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Abstract. The broad adoption of Machine Learning (ML) in security-
critical fields demands the explainability of the approach. However, the
research on understanding ML models, such as Random Forest (RF), is
still in its infant stage. In this work, we leverage formal methods and logi-
cal reasoning to develop a novel model-specific method for explaining the
prediction of RF. Our approach is centered around Minimal Unsatisfiable
Cores (MUC) and provides a comprehensive solution for feature impor-
tance, covering local and global aspects, and adversarial sample analysis.
Experimental results on several datasets illustrate the high quality of our
feature importance measurement. We also demonstrate that our adver-
sarial analysis outperforms the state-of-the-art method. Moreover, our
method can produce a user-centered report, which helps provide recom-
mendations in real-life applications.

Keywords: Explainable Artificial Intelligence (XAI) · Feature Impor-
tance · Adversarial Sample Generation · Logical Reasoning.

1 Introduction

Machine Learning (ML) is ubiquitous nowadays, it has been widely used to
perform security and safety-sensitive tasks, such as self-driving [29], health care
[6], and smart government [1]. However, ML models are widely used as black
boxes. That is, it is hard to understand the internal working of the models.
The mysterious behavior of ML models is a barrier to the adoption of ML in
some applications [18]. Consequently, the demand for explainable ML increases.
For example, the doctors need to understand how the ML model works before
they can comfortably use it in practice. When a patient is diagnosed with an
illness, an explainable method can look at important features in the model (used
for the positive diagnosis) and analyse whether/how any modification of certain
values may lead to a negative diagnosis. Such analysis will likely provide valuable
insights in relation to treatment recommendations.

The research problem we are interested in is explainable AI (XAI), a promis-
ing topic in recent years [2,12]. A common way of interpreting ML models is
by discovering effective features used in the prediction, namely feature-relevant
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interpretation. It covers two aspects, including local explanation, which focuses
on a small region around a sample [25,22], and global explanation, which aims at
making the inferential process of a model transparent [26,13]. Feature-relevant
methods in the literature often just focus on one aspect. They are not compre-
hensive. Further, most existing feature-relevant tools, like anchor [23] and LIME
[22], find approximations of the model and use statistical methods to analyse
how the input affects the output. They still treat the ML model as a black box,
and do not really understand the logic inside the model.

Adversarial analysis is another way to provide insight into the model’s be-
haviour — it intends to study how a sample can be modified into a different
class [18]. The diagnosis and treatment example given above is a suitable appli-
cation. We are particularly interested in adversarial sample generation, which
we use to analyse the reliability of ML models and, in case the predicted class
is undesirable, provide recommendations for improving an individual’s chance of
obtaining desirable results in the future.

Ensemble trees, such as Random Forest (RF) and boosting, are powerful ML
methods, especially for structured data such as spreadsheets and large databases
[32]. However, explanation methods for them are underdeveloped. Moreover,
the non-continuous structure of trees limits the way adversarial analysis can be
applied because such structures usually do not have gradients, which are often
used to generate adversarial samples [11,34,21,19].

The semantics of decision trees, especially their variant in the form of binary
decision diagrams, are well-understood in the logic and formal methods com-
munity. Hence, tree-based ML models are a suitable target for analysis using
formal methods, which already play a vital role in the verification of ML models
[10,20,5,4,33]. We believe that the application of formal methods in ML may
lead to more interesting results and that explanations derived by logical reason-
ing may well complement the existing statistical interpretation methods. This
led to our current work that uses formal methods as the centerpiece to enable
various XAI features for ensemble trees. Our main contributions are as follows:

– We use predicate logic to encode the decision process of ensemble trees into
logical formulae. We specifically leverage the Minimal Unsatisfiable Cores
(MUC) produced by an SMT solver to compute important features respon-
sible for the prediction of individual instances as local explanations.

– We extend Shapley values with the logical information uncovered by MUC,
leading to a method for analysing the contributions of features when the
model predicts a certain class.

– We improve an existing adversarial attacking algorithm using MUC. Within
a similar time, our proposed algorithm generates higher quality adversarial
samples in terms of the distance to the original sample.

– Our adversarial analysis also allows us to generate a user-centered report
that suggests how to improve an individual’s chance of being classified as
the desired class. Notably, our user-centered report is easy to implement.

– We have conducted several experiments and a case study to demonstrate the
above points.



Fig. 1. An overview of the proposed approach.

In this paper, we focus on Random Forest classifier and binary datasets
emphatically. The general workflow of our approach is presented in Figure 1. The
approach consists of four parts: encoding Random Forest into logical formulae
(section 2.1), extracting important features in a local analysis, i.e., for specific
samples (section 2.2), MUC-driven Shapley values for global feature importance,
i.e., for the RF model in general (section 2.3) and adversarial analysis (section
3). Section 4 gives experimental results, followed by related work and conclusion.

2 MUC-based Feature Importance Analysis

This section describes our new technique for analyzing feature importance. We
have devised a unified MUC-based framework for both local (sample) analysis
and global (model) analysis.

2.1 Encoding of Random Forest

For logical analysis, we encode the tree-ensembled Random Forest (RF) into
Boolean formulae. We start by encoding one single path in a tree. A decision
tree maps the input x ∈ Rd to an output, where x =< x1, · · · , xd >. Further,
a path includes one leaf node l and several decision nodes n ∈ Nl, where Nl
is a set including the root node n0 and the internal nodes between n0 and l.
Each decision node works by comparing the value xi of the ith feature with the
threshold ηpn of this node. The path can be defined as follows formally:

π (l) ::=
∧
n∈Nl

(
Lpn = n→ xi ≤ ηpn
Rpn = n→ xi > ηpn

)
∧ (w = vl) (1)

If the node n is the left child Lpn of its parent node pn, the parent node holds
the condition that xi ≤ ηpn . If it is the right child Rpn , the parent node holds
xi > ηpn . And the valuation variable w constrains the leaf value vl [5]. The path



formula π (l) represents a path from the root to one of the leaves in the tree and
its computed leaf value. Then we can encode a tree t as below:

Π (t) ::=
∨
l∈L

π (l) (2)

where Π (t) is the disjunction of path formulae. Further, the encoding of Random
Forest contains the conjunction of trees making up the forest and the forest’s
output. It is usually assumed that RF is a set of k trees 〈t1, ..., tk〉. Given an
input x ∈ Rd, each tree outputs a set of possibilities for each predicted class.
Then the forest outputs the class with the highest mean possibility across all
trees. Let tj (x) be the output of tree tj and tij (x) be the ith possibility. The
output predicted class of Random Forest can be defined as:

C (x) =
1

k
arg max

i

k∑
j=1

tij (x) (3)

Finally, Random Forest can be encoded as follows:

R (x) ::=

k∧
j=1

Π (tj) ∧

output =
1

k
arg max

i

k∑
j=1

tij (x)

 (4)

2.2 Extracting Important Features for Local Analysis

Nie et al. [20] use formal methods to verify the robustness of Random Forest.
They transform the robustness property into logical formulae in conjunctive
normal form (CNF). The formulae are input into an SMT solver that utilizes
the minimal unsatisfiable core (MUC) [3] to verify the robustness of a given
instance.

To explore what features matter in prediction for individual samples to pro-
vide a local interpretation, we are inspired to transform the decision process into
logical formulae, and extract the influential features according to the MUC by
the above method. MUC is formally defined in [20] as follows:

Definition 1 (Minimal Unsatisfiable Cores). Let F be a CNF formula and
FC be the set of conjuncts in F , S ⊆ FC is a MUC of F iff whenever F is
unsatisfiable, S is unsatisfiable, and there is no S′′ ⊂ S that is also a MUC.

Every time a CNF formula is unsatisfiable, the DPLL engine [17] will back-
track to search MUC, denoting the minimal conjuncts that make the entire
formula unsatisfiable. A noteworthy fact is that MUC is not unique. For effi-
ciency, there is no need for all of them, so we just get one. An example of a CNF
formula is:

ϕ = ω1 ∧ ω2 ∧ ω3 ∧ ω4

= (x > 1) ∧ (y < 0) ∧ (y > x) ∧ (y > −3)
(5)

The formula ϕ is unsatisfiable. The first three clauses combined are inconsis-
tent, but any two of them are consistent. So by the definition above, the DPLL
engine will produce a MUC = (ω1, ω2, ω3).



We encode the decision process of Random Forest into a CNF formula:

Φ0 ::= R (x) ∧ (x = xorg) ∧ (output == yorg) (6)

The decision process functions as: the assignment x = xorg is input into the
RF model R (x) defined by formula (4). After calculation, the model outputs its
prediction output. When output equals (denoted by ==) the expected label yorg,
the decision process is accurate. The satisfiability of Φ0 represents the accurate
decision process. In order to acquire MUC, notably, we reconstruct the decision
process formula in a way resembling ‘double negation is positive’ as follows:

Φ1 ::= R (x) ∧ (x = xorg) ∧ (output 6= yorg) (7)

In detail, the assignment is:

(x = xorg) ::=

d∧
i=1

xi = xorgi (8)

The output of a correct prediction should be yorg. The inequality we set in
Φ1 yields unsatisfiability. Thus, the unsatisfiability of Φ1 represents the accurate
decision process, and is equivalent to the satisfiability of Φ0. Moreover, as the
model R(x) is certain, it is the assignment of x that results in this contradiction
in Φ1. Thereby, investigating the reason in assignment for the unsatisfiability
of Φ1 amounts to investigating why Φ0 is satisfiable. As a first step, we set
the engine to only backtrack to the conjuncts in the assignment. The returned
MUC will tell us which features, related to the feature values in the assignment,
influence the prediction most. Such straightforward transformation avoids the
discretization of continuous features and statistical methods used when drawing
features. As a result, our proposed explanation based on logical reasoning ensures
precision and integrity.

2.3 MUC-driven Shapley values for Global Analysis

In addition to finding what features matter in individual prediction, we are also
interested in the important features of the model for further valuable insight.

Feature importance refers to techniques that assign scores to input features
based on how useful they are to the model’s prediction globally. Shapley values
[24] are a popular method from coalitional game theory and are usually used to
evaluate feature contributions. Assuming that each feature is a ‘player’ and the
prediction is the ‘payout’, Shapley values distribute payout to players according
to their contributions to the total payout. The Shapley value is defined as follows:

φi =
∑

S⊆F\{fi}

|S|! (|F | − |S| − 1)!

|F |!
(Ω(S ∪ {fi})−Ω (S)) (9)

Considering that features often interact in practice, the Shapley value φi of
feature fi is assigned with the weighted average sum of all interactions between



Algorithm 1 The approximated MUC-driven Shapley values of class c

Require: Feature set F , all pair of input (xj ,yj), class c and all MUCs.
1: function Calculating Shapley values (F,M)
2: for all fi ∈ F do
3: φi ← 0
4: for = 0, 1, 2, · · · ,M do
5: S ← select a random subset from F\ {fi}

6: φi ← φi +
|S|! (|F | − |S| − 1)!

|F |!
(Ω(S ∪ {fi})−Ω (S))

7: add φi to M-Shapley

8: return M-Shapley
9: function Calculating worth Ω (S,xj , yj ,MUC, c)

10: Ω ← 0
11: for all xj do
12: if S ⊆MUCxj then
13: gain← if (yj = c) ? 1 : −1
14: Ω ← Ω+ gain

15: return Ω

fi and any possible subset S ⊆ F \ {fi}, where F is the set of all features. To be
concrete, the interaction is the difference between the worth Ω of set S with fi
present and the one with fi withheld, namely Ω(S ∪{fi})−Ω (S). The classical

worth refers to the prediction value f̂S (S) output by model f̂S retrained with
subset S. In this case, the classical Shapley values analyse feature contributions
for all predicted classes of the model output. Our above MUC-based method
allows us to define the worth in the following innovative and reasonable form,
enabling the Shapley values to analyse for one specific class globally:

Ω (S) =

m∑
j=1

ιj , ιj =


1 S ⊆MUC1

xj
∧ yj = c

−1 S ⊆MUC1
xj
∧ yj 6= c

0 S 6⊆MUC1
xj

(10)

where c is the class of interest, and MUC1
xj

denotes the MUC computed by

Φ1 (xj), defined by formula (7). All MUCs are traversed. If MUC1
xj

includes S
and yj equals class c, one positive gain is added to the worth, signifying that
S has a beneficial influence on this prediction. The other two conditions are
similar. Then the worth of set S in our approach depends on the contributions
of the MUC, including S, to the prediction. In order to further accelerate the
calculation, we adopt the sampling method [27] to approximate the Shapley
values of individual features. Our algorithm is given in Algorithm 1.

To be adaptive, the number of iterations M should balance the efficiency, or
it can be set to be close to 2|F | to decrease the approximation error conditional
to permitted time. Our proposed MUC-driven Shapley values, or shortly ‘M-



Shapley’, reserve fairness [18] from the interactions in game theory. Moreover,
they fully utilize the internal logic of the model that the MUC represents.

3 MUC-based Adversarial Sample Analysis

Local explanations based on statistics and approximation are not scalable enough
to solve other relevant issues. For example, as the characteristic of samples, the
key features may also expose the defect, where the values of these features can
be modified slightly to change its prediction. Theoretically, adversarial samples
represent these modified samples that make the model output a different pre-
diction. Next, we will show how to utilize our encoded logical solver to generate
optimized adversarial samples with the expected predicted class.

Dividing adversarial region. Suelflow et al. transform the circuit into an SAT
instance and use unsatisfiable cores to debug the errors inside [28]. By iteratively
modifying unsatisfiable cores, which define a procedure called ‘breaking the core’,
the unsatisfiable SAT instance can turn to be satisfiable, and the circuit recovers.
Their findings suggest that, with the guidance of MUC, we may alter the input
of the individual sample to change its classification to be expected.

First, we recall the formula (7) and use it to get the MUC, from which
we obtain what assignment of features results in the original prediction. Then
we attempt to break the core. Instead of altering xorg directly, we examine
whether there are adversarial samples in the neighborhood. For binary datasets,
the expected class of adversarial samples amounts to the class different from the
original class. Then formula (7) can be transformed into the following form:

Φ2 ::= R (x) ∧ σ (x,xorg, τ ) ∧ (output 6= yorg) (11)

where

σ (x,xorg, τ ) ::=

d∧
i=1

|xi − xorgi | ≤ τi (12)

The search scope denoted by τ is the area around xorg. We want to find
adversarial samples inside. The satisfiability of Φ2 means that there exist adver-
sarial samples around xorg and when they are input into the RF model R(x)
for calculation, the model’s prediction output does not equal the original label
yorg. Notably, τi is initialized to zero, and afterwards, it is enlarged iteratively.
If feature fi is not in the MUC in the current iteration or can not be changed
artificially in reality like age, τi remains unchanged. Otherwise, it increases with
a fixed step size. With the guidance of MUC, the search scope expands in higher
efficiency. After the first iteration, the search scope may not be large enough
to cover adversarial samples. In other words, Φ2 is still unsatisfiable due to its
MUC, which may be different from that last time because the parameters vary
and the formula is different, though the form stays the same. Thus we persist
in expanding the search scope until no MUCs remain in Φ2. Correspondingly,
Φ2 is satisfiable, and we find adversarial samples around xorg. Meanwhile, the
search scope touches the field of another class. We name the intersection region
‘adversarial region’.



Fig. 2. The searching process guided by MUC. (a) In the beginning, the search scope
focuses on the initial input. (b) In this iteration, the ith and jth feature are in MUC,
so the search scope expands on these two components. (c) In this iteration, ith feature
is not in MUC, so the scope on this component stays still. The gray area is the part not
yet searched. The white area is the opposite. The green part is the adversarial region.

Optimizing adversarial samples. After the above steps, we get the adversarial
region full of adversarial samples near the original input. Next, we intend to
find the nearest one inside. We propose to solve it through the Zero Order
Optimization (Opt-attack) [7]. It is used to generate adversarial samples and
can be applied to discrete ML models like tree-based models. The objective
function is defined below:

g (θ) = argminλ>0

(
f̂

(
xorg + λ

θ

‖θ‖

)
6= yorg

)
(13)

where f̂ is the Random Forest function, θ by xadv − xorg represents the search
direction from some adversarial sample xadv to xorg and λ represents the dis-
tance between. g(θ) gets an adversarial sample in the smallest distance along
the search direction. Among all the nearest adversarial samples along the re-
spective direction, we want to get the optimal one globally. It is equivalent to
the following optimization problem:

min
θ

g (θ) (14)

In detail, the Randomized Gradient-Free method in Opt-attack is used to
optimize a given search direction. The gradient in each iteration is estimated by:

ĝ =
g
(
θ′
)
− g (θ)

β
· u (15)

where θ′ = θ + βu is the perturbed θ by a random Gaussian vector u and a
smoothing parameter β > 0. Then θ is updated by θ ← θ−ηĝ with a step size η
to get optimized. Specifically, the gradient here is just based on the computation
of the function values, independent of the non-continuous structure of RF.

The initial direction θ0 is required to execute the zero order optimization.
To this end, for a given xadv inside the adversarial region, we do a fine-grained
search and a binary search to push it to be closer to the boundary along θ0.
The corresponding algorithm is presented in Algorithm 2, which possesses the
distance v between xadv and xorg, α is the increase/decrease ratio, and ε is the



Algorithm 2 Fine-grained and binary search

Require: RF classifier f̂ , search direction θ
1: θ ← θ/ ‖θ‖ . The normalization of θ
2: vout ← ‖θ‖, vin ← ‖θ‖
3: while f̂ (xorg + vinθ) = f̂ (xadv) do
4: vout ← vin, vin ← vout (1− α)

5: while vout − vin > ε do
6: vmid ← (vout + vin) /2

7: if f̂ (xorg + vmidθ) = f̂ (xadv) then
8: vout ← vmid
9: else

10: vin ← vmid
11: return vout . voutθ is the final closer adversarial sample in this algorithm

stopping tolerance. In the first stage, we search gradually to ensure that the
boundary is in [xorg + vinθ,xorg + voutθ]. In the second stage, we conduct a
binary search to let the adversarial sample be very close to the boundary.

The whole procedure of generating optimized adversarial samples is summa-
rized in Algorithm 3, where κi is the step size of enlarging τi, and θT is the
final optimized search direction. We write MUC2

xorg for the MUC computed by
Φ2 (xorg) in each iteration. In particular, except for images, the values of all
features may not be in the same order of magnitude. The impact of ut on every
component of θt varies too. So we set the vector µ to keep the extent of alter-
ation on every component the same, and the perturbed θ′t will not go far from
θt to achieve optimization.

There are several implementation details when applying this algorithm. First,
when doing the fine-grained search, the components that never appear in the
MUC are not in consideration. The values of them are always the initial. It
helps narrow the feature space and increases efficiency. Second, the step size κi
varies according to the order of magnitude of the feature values. And it is best
to set the step size as small as possible to ensure that the adversarial region is
accurate.

4 Experiment and Case Study

This section is devoted to our experimental results.

4.1 Dataset and Setup

Experiments are carried out with four UCI datasets: credit (binary), breast (bi-
nary), MNIST (multiple classes) and heart (binary). We also select two datasets
that focus on loans: lending (binary) [23] and bank loan (binary) [8]. The MNIST
dataset is specially selected to visualize local explanations and adversarial anal-
ysis. Each dataset is cut into two subsets: 80% for training and 20% for testing.



Algorithm 3 Generating the optimized adversarial sample for xorg

Require: RF classifier f̂ , CNF of RF R(x), original input xorg and yorg,the
feature set F = {fi|0 ≤ i ≤ d}

1: τ ← 0
2: Φ2 (x)← R (x) ∧ σ (x,xorg, τ ) ∧ (output 6= yorg)
3: while UNSAT = solver (Φ2) do
4: for all fi ∈ F and fi ∈ MUC2

xorg do
5: τi ← τi + κi
6: floor ← xorg − τ , ceil ← xorg + τ
7: Generate random samples in [floor, ceil] and gather them in set X
8: λmin ← a very large number
9: for all x ∈ X and f̂ (x) 6= yorg do . Determining the initial θ0 among

10: θ ← x− xorg all candidates in adversarial region

11: λ = Fine-grained and binary search
(
f̂ ,θ

)
12: if λmin > λ then
13: λmin ← λ, θ0 ← θ

14: for t = 0, 1, 2, · · · , T do . Zero order optimization
15: θ′t = θt + βut · µ
16: Evaluate g (θt) and g

(
θ′t
)

using fine-grained and binary search

17: ĝ ←
g
(
θ′t
)
− g (θt)

β
· ut

18: θt+1 = θt − ηtĝ
19: return xorg + g (θT ) ‖θT ‖

We also choose a case study of analysing loan cases. It shows how we provide
advice for those who suffer from rejected loan cases. The advice is helpful for
them to apply a successful application in the future, where we suggest how
to change their submitted information effectively. Furthermore, from the users’
perspective, we hope that they do not need to take a huge step out of their
comfort zone, which means that the changes had better be as small as possible.
Our algorithms can maximize users’ advantages on this issue.

We use sklearn to train the Random Forest model based on Python 3.7.x,
and use Z3 [9] as the underlying SMT solver. Experiments were conducted on a
machine with an Intel Core i5-8265U CPU and 16GB RAM.

4.2 Experimental Results

4.2.1 Local feature importance. We evaluate the quality of MUC-driven
local explanations on several datasets. We count the number of important fea-
tures for each test sample, and give a summary of experimental results in Table 1,
where there are the average time of finding importance features (Avg. Time), the
number of important features that occur most frequently (Mode), the average
number of important features (Avg. Num), the total number of features in the



(a) lending (b) bank loan (c) credit

(d) breast (e) heart (f) MNIST

Fig. 3. The distribution of the number of important features over testing samples.

dataset (Total), and the ratio of average / total as feature utilization (Feature
Util). Figure 3 presents the distribution of the number of important features
across all testing samples. Figure 4 visualizes the quality of the explanations on
MNIST datasets. The yellow dots locate the important features.
Discussion. Table 1 shows that ‘Mode’ and ‘Avg. Num’ numbers are almost
the same. Also, the more features there are in the dataset, the longer the time
needed for computation. Besides, the maximum feature utilization is 57%, and
the minimum is 13%, which means that only a small number of features are
important in those datasets generally. Figure 3 confirms that the mode is often
near the average and that feature utilization is often less than 50%. From Figure
4 we note that the important features of different images vary, implying the
flexibility of our explanation. We also observe that the most influential features
spread around the shape of the corresponding digit. Also, the pixels at the corners
are unimportant, as expected. These results make sense and align well with our
intuitions. In summary, our MUC-driven local explanations are of high quality.

Table 1. Experimental results on our MUC-based method for local feature importance.

Dataset lending bank loan credit heart breast MNIST
Avg. Time 16.23 s 1.98 s 14.37 s 0.68 s 0.53 s 70.41 s

Mode 12 3 12 8 3 104
Avg. Num 12 3 13 7 4 105

Total 30 11 23 13 9 784
Feature Util 40% 28% 57% 54% 44% 13%

4.2.2 Global feature importance. Figure 5 demonstrates global explana-
tions based on MUC-driven Shapley values (M-Shapley) for the negative class



Fig. 4. A visualization of local feature importance on MNIST samples.

of the heart and breast dataset. The features’ names are listed on the left, and
their contributions are sorted and plotted as horizontal bars. Green bars denote
the positive impact on the model’s prediction, and red ones denote the negative
impact. When calculating the importance, all subsets of feature set are visited.
Such plots can be used in applications such as medical diagnosis.

(a) heart, M = 212 (b) breast, M = 28

Fig. 5. A visualization of MUC-driven Shapley (M-Shapley) values on models trained
with the heart and breast dataset.

Effectiveness of M-Shapley. To evaluate the effectiveness of M-Shapley, we
retrain the Random Forest with features selected according to the M-Shapley
feature importance ranking and observe the change of the accuracy. Instead of
removing features, we retain the model by replacing corresponding values with
per feature mean. This evaluation method maintains the consistency of distri-
bution in the training data and the retraining data [14]. To eliminate the factor
of chance, we run the test on randomly shuffled datasets 30 times. Therefore,
the shown accuracy is the average over all results. Figure 6 shows the accuracy
vs. top N features observed. As shown, the accuracy keeps decreasing with more



Fig. 6. Accuracy of retrained random forest with top N feature values set as mean.

informative feature values set as mean, which demonstrates that MUC-driven
Shapley values are an effective feature importance measurement.

4.2.3 Adversarial analysis. We record and compare the total time for gen-
erating optimized adversarial samples by the Opt-attack and our method that
combines Opt-attack with MUC (MUC-attack). The total time includes the time
for determining the initial θ0 using fine-grained and binary search algorithm
(Search Time) and the time for optimizing (Opt Time). It is worth noting that
the search time of the MUC-attack is decomposed into the time to define the
adversarial region and that to determine θ0. Meanwhile, ‘Distance’ defined by
1
m

∑m
j=1

∥∥xorgj − x∗j
∥∥ is also taken into account. It represents the average of all

distances from original samples xorgj to their corresponding nearest adversarial
samples x∗j . The parameters in the optimization part of the two methods are
set to be the same. Also, for balancing the search time and the search accuracy
of Opt-attack, we set the number of candidate adversarial samples to be the
minimum of 1000 (suggested in Opt-attack) and the number of samples of other
classes in the dataset.
Discussion. According to Table 2, the execution time of these two algorithms
is roughly the same, while the adversarial samples generated with the guidance
of MUC are much closer to the original samples than those without MUC’s
help because Opt-attack finds fault on every feature. The MUC-attack sacrifices
part of the time to identify the adversarial region for better optimization, unlike
Opt-attack’s unguided search. Figure 7 shows the raw image and two adversarial
images. The subtle perturbations are hardly perceptible to the human eye, while
some relatively noticeable differences in light and shade in the Opt-attacked



Table 2. Experimental results on our adversarial analysis method MUC-attack.

Dateset Attack Search Time Opt Time Total Time Distance

lending
Opt-attack 36.77 s 9.92 s 46.69 s 14943.58

MUC-attack 39.97 s 7.95 s 47.92 s 8312.92

bank loan
Opt-attack 25.15 s 12.46 s 37.61 s 25.46

MUC-attack 27.92 s 10.55 s 38.48 s 7.75

credit
Opt-attack 101.122 s 59.09 s 160.22 s 23522.53

MUC-attack 74.77 s 11.89 s 86.66 s 628.82

heart
Opt-attack 3.69 s 4.22 s 7.92 s 8.38

MUC-attack 5.98 s 3.87 s 9.86 s 7.55

breast
Opt-attack 31.32 s 23.64 s 54.97 s 5.66

MUC-attack 11.83 s 18.44 s 30.28 s 5.14

MNIST
Opt-attack 4.33 s 65.45 s 69.78 s 387.35

MUC-attack 93.29 s 4.91 s 98.2 s 36.53

(a) Raw image (b) MUC-attack (c) Opt-attack

Fig. 7. Visualization of attacking. The Opt-attack method generates an adversarial
sample with visible shades while our method generates a sample that is almost the
same as the original.

image still exist. Besides, as the initial adversarial sample is selected from a
subset of adversarial ones from the original dataset in Opt-attack, the limited
sample size gives Opt-attack fewer choices to search closer adversarial samples. In
this respect, the MUC-attack performs better. It searches in a continuous space
that contains a considerable number of candidate initial adversarial samples. It
provides conditions for finding better adversarial samples. Overall, our approach
finds closer adversarial samples using a similar time.

Case study. Finally, we will show how the adversarial analysis helps the clients
that suffer from rejected loans. We carefully design a user-centered report for
them. According to the generated nearest adversarial samples based on Opt-
attack and MUC-attack, we list the terms needed to be modified with the extent
of the altered values, as shown in table 3 and table 4. The suggestions in the
report provided by MUC-attack do not involve drastic changes to the application
and are easier to implement than those by Opt-attack. Thus, the user-centered
report based on MUC-attack is more helpful for these clients to improve their
applications and eventually obtain approved loans in the future.



Table 3. Bank loan application improvements based on MUC-attack.

Dear No.405415, we provide you the following advice on your application
to help you succeed in loan:
Reducing the amount of loan by about 0.7%;
Increasing the interest rate by 1.6 %;
Reducing monthly installment by about 0.1%;
Increasing your income by about 0.18%

Table 4. Bank loan application improvements based on Opt-attack.

Dear No.405415, we provide you the following advice on your application
to help you succeed in loan:
Reducing the amount of loan by about 5.5%;
Increasing the interest rate by 21.6 %;
Reducing monthly installment by about 7.23%;
Increasing your income by about 4.4%;
Shorten your loan description by about 8%

5 Related Work

Related work can be divided into three categories.
First, we set our eyes on explainable ML based on important features. Ribeiro

et al. present LIME [22] to build a local linear model near the instance of in-
terest, and the weights reflect the feature importance. They also present the
rule-based Anchor [23]. It extracts IF-THEN rules to explain the predictions.
The discretization of numeric features in these two methods causes original in-
formation loss. Monotone Influence Measures (MIM) [25] use influence functions
to express the effect of the feature’s value on the likelihood of assigning the la-
bel. The influence rules are quite complex and make this method less intuitive.
SHAP [16] produces the important scores on features in game theory. It is for
the whole model, not specific to one classification.

Then we review works related to adversarial samples, the application of which
on explainable ML is budding in recent years. Pignatiev et al. [15] introduce the
duality relation between explanations and adversarial samples theoretically. Xu
et al. [31] regard generated adversarial perturbations as the clear correlations
between original and target images, and the adversarial saliency map better
interprets the perturbing mechanisms. Most adversarial theories are tailored for
neural networks. By contrast, Tolomei et al. [30] propose adversarial analysis
specific for Random Forest, but it focuses on the global explanation only.

Another line of research concerns applying formal methods to ML. Ehlers
[10] employs an SMT solver to verify the linear approximation of feed-forward
neural networks. Tran et al. [?] use star-based reachability algorithms to verify
the safety and robustness property of Deep Neural Networks. Zhang et al. [?]
propose a more scalable tool based on Binary Decision Diagrams to verify the
Binarized Neural Networks. Nie et al. [20] and Chen el al. [5] verify the robust-



ness of tree ensembles. Moreover, Slias [4] analyses the general decision-making
through extracting maximum satisfiable core (MSC) of Random Forest in the
form of a logical formula. Different from the above, the novelty of our work lies
in explaining Random Forest’s prediction with logical reasoning.

6 Conclusion and Future Work

This paper proposes a comprehensive approach to interpreting Random For-
est(RF) through MUC-based logical analysis. We use the minimal unsatisfiable
core (MUC) produced by a SMT solver from the encoded decision process of RF
to guide the extraction of important features in individual prediction. Based on
the logical information uncovered by MUC, we construct MUC-driven Shapley
values to measure feature importance when the model predicts a certain class.
Moreover, by leveraging the adversarial region divided by MUC, we propose a
novel adversarial analysis that can generate more desirable adversarial samples.
Experimental results show that our method provides high-quality and effective
feature-relevant explanations. In a comparable time, our proposed adversarial
analysis is able to generate closer adversarial samples compared with a state-
of-the-art method. In a case study, we show the applicability of our adversarial
analysis in providing easy-to-implement suggestions.
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