 = e2 = nil. If ρ(h) is non-empty, then again e1 = e2. So
[e1/e2] on the premise preserves falsifiability.
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TR5: Suppose the conclusion is falsifiable, then (h1, h2 . h0), h1 : (e 7→ e1, e2, ω) and
h0 : tr(e) are true. Since ρ(h1) ◦ ρ(h2) = ρ(h0) and ρ(h1) is a singleton heap (from
non-Reynolds’s semantics), ρ(h0) must also be non-empty. So ρ(h2), whether
empty or not, would make tr(e1) ∗ tr(e2) true. Thus the premise is also falsifiable.

For the completeness proof, we show that each rule in the entailment checking
system of Smallfoot can be mimicked by the rules in LS′′SL + DS. Since the entailment
checking system of Smallfoot is complete w.r.t. the symbolic heap fragment [8], we
deduce that our system LS′′SL + DS is also complete w.r.t. the symbolic heap fragment.
The unrestricted system LS′SL + DS is then complete w.r.t. the same fragment, too.

First, we translate a symbolic heap entailment into our labelled sequent as follows:

τ(Π ∧ Σ ` Π′ ∧ Σ′) = h : Π ∧ Σ ` h : Π′ ∧ Σ′

It is easy to see that this translation is faithful. That is, given two symbolic heaps Π∧Σ
and Π′ ∧Σ′, Π∧Σ→ Π′ ∧Σ′ is a valid separation logic formula iff Π∧Σ ` Π′ ∧Σ′ is a
valid entailment. By the→ R rule in LS′SL, this also implies that h : Π∧Σ ` h : Π′ ∧Σ′

is the labelled sequent we need to derive. Now for each rule in the entailment checking
system of Smallfoot of the form

P1 · · · · · · Pn
r

C

where n is 1 or 2. We show that if all the translated premises τ(P1) to τ(Pn) are
derivable in LS′′SL + DS, then the translated conclusion τ(C) is also derivable in LS′′SL +
DS. Most of the rules are easy to show, but the cases for the ∗-introduction rule and the
last four rules (Table 3 in [8]) in the entailment system of Smallfoot are non-trivial. We
first give an example for the easy case here, consider the following rule in Smallfoot:

Π ∧ Σ ` Π′ ∧ Σ′

Π ∧ Σ ` Π′ ∧ (tr(nil) ∗ Σ′)

We need to show that if there is a derivation for h : Π∧Σ ` h : Π′∧Σ′ in LS′′SL +DS,
then h : Π ∧ Σ ` h : Π′ ∧ tr(nil) ∗ Σ′ is also derivable in LS′′SL + DS. Let us start from
the translated conclusion

; h : Π ∧ Σ ` h : Π′ ∧ (tr(nil) ∗ Σ′)

and apply ∧R backwards. We obtain two branches. The first one is

; h : Π ∧ Σ ` h : Π′

and the second branch is a derivation as follows:
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; h : Π ∧ Σ ` h : Σ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.3

(ε, h . h); (h, ε . h); h : Π ∧ Σ ` h : Σ′; h : tr(nil) ∗ Σ′
TR2

· · · ; · · · ` ε : tr(nil); · · ·
∗R

(ε, h . h); (h, ε . h); h : Π ∧ Σ ` h : tr(nil) ∗ Σ′
E

(h, ε . h); h : Π ∧ Σ ` h : tr(nil) ∗ Σ′
U

; h : Π ∧ Σ ` h : tr(nil) ∗ Σ′

For the two open branches, invertibility of ∧R says that we only need to derive h :
Π ∧ Σ ` h : Π′ ∧ Σ′, which by assumption is derivable.

Now let us consider the ∗-introduction rule in Smallfoot:

S ` S′ Π ∧ Σ ` Π′ ∧ Σ′

Π ∧ (S ∗ Σ) ` Π′ ∧ (S′ ∗ Σ′)

Assume that there are derivations D1 and D2 in LS′′SL + DS respectively for h1 : S `
h1 : S′ and h2 : Π ∧ Σ ` h2 : Π′ ∧ Σ′, for some labels h1, h2. We first use the following
backward proof search from the translated conclusion:

h : Π; h : (S ∗ Σ) ` h : Π′ h : Π; h : (S ∗ Σ) ` h : S′ ∗ Σ′
∧R

h : Π; h : (S ∗ Σ) ` h : Π′ ∧ (S′ ∗ Σ′)
∧L

h : Π ∧ (S ∗ Σ) ` h : Π′ ∧ (S′ ∗ Σ′)

We give the left branch the following derivation:

h2 : Π ∧ Σ ` h2 : Π′. . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.4

h2 : Π; h2 : Σ ` h2 : Π′. . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.1

h4 : Π; h4 : Σ ` h4 : Π′. . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.5

h : Π; h4 : Σ ` h : Π′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.3

(h3, h4 . h); h : Π; h3 : S; h4 : Σ ` h : Π′
∗L

h : Π; h : (S ∗ Σ) ` h : Π′

And the right branch is derived as below:

D1

h1 : S ` h1 : S′. . . . . . . . . . . . . . . . . . Lem 7.3.1

h3 : S ` h3 : S′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.3

· · · ; h3 : S ` h3 : S′; · · ·

h2 : Π ∧ Σ ` h2 : Σ′. . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.4

h2 : Π; h2Σ ` h2 : Σ′. . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.1

h4 : Π; h4 : Σ ` h4 : Σ′. . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.5

h : Π; h4 : Σ ` h4 : Σ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem 7.3.3

· · · ; h : Π; h4 : Σ ` h4 : Σ′; · · ·
∗R

(h3, h4 . h); h : Π; h3 : S; h4 : Σ ` h : S′ ∗ Σ′
∗L

h : Π; h : (S ∗ Σ) ` h : S′ ∗ Σ′

The derivations for the two open branches are obtained by using invertibility of ∧R
on the end sequent of D2.

Finally, we show the case for the following rule in Smallfoot. The other non-trivial
cases can be argued similarly.
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Π ∧ (ls(e1, e2) ∗ Σ) ` Π′ ∧ (ls(e1, e2) ∗ ls(e2, nil) ∗ Σ′)
Π ∧ (ls(e1, e2) ∗ Σ) ` Π′ ∧ (ls(e1, nil) ∗ Σ′)

We apply the rules in LS′′SL + DS backwards on the translated premise, obtaining the
following derivation:

h : Π; h : ls(e1, e2) ∗ Σ ` h : Π′ h : Π; h : ls(e1, e2) ∗ Σ ` h : ls(e1, e2) ∗ ls(e2, nil) ∗ Σ′
∧R

h : Π; h : ls(e1, e2) ∗ Σ ` h : Π′ ∧ (ls(e1, e2) ∗ ls(e2, nil) ∗ Σ′)
∧L

h : Π ∧ (ls(e1, e2) ∗ Σ) ` h : Π′ ∧ (ls(e1, e2) ∗ ls(e2, nil) ∗ Σ′)

By the invertibility of ∧L and ∧R, we know that the top sequent in both branches
are derivable in LS′′SL + DS. Now let us do backward proof search on the translated
conclusion, giving the following derivation:

h : Π; h : ls(e1, e2) ∗ Σ ` h : Π′ h : Π; h : ls(e1, e2) ∗ Σ ` h : ls(e1, nil) ∗ Σ′
∧R

h : Π; h : ls(e1, e2) ∗ Σ ` h : Π′ ∧ (ls(e1, nil) ∗ Σ′)
∧L

h : Π ∧ (ls(e1, e2) ∗ Σ) ` h : Π′ ∧ (ls(e1, nil) ∗ Σ′)

The left premise is derivable as we deduced above, so we only need to show that if
(S1) h : Π; h : ls(e1, e2) ∗ Σ ` h : ls(e1, e2) ∗ ls(e2, nil) ∗ Σ′

is derivable in LS′′SL + DS then
(S2) h : Π; h : ls(e1, e2) ∗ Σ ` h : ls(e1, nil) ∗ Σ′

is also derivable in LS′′SL + DS.
Assuming S1 is derivable, by Lemma 7.3.6, one possibility is that S1 is derivable by

only using negative rules, in which case S2 would be derivable by using the same rule
applications. If the above does not hold, for each open branch, let the negative closure
of the top sequent be G; Γ ` h : ls(e1, e2) ∗ ls(e2, nil) ∗ Σ′θ; ∆, where θ is the series
of substitutions in the proof search for negative rules. Since the process of applying
negative rules in LS′′SL + DS is terminating, the negative closure of any sequent is finite.
Again by (multiple applications of) Lemma 7.3.6 and the invertibility of the negative
rules in LS′′SL + DS, there are some labels h1, h2, h3 such that (h1, h2 . h4), (h4, h3 . hθ)
occur in G such that the following are derivable:

1. G; Γ ` h1 : ls(e1, e2)θ; ∆
2. G; Γ ` h2 : ls(e2, nil)θ; ∆
3. G; Γ ` h3 : Σ′θ; ∆

Apparently h1 should be the same as the label of ls(e1, e2)θ in Γ to match the right
hand side: if the branch (1) is closed by ids, this is obvious; otherwise the branch (1)
can only be closed by LS2, which means h1 = ε and e1 = e2 (syntactically), and the
label for ls(e1, e2)θ is ε on both sides. It is easy to see that the negative closure of
the corresponding sequent in the proof search for S2 is G; Γ ` h : ls(e1, nil) ∗ Σ′θ; ∆.
We then apply ∗R backwards on this sequent, obtaining two premises G; Γ ` h4 :
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ls(e1, nil)θ; · · · ; ∆ and G; Γ ` h3 : Σ′θ; · · · ; ∆. The latter sequent is derivable because
(3) is derivable and weakening is built in. We apply LS8 on the former to obtain

G; Γ ` h2 : ls(e2, nil)θ; h4 : ls(e1, nil)θ; · · · ; ∆

which is also derivable because of weakening and the derivation for (2). Thus we
conclude that S2 is derivable in LS′′SL + DS.

Coming back to LSSL, which is not complete w.r.t. Reynolds’s SL, it is certainly
incomplete when data structures like linked lists and binary trees are considered. The
following valid formula, for example, is not provable in LSSL + DS:

¬(ls(e1, e2) ∧ ((e3 7→ e3) ∗ >)) (7.10)

This formula says that it is not possible that the current heap is a list from the value
of e1 to the value of e2, and the current heap also contains the singleton heap e3 7→ e3.
Suppose the current heap is empty, then it certainly cannot contain a singleton heap.
Otherwise the list ls(e1, e2) must be non-empty, but then e3 7→ e3 cannot be a subheap
in the list, because a list is required to be acyclic. One can certainly add rules to
handle this situation. For example, the following rule would help give a derivation of
Formula 7.10:

(h1, h2 . h0);G; Γ; h0 : ls(e1, e2); h1 : (e 7→ e) ` ∆

But adding this rule cannot possibly give us completeness for a non-recursively enu-
merable logic. It is again a design decision whether to use this rule or not.

7.4 Proof Search and Optimisations

In this section we describe proof search and automated reasoning based on our la-
belled system LS′SL + DS. These tactics can also be used for the variant LSSL + DS.

7.4.1 Proof Search and Implementation

We have implemented our labelled calculus LS′SL + DS as a prover called Separata+, in
which several restrictions for the logical and structural rules are incorporated without
sacrificing provability. See Figure 7.1 for the related inference rules in LSSL. Some
of these restrictions are also used in our prover Separata for LSPASL (cf. Section 6.5).
The rule U only creates identity relations for existing labels. The rule A is only appli-
cable when the following holds: if the principal relational atoms are (h1, h2 . h0) and
(h3, h4 . h1), then the conclusion does not contain (h3, h . h0) and (h2, h4 . h), or any
commutative variants of them, for any label h. These forbidden cases for the restricted
U, A rules can easily be shown admissible for the unrestricted versions, since we have
rules P, C.
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In formulating the heuristic proof search, it is useful to define a notion of height
for labels. Given a set G of ternary relational atoms, for two distinct labels h, h′ that
occur in G, we write h <G h′ if (h, h′′ . h′) ∈ G for some label h′′ such that h′′ 6= ε and
h′′ 6= h′, and say that h is a child of h′ and h′ is a parent of h. A label without any child
is called a leaf label, a label that is not the child of any other labels is called a root label.
We have seen similar notions that view ternary relational atoms as a tree structure in
Section 4.5. When the relation <G is well-founded (i.e., there is no cycle), we define the
height of a label as the longest distance from the label to a leaf label, where distance is
measured by the number of labels in the chain of the <G relation.

Lee and Park [65] give a detailed explanation of how cross-split should be applied.
Here we use a different approach to simply enforce that each time we apply the rule
CS, we choose the principal relational atoms such that the parent label has the lowest
height. Our approach does not strictly follow Lee and Park’s method but employs
similar ideas.

Calcagno et al. [26] provide a way to deal with −∗ formulae in the quantifier-free
fragment, but we do not know whether their results hold for the separation logic in
our discussion. Nevertheless, inspired by their result, the rules HE, HC in our prover
are driven by −∗ formulae in the antecedent. Given a labelled formula h : A−∗ B in
the antecedent of a sequent, we first compute the size of this formula as below:

|e 7→ e′| = |e 7→ e′, e′′| = 1 |e = e′| = 0
|⊥| = 0 |>∗| = 1
|A→ B| = max(|A|, |B|) |∃x.A| = |A|
|A ∗ B| = |A|+ |B| |A−∗ B| = |B|

We allow to use the HE rule to extend h for at most max(|A|, |B|)/2 + 1 times instead
of max(|A|, |B|) as indicated in [26], because we do not worry about completeness
w.r.t. SL here. The HC rule is restricted to only combine three types of heaps: any
singleton heaps that occur as subformulae of A−∗ B; any heaps created by HE for
A−∗ B; and any compositions of the previous two.

The atomic formula e 7→ _ in the symbolic heap fragment is translated to ∃x.(e 7→
x) in our language. This type of formulae is the only one in the symbolic heap frag-
ment that require our quantifier rules. Since nested quantifiers are forbidden in the
reasoning for symbolic heap, we demand that when proving a symbolic heap formula,
the ∃R rule only instantiates the quantified variable to an existing expression or the
constant nil. We call this restricted version ∃R′. Also, when proving a symbolic heap
formula, we disable the rules −∗ L, −∗ R, CS, HE, and HC, because these rules are
never used in the proof search for symbolic heap. Although not explicitly allowed in
the symbolic heap fragment nor in our assertion logic, some symbolic heap provers
can recognise numbers, which is useful when verifying programs. To match them, we
check when a rule wants to globally replace a number (expression) by another num-
ber, and close the branch immediately because two distinct numbers should not be
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made equal. The rule cut= is restricted to only apply on existing expressions and the
constant nil.

Overall, we forbid rule applications that do not create new labelled formulae. Sub-
stitutions are always welcomed, though.

Our proof search procedure for LS′SL + DS builds in the above restrictions, and
applies the first applicable rule in the following order:

1. Any zero-premise rule.
2. Any unary rule that involves global substitutions.
3. Any other unary non-structural rule except ∃R.
4. Any binary rule that involves global substitutions except cut=.
5. → L.
6. ∗R, −∗ L and ∃R′.
7. U, E, A, CS.
8. cut= and ∃R.

Theorem 7.4.1 (Termination for symbolic heap). The proof search procedure for LS′SL +DS
is complete and terminating for the symbolic heap fragment.

Proof. First we show that the various restrictions in our proof search procedure does
not affect completeness w.r.t. the symbolic heap fragment. The restriction for rules
A, U obviously preserves completeness, as already shown in Section 6.5. Our method
to apply CS has no effect on the symbolic heap fragment, since the situation of cross-
split is never encountered when proving a symbolic heap formula. Similarly, the way
we build HE, HC into −∗ L is irrelevant. The restriction on cut= to only apply on
existing labels does not reduce provability of our system. Suppose there is a cut=
application that runs as follows:

G; Γ[e1/e2] ` ∆[e1/e2] G; Γ ` h : e1 = e2; ∆
cut=G; Γ ` ∆

Suppose one of e1, e2 does not occur in the conclusion, then h : e1 = e2 in the succe-
dent will never be used in proof search. This cut= application is admissible, because
the derivation for the right premise can be used to derive the conclusion. Our last
restriction concerns the ∃R rule, which is only used when an atomic formula of the
form (e 7→ _) occurs in the succedent. We argue that instantiating a variable to a fresh
expression does not help the proof search for a symbolic heap formula. Suppose the
∃R rule does create a new formula h : (e 7→ e′) such that e′ does not occur in the
conclusion. By inspection on the rules in LS′SL + DS, if the end sequent consists of
symbolic heaps, then any formula in the antecedent of any sequent in proof search
only involves those expressions that occur in the end sequent, or the fresh ones cre-
ated by ∃L, or nil. None of these expressions can be equal to e′. Furthermore, the only
rules that may use 7→ atomic formula in the succedent are id, id2, and ids. So (e 7→ e′)
in the succedent can not be used in proof search for the symbolic heap fragment at
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all. From this we deduce that our restriction on ∃R preserves completeness for the
symbolic heap fragment.

Now we show that the proof search procedure described in Section 7.5 is termi-
nating. Let h : Π ∧ Σ ` h : Π′ ∧ Σ′ be a symbolic heap labelled sequent. It is easy to
see that we can only apply ∗L on this sequent for finitely many times, creating only
finitely many labels. Besides ∗L, the only applicable rule that is able to create new
labels is A. Since Σ consists of atomic 7→, list, or tree formula connected by just ∗, the
∗L applications result in a binary tree structure of ternary relational atoms. It is obvi-
ous that the structural rules E, A, U, Eq1, Eq2, D, P, C can only be applied finitely many
times on these ternary relational atoms. More specifically, each E, A rule application
creates a variant of the binary tree structure of ternary relational atoms. Each variant
represents a different way to bracket and commute the same set of leaves, so there can
only be finitely many variants. This means that ∗R can only be applied finitely many
times. As a result, we will reach a point where no more fresh labels can be introduced.
Since we restrict the way to use ∃R, the only rule that is able to create fresh expressions
is ∃L. Since there are only finitely many subformulae of the form (e 7→ _) in Σ, ∃L
can only be applied finitely many times, generating finitely many fresh expressions.
As a result, proof search for any formula in the symbolic heap fragment only involves
finitely many labels and finitely many expressions. Then it is easy to see that the rules
LS8, TR6 can only create finitely many new labelled formulae in proof search, thus
these two rules can only be applied finitely many times. For the other rules, either
they are not used in proof search for the symbolic heap fragment (such as −∗ L, −∗ R,
HE, HC, LS5, LS6, LS7, TR4, TR5), or they only involve substitutions, which reduce
the number of labels or expressions, and can only be applied finitely many times. We
then conclude that in the proof search for the symbolic heap fragment, any (allowed)
rules can only be applied finitely many times, thus the proof search is terminating.

Our system can be extended with rules to prove formulae 7.8 and 7.10 as men-
tioned previously, the resulting experimental prover can prove the former formula in
0.5 second, and the latter formula in 0.01 second. However, these rules will not be
used when comparing our work with other provers in the next section.

7.4.2 Optimisations

The prior work on theorem proving for abstract separation logics by Park et al. [77, 65]
and our work in Chapter 4 and 6 has raised the question of how efficiently can those
methods deal with multiplicative connectives (>∗, ∗ and −∗ ). To solve problems with
multiplicative connectives faster, we proposed a heuristic method for our free-variable
system FVLSBBI for BBI (cf. Section 4.4 and 4.5). As we do not use free-variables here,
the heuristic method for FVLSBBI cannot be directly used in Separata+, but we can still
utilise the idea and use some features dedicated to separation logic semantics to give
a fast ∗R rule described as below.
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By the nature of our proof search procedure, when we try to apply the rule ∗R on
h : A ∗ B in a sequent

G; Γ ` h : A ∗ B; ∆

the antecedent Γ only contains atomic formulae and −∗ formulae, the succedent ∆
only contains atomic formulae and ∗ formulae. We first search for all the atomic or
−∗ subformulae of A (resp. B), obtaining a set SubA (resp. SubB). We then try to find
a set LA (resp. LB) of labels from Γ for each formula in SubA (resp. SubB). That is, if
h′ : A′ ∈ Γ and A′ ∈ SubA, then we say h′ is the label2 for A′. If we can find the labels
for every formula in SubA and SubB, then we will proceed as the heuristic method for
BBI suggests: we try to find a binary tree structure of ternary relational atoms in G that
has exactly the set of leaves LA ∪ LB and root h, then create the ternary relational atom
(h1, h2 . h), and build a subtree for h1 (resp. h2) that has leaves LA (resp. LB). This
is guaranteed to be sound by the rules A and E. Then we apply ∗R on h : A ∗ B and
(h1, h2 . h). If we can only find the labels for every formula in SubA (symmetrically for
SubB), then we search for ternary relational atoms in G that form a binary tree with
root h and leaves L such that LA ⊆ L. If found, we deduce that labels in LA represent
heaps that are disjoint from each other. Then it is sound to build a subtree for h1 with
leaves LA, and a subtree for h2 with leaves L \ LA, and (h1, h2 . h). Again, we apply ∗R
on h : A ∗ B and (h1, h2 . h). In this way, the structural rules E, A are driven by the fast
∗ rule applications.

Analysing the subformulae in A−∗ B is a different matter, since the heaps that
subformula A talks about may be disjoint from all existing heaps. Nonetheless, some
existing work on program verification with −∗ relies on the simple principle A ∗
(A−∗ B)→ B [67], which indicates that the following rule may help:

(h1, h0 . h2);G; Γ; h1 : A; h0 : A−∗ B; h2 : B ` ∆
−∗ L′

(h1, h0 . h2);G; Γ; h1 : A; h0 : A−∗ B ` ∆

In addition, we also simplify the formula after parsing it using the following rules:

ls(e, e) ≡ >∗ tr(nil) ≡ >∗
>∗ ∗ A ≡ A ∗ >∗ ≡ A >∗−∗ A ≡ A

7.5 Experiments

The experiments in this section were run on a machine with a Core i7 2600 3.4GHz
processor and 8GB memory, in Ubuntu 14.04. The code is written in OCaml, no
concurrent computation is used.

In the previous sections we have developed two branches of systems. LSSL + DS
is consistent with Reynolds’s semantics, while LS′SL + DS mimics the interpretation of
multi-field points-to predicate from symbolic heap fragment. We have implemented

2It is possible that a formula in Γ occurs with different labels, we only need one of them.
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provers for both types of systems, one is an easy modification of the other. In the
following, for the purpose of comparing our prover with other provers for symbolic
heap, we use the prover based on LS′SL + DS.

Experiment on Benchmarks in the Literature Our first experiment compares our
prover with the current state-of-the-art provers for symbolic heap. We choose the
Clones benchmark from Navarro and Rybalchenko [70]. The formulae generated by
this benchmark come from “real life” list manipulating programs and specifications
involved in verification. We filter out problems that contain a data structure that we
do not consider in this chapter, the remaining set consists of 164 valid formulae and 39
invalid formulae. Each Clones test set has the same type of formulae, but the length
(number of copies of subformulae) of formulae increases from Clones 1 to Clones 10.

Several provers for separation logic have been compared in the literature [70, 71,
90], including jStar [31], Smallfoot [7], VeriStar [90], SLP [70]3, and Asterix [71], most
of which are for symbolic heap. From these comparisons we can conclude that Asterix
(an improved version of SLP) is significantly faster than others in terms of solving
symbolic heap formulae, VeriStar and Smallfoot can outperform each other in differ-
ent situations, jStar often comes in the last position. Here we compare our prover with
Asterix, Smallfoot, as well as Brotherston et al.’s prover CyclistSL [19]. It is not easy to
put these competitors in the same race, since they are designed for different fragments
of separation logic. For example, CyclistSL cannot recognise numbers, and there are 17
formulae in each Clones test set that cannot be parsed by it (counted as not proved).
We also want to emphasise that although Smallfoot and Asterix are designed for the
symbolic heap fragment, their implementations use slightly different syntax and se-
mantics. For example, both provers only support ∗ as the only conjunction, and force
that formulae of the form e = e′ can only be true at the empty heap. This means that
the following formula, which is valid in separation logic and provable by our prover,
but not expressible in the symbolic heap fragment, is a legitimate formula that Small-
foot and Asterix can parse, but is actually not provable by these two provers, nor can
it be proved by CyclistSL:

(e 7→ e′)→ (e = e) (7.11)

Table 7.1 shows the results of our first experiment. Time out is set as 50 seconds
(but CyclistSL has a timeout mechanism built in, which seems to be 30 seconds). The
proved column for each prover shows the number of formulae the prover completed
proving/disproving within the time out, the avg. time column shows the average
time used when successfully proving a formula. Unsuccessful attempts (those that
were timed out) are not counted in average time. Asterix outperformed all compared
provers. CyclistSL is not complete, so it might terminate without giving a proof. It
also cannot determine if a formula is invalid. Separata+ and Smallfoot have similar

3The SLP in this section is the solver by Navarro et al., not the SL fragment by Galmiche and Méry
also called SLP.
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Test suite with 164 valid formulae
Test suite Separata+ CyclistSL Smallfoot

proved avg. proved avg. proved avg.
time time time

Clones 1 164 0.01 147 0.04 164 0.00
Clones 2 160 0.02 137 0.17 164 0.00
Clones 3 159 0.07 126 0.48 164 0.01
Clones 4 159 0.30 117 0.11 164 0.03
Clones 5 158 0.03 115 0.13 164 0.15
Clones 6 158 0.08 114 0.29 164 0.65
Clones 7 158 0.18 106 0.01 162 0.75
Clones 8 158 0.42 106 0.01 160 0.83
Clones 9 158 0.89 106 0.01 157 0.36
Clones 10 157 1.19 106 0.01 157 0.83

Test suite with 39 invalid formulae
Test suite Separata+ CyclistSL Smallfoot

dis- avg. dis- avg. dis- avg.
proved time proved time proved time

Clones 1 39 0.09 0 - 39 0.00
Clones 2 23 3.37 0 - 39 0.00
Clones 3 9 1.78 0 - 39 0.01
Clones 4 6 7.89 0 - 39 0.02
Clones 5 2 0.52 0 - 39 0.10
Clones 6 2 20.10 0 - 39 0.40
Clones 7 0 - 0 - 39 0.00
Clones 8 0 - 0 - 38 2.10
Clones 9 0 - 0 - 38 5.37
Clones 10 0 - 0 - 32 3.54

Asterix proved every test set with an average of 0.01s and 100% successful rate.

Table 7.1: Experiment 1: the Clones benchmark. Times are in seconds.

performance on valid formulae, but Separata+ is not efficient on invalid formulae. The
Clone 1 test set contains the original formulae extracted from program verification,
both Separata+ and Smallfoot can easily prove/disprove these formulae. This means
that, although our prover is not as fast as dedicated provers such as Asterix, and not as
fast as Smallfoot when disproving large artificially made invalid formulae, our prover
is reasonably fast when dealing with problems in real world applications.

Our procedure was tuned towards proving validity rather than counter-model gen-
eration. If soundness, completeness and termination are achievable, proof search is
usually turned into a counter-model construction. However, our proof procedure is
not complete in general (although it is complete for the symbolic heap fragment), so
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Formula
7.12 ls(e1, e2) ∧>∗ ∧ ¬(e1 = e2)
7.13 ¬((e1 7→ e2)−∗ ¬>) ∧ ((e1 7→ e2) ∗ >)
7.14 (ls(e1, e2) ∗ ¬ls(e2, e3)) ∧ ls(e1, e3)
7.15 ls(e1, e2) ∧ ls(e1, e3) ∧ ¬>∗ ∧ ¬(e2 = e3)
7.16 ¬(ls(e1, e2)−∗ ¬ls(e1, e2)) ∧ ¬>∗
7.17 ¬((e3 7→ e4)−∗ ¬ls(e1, e4)) ∧ ((e3 = e4) ∨ ¬ls(e1, e3))
7.18 ¬(¬((e2 7→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e1, e4)) ∧ ¬ls(e1, e3)
7.19 ¬(¬((e2 7→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e3, e1)) ∧ (e2 = e4)
7.20 ¬((e1 7→ e2)−∗ ¬ls(e1, e3)) ∧ (¬ls(e2, e3) ∨ ((>∧ ((e1 7→ e4) ∗ >)) ∨ (e1 = e3)))
7.21 ¬((ls(e1, e2) ∧ ¬(e1 = e2))−∗ ¬ls(e3, e4)) ∧ ¬(e3 = e1) ∧ (e4 = e2) ∧ ¬ls(e3, e1)
7.22 ¬(e3 = e4) ∧ ¬(ls(e3, e4)−∗ ¬ls(e1, e2)) ∧ (e4 = e2) ∧ ¬ls(e1, e3)
7.23 ¬((ls(e1, e2) ∧ ¬(e1 = e2))−∗ ¬ls(e3, e4)) ∧ ¬(e3 = e2) ∧ (e3 = e1) ∧ ¬ls(e2, e4)
7.24 ¬(¬((e2 7→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e3, e1)) ∧ (¬ls(e4, e1) ∨ (e2 = e4))

Separata+ proved the negation of each listed formula within 0.01 second.

Table 7.2: Translated versions (via A−~B ≡ ¬(A−∗ ¬B)) of selected formulae from
Thakur et al. [91, Table 3].

failure of proof search does not give a counter-model. A redesign would be required
to find counter-models for this logic, it is definitely interesting as future work.

Experiment on Examples with Magic Wand Our second experiment features some
formulae outside the symbolic heap fragment, consequently we cannot find other
provers to compare with, except for a recent work by Thakur, Breck, and Reps [91].
However, their prover does not employ Reynolds’s semantics of separation logic, but
instead restricts that heaps must be acyclic. For example, (e1 7→ e2) ∗ (e2 7→ e1) is
a satisfiable formula in Reynolds’s semantics, but is unsatisfiable in Thakur et al’s
semantics. The fragment of separation logic they consider has “septraction” A−~B,
defined as ¬(A−∗ ¬B), and only allows classical negation on atomic formulae. This
syntax is able to express overlapping data structures and some formulae used in re-
ly/guarantee reasoning and program verification with fine-grained concurrency, but
our syntax strictly contains theirs.

Formulae 7.3, 7.2, 7.5, 7.6, 7.7, 7.9, in earlier sections can all be proved by Separata+
within 0.01s, we are not aware of any existing automated tools that can deal with these
formulae. Moreover, Thakur et al. gave a collection of unsatisfiable formulae [91,
Table 3]. Our Table 7.2 shows a part of these formulae translated by the definition of
septraction. Separata+ can prove the negation of each formula in our Table 7.2 within
0.01s. We ignore the other formulae from [91, Table 3], not because they are hard, but
because they are not unsatisfiable in Reynolds’s semantics, thus their negations are not
valid. Formula 7.14 to 7.24 are identified as “beyond the scope of existing tools” by
Thakur et al.. More specifically, Formula 7.12, 7.14 and 7.15 describe overlapping data
structures; the other formulae in Table 7.2 demonstrate the use of list and septraction.
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E.g., formula 7.17 is an instance of an elimination rule for −~ and linked list [25].
Again, it is difficult to compare the performance between Separata+ and the tool

by Thakur et al. because they are made for different logics (different semantics of
separation logic). But it is worth noting that Thakur et al.’s tool proved the formulae in
Table 7.2 on the order of 5 seconds on a 2-processor 2.27GHz Xeon machine (although
only 1 core is used), which indicates that proving formulae in a larger fragment than
symbolic heap could be much harder, but Separata+ runs on the order of just 0.01
second for these formulae, using a Core i7 2600 processor.

Maeda, Sato, and Yonezawa [67] provide more examples that use −∗ in program
verification. Many of their inferences, e.g., those in Section 3.1 of [67], can be eas-
ily proved by Separata+ if their syntax is carefully translated into ours. We give an
example of an extracted formula below,

(ls(e0, nil)−∗ (ls(e0, nil) ∗ (ls(e0, nil)−∗ ((ls(e1, nil)−∗ ls(e2, nil)) ∗ (e1 7→ e3)∗
ls(e0, nil))) ∗ (ls(e0, nil)−∗ ls(e3, nil))))→ (ls(e0, nil)−∗ (((ls(e1, nil)−∗ ls(e2, nil))

∗ (e1 7→ e3) ∗ ls(e0, nil)) ∗ (ls(e0, nil)−∗ ls(e3, nil)))) (7.25)

To challenge our prover more, we further test on larger formulae generated from
Table 7.2 and the other formulae we mentioned in this section. Our generation method
is inspired by the “clone” benchmark. We first convert each formula to an equivalent
formula in the form A → B. Then we make multiple copies of the l.h.s. and the r.h.s.,
giving a formula of the form

A1 ∗ A2 ∗ · · · ∗ An → B1 ∗ B2 · · · ∗ Bn

where the expressions in each pair of Ai, Bi are systematically renamed based on the
original formula. It is known that provers for BBI based logics are vulnerable to
commutativity and associativity of ∗ [53]. To make the formulae even more difficult,
we mutate each formula by randomly switching the order of starred subformulae. It
will cause our prover to apply more structural rules to discover the right splitting of
heaps. We call these test suites “MClones”, where M stands for mutated. The test
results are shown in Table 7.3.

The MClones 1 set contains the original formulae mentioned in this section, while
the MClones 10 set contains formulae that are 10 times larger than the original ones.
We set the timeout as 50 seconds, and count the number of successfully proved formu-
lae within the timeout, as well as the average time on successful attempts. Our prover
can easily handle the original formulae, but the successful rate drops as the number of
cloned subformulae increases. The average time used to prove a formulae, however,
only fluctuates. The reason is that the cloned formulae are randomly mutated. If a
mutated formula requires more associativity applications, then our prover will spend
more time proving it; if the formula only requires commutativity applications, then it
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Test suite Separata+
proved avg. time

MClones 1 13/13 0.003s
MClones 2 13/13 1.017s
MClones 3 13/13 0.030s
MClones 4 12/13 0.064s
MClones 5 11/13 0.894s
MClones 6 10/13 3.341s
MClones 7 10/13 0.685s
MClones 8 9/13 1.876s
MClones 9 8/13 0.746s
MClones 10 8/13 1.070s

Table 7.3: Mutated clones benchmark for formulae in Table 7.2.

is easier for our prover. For the MClones 10 set, our prover can still prove the majority
of formulae in 1 second. The phenomenon that tested formulae are either too easy or
too hard for provers seems to be prevalent in BBI and separation logic benchmarks.
The reason may be that the formulae in Table 7.2, although are good examples to show
what our prover is capable of, are not ideal benchmarks for testing the scalability of
our prover. However, our previous experiment in Section 6.5 shows that for the same
series of benchmarks, when the formulae become larger, Park et al.’s BBeye performs
worse in terms of both successful rate and average time; while our prover Separata’s
average time fluctuates, only the successful rate drops. Thus this phenomenon may
just be the characteristic of our provers.

7.6 Discussion and Related Work

Existing tools for Reynolds’s semantics SL, such as Smallfoot [7], jStar [31], VeriS-
tar [90], SLP [70], and Asterix [71], are all restricted to small fragments, most notably,
the symbolic heap fragment proposed by Berdine et al. [8]. Other fragments include
Brotherston et al.’s fragment with arbitrary inductive predicates [19], and more re-
cently, Schwerhoff and Summers’ fragment with ∗,−∗ and → [89]. Besides these
methods, Galmiche and Méry’s resource graph based tableaux [37] deal with a frag-
ment of SL that does not contain quantifiers and equality, but the details of proof
search and automation have not been addressed. On the other hand, there are also
existing tools that handle larger fragments than symbolic heap, but for non-Reynolds
semantics, e.g., Lee and Park’s theorem prover [65], and Thakur et al.’s unsatisfiability
checker [91], cf. Section 7.2 and 7.5 for the differences in their semantics.

Besides the above fragments of SL, there are many other fragments and variants
in the literature. For example, the “natural proofs” proposed by Pek et al. [81] is
designed for a logic called DRYAD, which includes a number of binary relations such
as =, 6=, <,≤, ⊂,⊆ on its terms, and includes the logical connectives/constants >,⊥,
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>∗, ∧,∨, ∗. This fragment is a reasonably expressive one, although it does not have
¬, −∗ and quantifiers. A remotely related work is Piskac et al.’s automated method
for trees [82], whose language is a fragment of first-order logic that is decidable in
NP. Their syntax, however, does not resemble much of Reynolds’s separation logic,
excluding both the points-to predicate 7→ and connectives/constants for heaps such
as >∗, ∗, and −∗ . Although they do have special predicates for trees, read and write
actions etc., their method and ours cannot be compared.

There is a growing demand from the verification community to move beyond sym-
bolic heap and to deal with −∗ , although this connective is ignored in the widely
used symbolic heap fragment. Having −∗ is a desirable feature, since many algo-
rithms/programs are verified using this connective, especially when expressing tail-
recursive operations [67], iterators [59], septraction in rely/guarantee [98] etc.. More-
over, −∗ is very useful when verifying programs using weakest preconditions, which
introduces −∗ “in each statement in the program being analysed” [66]. See the intro-
duction of [65] and [91] for other examples requiring −∗ . In addition to −∗ , allowing
arbitrary combinations of logical connectives is also useful when describing overlap-
ping data structures [49], properties such as cross-split can be useful in proof search in
this setting [32]. Supporting quantifiers is also a step forward to inductively defined
data structures, which are the centre of the new features brought by SL. Nevertheless,
existing tools for SL with Reynolds’s semantics do not support the reasoning for all
logical connectives. Thus, an important area of research is to obtain a practical proof
system for SL with all connectives.

However, as we have seen, supporting all the logical connectives in SL is not easy.
As shown by Calcagno et al. [26] and Brochenin et al. [14], SL is not recursively enu-
merable in general, which means we cannot give a finite, sound, and complete proof
system for this logic. Here we sacrificed completeness in order to give a proof method
that is compliant with Reynolds’s semantics and also useful in real applications from
program verification. We built upon the previous labelled sequent calculi for proposi-
tional abstract separation logics (PASLs, cf. Chapter 6) by adding inference rules for
quantifiers, equality, and the 7→ predicate. This is not trivial at all, as the latter involves
heaps and stores in the semantics in a very subtle way, making this study error-prone.
For example, during our investigation, we found that the resource graph tableaux [37],
claimed to have complete rules for a fragment of separation logic, cannot prove some
valid formulae using their original rules, although their rules can be modified to prove
these formulae. Another example is Lee and Park’s proof system, originally claimed
to be complete for the quantifier-free fragment of SL [65], but which turned out to be
unsound and incomplete w.r.t. Reynolds’s semantics since their actual semantics is
non-standard. These are discussed in Section 7.2.

Capturing data structures is also a desired feature since they are frequently used
in program verification. We extended our proof system with treatments for singly
linked lists and binary trees based on the entailment checking rules for Smallfoot [8],
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but we also moved beyond symbolic heap to consider situations where overlapping
data structures occur. Since the symbolic heap fragment is very popular, we showed
that our proof method is complete w.r.t. this fragment. With certain restrictions on
inference rules integrated, we gave a proof search procedure that is sound, complete,
and terminating when proving a symbolic heap formula, therefore our proof method
is strictly stronger than existing symbolic heap proof methods. Our experiments show
that our implementation is competitive with Smallfoot on valid formulae when testing
against a set of benchmarks extracted from real world program verification problems,
but not so for invalid formulae. In addition, we demonstrated that our prover can
deal with a much wider range of formulae than existing tools, thus it handles the
largest fragment of SL (with the standard Reynolds’s semantics) to date in terms of
logical connectives and paves the way to more sophisticated program verification using
Reynolds’s SL.
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Chapter 8

Conclusion and Future Work

We have discussed the conclusion and related work for each of Chapter 4, 6, and 7 in
their last sections. Here we first summarise all the technical contributions in this dis-
sertation, then we propose some future directions stemming from our line of research.

8.1 Conclusion

Our main objective was to give proof methods for solving the validity problem for
separation logics. Our work began in late 2011, when many aspects of bunched logics
and separation logics were still undiscovered.

We started by looking at bunched logics as they are the core of separation logic.
Our initial plan was to give a nested sequent calculus for an extension of CBI with
dual connectives, following Postniece’s approach [83]: first convert a display calculus
into a nested sequent calculus with shallow inference, then move to a deep inference
system and consider proof search. The nesting of our sequents interleaves additive
(nested) sequents and multiplicative (nested) sequents. We hoped that we could give a
set of “propagation rules” to transfer information between additive and multiplicative
sequents. This, however, was unsuccessful. By the nature of bunched logics, the
additive structures and the multiplicative structures are mostly independent. There
are very few cases where they can talk to each other. As a consequence, we moved on
to formalise proof search using labelled sequents.

The advantage of using labels is that one can easily encode the semantics into the
calculus. For this reason, some people do not consider labelled sequent calculi as
proof theory. But in the case of bunched logics, labelled sequents saved our day and
also became popular in Park et al.’s work [77, 65]. Interestingly, Park et al., like us,
initially gave a nested sequent calculus for BBI, but later on changed to use labels.
This coincidence hints that proof search using labels may be a better way for bunched
logics, and that more work is needed to understand the proof theory of bunched
logics. At the same time, we developed our labelled sequent calculus LSBBI for BBI
which is sound, complete, and enjoys cut-elimination. Unlike Park et al.’s labelled
calculus for BBI, our structural rules directly encode the semantical properties in the
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non-deterministic monoidal semantics of BBI. Compared to traditional labelled calculi,
our calculus utilises global label substitutions to capture the equality of labels. These
features make our method much easier to be extended to handle similar logics: we
only need to add/remove some rules to capture the semantics. We also developed
a free-variable system FVLSBBI to separate the proof search into two phases: giving
a “pseudo-derivation” where there are free variables as undecided place holders for
labels, and solving a constraint system to assign each free variable an actual label.
With some heuristic proof search, our incomplete BBI prover using free variables is
much faster than Park et al’s prover when proving formulae that involve complicated
multiplicative connective combinations, while their prover outperforms ours in some
other cases.

Moving on, we captured, in a modular way, a range of abstract separation logics, all
of which are extensions of BBI. The labelled calculi for these logics are easy to obtain,
but the difficulty is in proving that our calculi are complete for the corresponding
logics. For LSBBI, completeness is proved by showing that the Hilbert system for
BBI can be mimicked by LSBBI using cut, and then showing cut-elimination. This
method is not possible for most abstract separation logics because some properties in
the semantics are shown to be inexpressible using BBI formulae. Inspired by Larchey-
Wendling’s work [60], we proved the completeness via a counter-model construction.
The novelty in our proof is that we absorb the structural rules with substitutions into
an equivalence relation, which allows us to prove the completeness for different logics
modularly by just plugging in or removing some structural rules – the main structure
of the proof does not need to be changed. With this advantage, we showed that our
labelled method can handle every propositional abstract separation logic generated
by any subset of DHA separation theory. The properties cross-split and splittability,
however, require more work in our current setting. We plan to investigate new ways
to formulate the proof system so that complicated properties can be captured easier.

Finally, we presented a labelled sequent calculus LSSL for Reynolds’s SL with the
concrete heap model. The syntax allows all the logical connectives in SL including
∗,−∗ , quantifiers, the predicate 7→ and equality. It is impossible to obtain a finite,
sound and complete sequent system for this logic [26], so we focused on soundness,
usefulness, and efficiency. With the extension to handle linked lists and binary trees,
our proof method is sound and complete w.r.t. the widely used symbolic heap frag-
ment. Our proof search procedure, when properly restricted, is complete and termi-
nating when proving symbolic heap formulae. We evaluated our implementation by
first comparing it with provers dedicated to symbolic heap, testing against a set of for-
mulae extracted from program verification. Our prover Separata+ showed comparable
results as that from Smallfoot on proving valid formulae, although Separata+ does not
perform well when the formula is invalid, which may be due to our inference rules
having to cover a larger fragment. Then we showed that Separata+ is more versatile
than any existing automated tools by illustrating many formulae that, to our knowl-
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edge, no other provers for Reynolds’s SL can prove, but Separata+ can easily prove.
Some of these formulae are taken from existing (manual) proofs to verify algorithm-
s/programs. These indicate that our method would be useful, at least as a part of the
tool chain, for program verification with more sophisticated use of separation logic.

8.2 Future Work

Although we have solved some open problems about bunched logics and separation
logics, there are still many unsolved problems and possible ways to improve existing
methods. We gave a free variable system for BBI, but we have not implemented a
complete prover based on the free variable method, nor have we extended the free
variable method to handle other abstract separation logics. In fact, Alwen Tiu was very
keen on giving a complete strategy for solving the constraint system in the free variable
method, but I hesitated to go that direction because at that time we were not clear
whether BBI should be our final target – we were not aware of Dockins et al’s paper
until mid 2012 when Ranald Clouston joined us – and for each separation theory, the
way to solve the constraint system in the free variable method could be very different.
Looking back, the complication of the free variable system for BBI arises from the fact
that we have to keep track of the relational atoms in each sequent. For example, if
we use associativity to generate (u, w . z); (v, y . w) from (x, y . z); (u, v, .x), where w
is fresh, we have to accumulate the generated relational atoms upwards in the proof
search. Otherwise if we generate similar relational atoms (u, w′ . z); (v, y .w′) later, we
cannot guarantee that w′ acts the same way as the deleted w, thus some information
is lost. With partial-determinism (and cancellativity), however, the above is no longer
a problem, since this property ensures that w and w′ are the same. This is exactly the
reason why Larchey-Wendling and Galmiche’s tableau method [61] for BBIPD does not
have to accumulate relational atoms in proof search. Therefore a free variable system
for abstract separation logic with partial-determinism should be much cleaner than
the one we gave for BBIND. Allowing indivisible unit and disjointness also simplifies
the ternary relation in many cases. The once hard decision of which abstract logic
should we look at depends on what concrete heap model we are interested in, which
now clearly is Reynolds’s model – so BBI + P + C + IU + D + CS appears to be a
promising angle. Although a complete constraint solving strategy for this logic may
still be a challenge, this problem is now more interesting than we first thought it to be.

To study the properties in separation theories, Brotherston and Villard developed
HyBBI [22], which is BBI combined with hybrid logic. All the properties in DHA
separation theory except for cross-split can be defined as HyBBI formulae, the ex-
tended hybrid logic HyBBI(↓) is able to capture cross-split as a formula. Therefore
they solved the axiomatisation problem of subsets of DHA separation theory by giving
a Hilbert system in HyBBI(↓). However, there is not a proof search friendly calculus
for HyBBI(↓) yet. The binder @ in hybrid logic attaches a world to a formula, while
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the binder ↓ gives access to the world in which a formula is true. These are closely
related to the presentation of our labelled sequent calculi, thus it is natural to extend
our labelled method to handle hybrid BBI logics.

Our work on separation logic with Reynolds’s semantics opens up many possi-
bilities for future work as well. Handling arbitrary (inductively defined) predicates
and address arithmetic is our next step. But incorporating them is highly non-trivial,
especially for the former, which may require very complicated proofs for the cor-
rectness of integrating cyclic proofs in our framework and may lower the efficiency
of our implementation. Hard-wired subtraction rules for data structures often yield
shorter and simpler proofs with fewer side conditions to check, although they are not
as flexible as a general theory that deals with predicates and inductive definitions [19].
Nevertheless, it would be interesting to see how our work could be incorporated into
Brotherston et al.’s cyclic proof framework. Integrating other data structures to en-
rich the language our prover can handle is also future work. We have integrated
some optimisations in our prover, but more can be done in terms of driving structural
rule applications by logical rules. For example, one could inspect the subformulae of
A−∗ B and guess that the current heap should be the heap for B minus the heap for
A. However, determining the heaps for A and B could be as hard as the proof search
itself, so we leave this aspect as future work.

Another interesting direction would be integrating our prover into existing tool
chains for program verification using separation logic. Currently most of the existing
work concentrates on the symbolic heap fragment, but our prover can greatly enlarge
the set of formulae existing tools can handle. Moreover, although our prover is not
complete for our SL, it is complete for the symbolic heap fragment. So when it ter-
minates on proving a symbolic heap formula without giving a closed derivation, we
know that this formula is invalid. Therefore we can collect the information from the
open branches and build a counter-model in separation logic. This may help program
verifiers to better understand the problem in the verification. Similarly, even if our
prover fails when proving a non-symbolic heap formula, the collected information
from the open branches, although not necessarily a counter-model, may still help to
pinpoint whether the formula is valid, whether more rules are required, etc.. Finally,
with −∗ in our language, our work in Chapter 7 enables reasoning with weakest
preconditions for separation logic. This is an interesting topic that has not been inves-
tigated in the literature due to the lack of support for −∗ . A semi-automated tool for
weakest preconditions in separation logic would be a future direction.
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