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Abstract. We investigated the Tendermint protocol, a core Byzantine
Fault Tolerance (BFT) consensus engine for the Cosmos Blockchain.
When modelling this protocol, we faced significant challenges in the com-
putational performance of verification. To mitigate the state-space ex-
plosion issue, we improve the model with optimisation techniques, such
as partial-order reduction and role-based symmetry reduction. Through
verification, we discovered vulnerabilities in the design of Tendermint,
and we proposed fixes that regained both the safety and liveness prop-
erties. This paper describes our modelling techniques and optimisations,
analyses the vulnerabilities and fixes, and discusses how the optimisa-
tions impact verification runtime and results.
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tocol · Byzantine Fault Tolerance

1 Introduction

Blockchain is gaining widespread adoption, serving as the backbone of decentral-
ized systems, such as cryptocurrencies, decentralized finance, and supply chain
management. It fundamentally shifts how data is stored, verified, and processed
to eliminate single points of failure, making it resilient to fraud, tampering, or
unauthorized operations. These qualities heavily depend on the underlying con-
sensus mechanism, which plays a critical role in validating data changes and
maintaining the security and consistency of the applications built on top. The
robustness and efficiency of consensus mechanisms directly impact the reliability,
scalability, and overall performance of blockchain-based decentralized systems.

Despite their widespread use, rigorous proof of Blockchain consensus mech-
anisms is scarce. This is largely due to the complexity of achieving consensus,
which requires cooperative execution of geographically distributed nodes ex-
changing information asynchronously. Challenges arise from issues such as partial
connectivity of the network, unreliable communication channels and malicious
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nodes (with Byzantine behaviour). The concurrent and nondeterministic nature
of node interactions introduces significant challenges for formal verification.

We aim to investigate the capability of formal verification, particularly auto-
matic verification technology, for consensus mechanisms, taking the Tendermint
consensus protocol as a case study. We focus on model checking technique, which
is widely used in existing consensus verification efforts. Tendermint was chosen
due to its practical significance—it powers numerous real-world blockchain plat-
forms like Cosmos. Also, unlike Bitcoin’s probabilistic protocols, Tendermint’s
non-probabilistic nature makes it more feasible for automatic proof.

Previous research on verifying Tendermint consensus protocol has primarily
focused on verifying safety (maintaining data integrity) because liveness (en-
suring continuing operation) verification poses significant challenges due to the
extensive state space when naively translating the pseudocode into formal specifi-
cations. Our goal is to verify both safety and liveness in the presence of Byzantine
nodes. To overcome the challenges, we apply state space reduction techniques
such as partial order reduction and role-based symmetry reduction, which are
crucial for efficient verification of both safety and liveness properties.

We have successfully verified the correctness of this algorithm using the PAT
model checker [23,8] in the CSP# formal language, and we believe that we are
the first to have verified both the safety and liveness properties of Tendermint.
The verification is non-trivial due to the state-space explosion challenges, and
the optimisation techniques in this work have the potential to be adopted in
verifying other consensus protocols. As a highlight, during our investigation, we
identified a critical vulnerability hidden within the Tendermint design that could
be exploited to orchestrate a denial-of-service attack, potentially jeopardizing the
entire system. This finding emphasizes the importance of rigorous validation of
blockchain security. Moreover, we discussed the generalization of our reduction
techniques beyond this case study.

In summary, this work makes the following contributions:
– We modelled the Tendermint protocol and proposed optimisations to make

verification efficient. We proved that our optimisations preserve the correct
semantics of the model, and they are also applicable to similar BFT protocols.

– We identified a vulnerability of Tendermint, and we give an attack demon-
stration as well as a fix.

– With the help of model optimisations, we verified the Tendermint protocol’s
safety and liveness after the vulnerability was patched.

2 The Tendermint Consensus Protocol

The Tendermint consensus protocol [10] is implemented in the Tendermint Core
of the Cosmos SDK, and is a state machine replication algorithm [20] that is
inspired by the Practical Byzantine Fault Tolerance (PBFT) algorithm [11] and
the DLS algorithm [18].

Protocol Overview. The protocol proceeds in rounds, and the communication
pattern of each round follows a simple state machine as depicted in Figure 1, re-
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Fig. 1: Overview of Tendermint consensus protocol [24].

sembling the normal case in PBFT [11]. Each round features a proposer selected
through a weighted round-robin function based on voting power. Participants are
usually referred to as validators which verify the proposed blocks of transactions
to be sequentially committed in a chain, each at a new height. Although the
state machine diagram seems simple with only ten states, it reflects a limited,
single-node perspective, omitting concurrent actions by other nodes. The entire
network operation is much more complex, making manual analysis challenging
and error-prone.

Protocol Specification. The protocol is detailed in the Tendermint consensus algo-
rithm from the literature [10], shown in Algorithm 1. It uses atomically executed
“upon rules”, triggered when a local message log accumulates enough messages to
satisfy conditions based on validators’ voting power. Messages exchanged among
nodes include PROPOSAL, PREVOTE, and PRECOMMIT to trigger an upon
rules. In addition, the protocol ensures timeliness and reliability through timeout
mechanisms (e.g., timeoutPropose, timeoutPrevote, timeoutPrecommit) which
are incrementally adjusted for each new round to prevent indefinite delays.

Processes exchange three types of messages to agree on a proposed block
of transactions: the proposer sends a PROPOSAL, and nodes respond with
PREVOTE and PRECOMMIT messages. PREVOTE and PRECOMMIT carry
a small identifier (e.g., a hash of the proposed block) to confirm agreement.
To reach a decision, nodes require a PROPOSAL and enough PRECOMMIT
messages (i.e., from validators representing at least two-thirds of the voting
power). Processes maintain internal variables like lockedV alue, lockedRound,
validV alue, and validRound to track their decision progress and ensure termi-
nation and agreement. A correct process updates validV alue and validRound
when it receives a valid proposal backed by sufficient votes. This guarantees that
if a process locks on a value, all correct processes will eventually converge on
that decision.
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Algorithm 1: The Tendermint Algorithm [10]
1:1: Initialization:
2: hp, roundp := 0; stepp ∈ {propose, prevote, precommit};
3: validRoundp := −1;
4: decisionp[], lockedV aluep, lockedRoundp, validV aluep := nil;

5: upon start do StartRound(0)
6: Function StartRound(round):
7: roundp ← round; stepp ← step;
8: if proposer(hp, roundp) = p then
9: if validV aluep ̸= nil then

10: proposal← validV aluep;
11: else
12: proposal← getV alue();

13: broadcast ⟨PROPOSAL, hp, roundp, proposal, validRoundp⟩;
14: else
15: schedule OnTimeoutPropose(hp, roundp) to be executed after

timeoutPropose(roundp);

16: upon ⟨PROPOSAL, hp, roundp, v, −1⟩ from proposer(hp, roundp) while
stepp = propose do

17: if valid(v) ∧ (lockedRoundp = −1 ∨ lockedV aluep = v) then
18: broadcast ⟨PREVOTE, hp, roundp, id(v)⟩;
19: else
20: broadcast ⟨PREVOTE, hp, roundp, nil⟩;
21: stepp ← prevote;

22: upon ⟨PROPOSAL, hp, roundp, v, vr⟩ from proposer(hp, roundp) AND
2f + 1 ⟨PREVOTE, hp, vr, id(v)⟩ while stepp = propose ∧ (vr ≥ 0 ∧ vr < roundp) do

23: if valid(v) ∧ (lockedRoundp ≤ vr ∨ lockedV aluep = v) then
24: broadcast ⟨PREVOTE, hp, roundp, id(v)⟩;
25: else
26: broadcast ⟨PREVOTE, hp, roundp, nil⟩;
27: stepp ← prevote;

28: upon 2f + 1 ⟨PREVOTE, hp, roundp, ∗⟩ while stepp = prevote first time do
29: schedule OnTimeoutPrevote(hp, roundp) to be executed after

timeoutPrevote(roundp);

The gossip communication property ensures messages are propagated across
all nodes, enabling processes to synchronize their decisions. The termination
mechanism ensures that, even in prolonged rounds, the protocol will eventually
finalize a decision. This is achieved without extra messages, making Tendermint
efficient and reliable for consensus in distributed systems.

Correctness Criteria. We adopt the correctness criteria from distributed sys-
tems [11] in the Tendermint setting as follows:
Safety requires that correct validators all decide on the same value, or formally

∀p, q ∈ validators : honest(p) ∧ honest(q) ⇒ decision[hp] = decision[hq].
Liveness requires that all correct validators must eventually decide on a value,

or formally ∀p ∈ validators : ∃v ∈ values : honest(p) ⇒ decision[hp] = v.

3 Our Modelling of Tendermint

Modelling and verifying the Tendermint protocol presented tremendous chal-
lenges, especially in verification time. Faithfully modelling the protocol leads to
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Algorithm 1: The Tendermint Algorithm (Continued) [10]
32: upon ⟨PROPOSAL, hp, roundp, v, ∗⟩ from proposer(hp, roundp) AND

2f + 1 ⟨PREVOTE, hp, roundp, id(v)⟩ while valid(v) ∧ stepp ≥ prevote for the first
time do

33: if stepp = prevote then
34: lockedV aluep ← v; lockedRoundp ← roundp;
35: broadcast ⟨PRECOMMIT, hp, roundp, id(v)⟩;
36: stepp ← precommit;

37: validV aluep ← v; validRoundp ← roundp;

38: upon 2f + 1 ⟨PREVOTE, hp, roundp, nil⟩ while stepp = prevote do
39: broadcast ⟨PRECOMMIT, hp, roundp, nil⟩;
40: stepp ← precommit;

41: upon 2f + 1 ⟨PRECOMMIT, hp, roundp, ∗⟩ for the first time do
42: schedule OnTimeoutPrecommit(hp, roundp) to be executed after

timeoutPrecommit(roundp);

43: upon ⟨PROPOSAL, hp, r, v, ∗⟩ from proposer(hp, r) AND
2f + 1 ⟨PRECOMMIT, hp, r, id(v)⟩ while decisionp[hp] = nil do

44: if valid(v) then
45: decisionp[hp] = v; hp ← hp + 1;
46: reset lockedRoundp, lockedV aluep, validRoundp, validV aluep to initial values

and empty message log;
47: StartRound(0);

48: upon f + 1 ⟨∗, hp, round, ∗, ∗⟩ with round > roundp do
49: StartRound(0);

50: Function OnTimeoutPropose(height, round):
51: if height = hp ∧ round = roundp ∧ stepp = propose then
52: broadcast ⟨PREVOTE, hp, roundp, nil⟩;
53: stepp ← prevote;

54: Function OnTimeoutPrevote(height, round):
55: if height = hp ∧ round = roundp ∧ stepp = prevote then
56: broadcast ⟨PRECOMMIT, hp, roundp, nil⟩;
57: stepp ← precommit;

58: Function OnTimeoutPrecommit(height, round):
59: if height = hp ∧ round = roundp then StartRound(roundp + 1);

non-termination within a few days. Realising that modelling is an art, we went
through 13 versions of modelling; each one included some optimisations to im-
prove runtime to finally achieve a realistic model that is efficient in verification.
This section begins with an overview of the overall modelling approach, followed
by a detailed analysis of a vulnerability identified during the model checking
of our initial, unoptimized model. Finally, we present a walkthrough of the key
optimizations that brought the most significant improvements to our verification
process, addressing the inherent state-space explosion issue that persists even in
the patched model.

3.1 Protocol Assumptions

Processor: The protocol considers a system of spatially separated asynchronous
processors that communicate with each other by exchanging messages because
they do not belong to the same administrative domain and are therefore not
directly connected. Each process has some voting power, usually proportional



6 Yisong Yu et al.

to the amount of stakes (e.g., cryptocurrencies) it commits to participate in the
consensus as a validator.

Network: The protocol assumes a reliably authenticated partially synchronous
network on which processors communicate with each other. Here, “reliable” im-
plies that messages cannot be lost, duplicated, altered, or corrupted during their
transmission through the communication channels, although they may be de-
livered out of order, “authenticated” means the recipient can verify the identity
of the sender, and “partially synchronous” means messages will be eventually
delivered within an upper bound of delay.

Communication: The protocol assumes the following auxiliary communication
property that captures gossip-based nature of communication, where GST is
Global Stabilization Time and ∆ is the upper bound of delay: If a correct
node sends some message m at time t, all correct nodes will receive m before
max{t, GST} + ∆. If a correct node receives some message m at time t, all
correct nodes will receive m before max{t, GST}+∆.

Failure Model: Two types of participants are considered in the design of a consen-
sus algorithm [9]: honest/non-faulty nodes always engage in benign behaviours
by strictly following the pre-defined protocol, and corrupted/faulty nodes may
randomly crash, or have malicious (Byzantine) intent, e.g., withholding mes-
sages, sending invalid messages, and violating expected timing assumptions.

Computation Model: The protocol assumes an atomic execution of each logical
entity in the form of an upon rule is truly atomic. In addition, a simple send
and its aggregated counterpart broadcast both operate similarly atomically.

3.2 Introduction to CSP# and PAT

The input language of PAT is CSP#, whose syntax is shown in Definition 1.
We chose PAT due to its support for state variables, common programming
constructs, and moreover external libraries and functions.

Definition 1 (Syntax of Processes in CSP#).

P, Q ::= Stop | Skip | e→ P | e{prog} → P | c!exp→ P | c?x→ P | P []Q |
if(b){P} else {Q} | ifa(b){P} else {Q} | P ;Q | P ||Q | P |||Q

Stop and Skip are processes denoting inaction and termination, respectively.
Process e → P engages in an atomic event e first and then behaves as process
P . The event is allowed to attach an atomically executed program, denoted
as e{prog} → P . Channel communication is supported: c!exp → P denotes
sending exp over channel c, while c?x → P denotes reading from channel c and
referring to the message as x. Two types of choices are supported: P []Q denotes
unconditional choice, and if(b){P} else {Q} is conditional branching, where b is
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1 StartRound(p, round) =
2 reset_all_flags_in_effective_rounds_for_process.p{effective_rounds[p]=0;} ->
3 update_round_and_step_for_process_in_round.p.round{rounds[p]=round; steps[p]=

PROPOSE;} ->
4 ifa (round%N==p) {
5 ifa (valid_values[p]!=NIL) {
6 update_proposal_for_process_in_round.p.round{proposals[p]=valid_values[p];} ->

Skip}
7 else {
8 update_proposal_for_process_in_round.p.round{
9 if (honest_processes[p]==true) {proposals[p]=DECISION_T;}

10 else {proposals[p]=DECISION_F;}} -> Skip};
11 BroadcastProposalMessage(p, rounds[p], proposals[p], valid_rounds[p])
12 } else {ScheduleOnTimeoutPropose(p, rounds[p])};

Fig. 2: Process StartRound.
1 BroadcastProposalMessage(p, round, proposal, valid_round) =
2 broadcast_proposal_message_to_all_processes_from_process.p{message_log.AddProposal(

new ProposalMessage(p, round, proposal, valid_round));} -> Skip;
Fig. 3: Process BroadcastProposalMessage.

a boolean expression. ifa(b){P} else {Q} is a variation of conditional branching
that performs the condition checking and first operation of P/Q together. There
are three types of process relations: Process P ;Q behaves as P until P terminates
and then behaves as Q. The parallel composition of two processes is written as
P ||Q, where P and Q may communicate via multi-party event synchronisation.
If P and Q only communicate through variables, then it is written as P |||Q.

3.3 Overall Modelling

The process StartRound in Figure 2 models the function StartRound from line
7 to line 17 of the protocol. It resets effective_rounds[p], updates rounds[p] and
steps[p], and either updates proposals[p] (to valid_values[p], DECISION_T ,
or DECISION_F ) or schedules OnTimeoutPropose, depending on whether p
is the proposer. It prevents reverting to a previous round if round < rounds[p].

The process BroadcastProposalMessage, shown in Figure 3, models the
behaviour of broadcasting the PROPOSALmessage by a proposer (line 15 of the
protocol). It wraps the proposal data into a ProposalMessage instance from the
C# library, then adds it to the message log by calling the AddProposal method
on the message_log variable, completing the broadcast. The other messages,
such as PREV OTE and PRECOMMIT are modelled similarly.

Then each upon rule from line 18 to line 52 of the protocol is modelled
following their corresponding algorithms. To illustrate, we take one upon rule
(line 32-39 of the protocol) as an example, and show our non-trivial modelling
techniques in Figure 8 (detailed in Section 3.5). We omit the details of other
upon rules due to limited space (for details, see the online code).

The process ScheduleOnTimeoutPropose, shown in Figure 4, models how
a process p in round round schedules the handler OnTimeoutPropose (line
53-56 of the protocol). This allows p to simulate both the expiration and non-
expiration of the timer, controlled by conditional expressions composed with a
choice operator.

If the timeout for the round (INIT_TIMEOUT_PROPOSE +round ∗
TIMEOUT_DELTA) meets or exceeds a predefined boundBOUND_DELTA
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1 ScheduleOnTimeoutPropose(p, round) =
2 [BOUND_DELTA>INIT_TIMEOUT_PROPOSE+round*TIMEOUT_DELTA
3 || honest_processes[round%N]!=honest_processes[p]]OnTimeoutPropose(p, round) []
4 [honest_processes[round%N]==honest_processes[p]]Skip;
5 OnTimeoutPropose(p, round) =
6 ifa (round==rounds[p]&&steps[p]==PROPOSE) {
7 BroadcastPrevoteMessage(p, round, NIL);
8 update_step_for_process_in_round.p.round{steps[p]=PREVOTE;} -> Skip};

Fig. 4: Process (Schedule)OnTimeoutPropose.

for message delivery in a partially synchronous network, and if p’s honesty
matches the proposer’s in that round, p cannot choose to timeout. In this case,
the timer will not expire before p receives a valid PROPOSAL message. This
prevents p from prematurely sending a PREV OTE message for nil before the
proper rule is invoked.

However, if these conditions are not met, p may opt to timeout, even if
the PROPOSAL message is cached in the message log. This model’s possible
behaviours simulate scenarios where p pretends not to have received the message
on time, thus covering all potential timeout behaviours.

The other two functions onT imeoutPrevote (line 57-60 of the protocol) and
onT imeoutPrecommit (line 61-62) are modelled in the same manner.

The entire process of Tendermint is shown in Figure 7, where the left side
shows a straightforward modelling that leads to state exploration and right hand
side shows our final modelling with partial-order reduction.

3.4 Identified Vulnerability and Fix

This vulnerability was revealed when model checking our early model without
any optimization strategies. A counterexample trace was generated, showing
that the execution of StartRound(p) may be delayed after a given process p has
advanced into a later round.

This vulnerability could occur if a node is reverted from a later round (round ̸=
0) back to round = 0 by delaying the initial StartRound(0) execution. This flaw
could deadlock the entire system as the protocol does not explicitly require the
function to be completed before other rules are executed, making it vulnerable.

The space-time diagram in Figure 5 illustrates how a denial-of-service (DoS)
attack could exploit the vulnerability. The horizontal axis represents time, seg-
mented into rounds and steps, while the vertical axis represents processes. Events
(message send/receive) are marked with dots, and coloured arrows depict mes-
sage transmission between processes. Each color indicates a specific message
type: orange for PROPOSAL messages, brown for PREV OTE messages for
id(v), yellow for PREV OTE messages for nil, purple for PRECOMMIT mes-
sages for id(v), and blue for PRECOMMIT messages for nil. The grey text
above each event shows which function or rule is activated, leading to the corre-
sponding event below. In this diagram, synchronized message arrivals are shown,
although in reality, communication delays are often unstable.

The DoS attack occurs by exploiting the system’s vulnerability, where a de-
layed StartRound(0) invocation can revert nodes back to round = 0, disrupting
the consensus and eventually deadlocking the system. This example highlights
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Fig. 5: An attack example demonstrating the identified vulnerability.

how the absence of a strict requirement for completing certain protocol functions
before others enable the attack, making it a significant vulnerability.

In this scenario, all nodes in green are honest, except for p4 in red, which
is Byzantine and behaves arbitrarily. p4 can delay functions or message trans-
missions, selectively withhold messages, or send conflicting ones, disrupting the
consensus process without completely halting the system. More specifically:

1. Four processes have completed two rounds of communication without reaching
consensus and are starting round 2, with StartRound(0) for p1 and p2 delayed
by the adversary since round 0.

2. p3 and p4 invoke StartRound(2), and p3 broadcasts a PROPOSAL message
for v. All validators schedule OnTimeoutPropose(0, 2).

3. After receiving the PROPOSALmessage for v, all processes send PREV OTE
messages for id(v), except p4, who votes for nil, creating a split vote.

4. The timers timeoutPrevote(2) expire before enough PREV OTE messages
are received, and all processes send PRECOMMIT messages for nil.

5. After receiving sufficient PRECOMMIT messages for nil, all processes ad-
vance to round 3, with p4 as proposer, broadcasting PROPOSAL(v) to all
except p1.

6. p2, p3, and p4 send PREV OTE(id(v)), while p4 sends PREV OTE(nil) to
p1, who then votes nil upon timeout.

7. p2 and p3 send PRECOMMIT (id(v)), while p1 and p4 send PRECOMMIT
(nil), resulting in another split vote.

8. Upon timeoutPrecommit(3) expiry, all processes start round 4, with p4 with-
holding PROPOSAL messages.

9. The adversary relinquishes control over p1 and p2, reverting them to round
0, causing p1 to broadcast a PROPOSAL for v.
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1 StartRoundFixed(p, round) = ifa (round>=rounds[p]) {StartRound(p, round)};

Fig. 6: Process StartRound (Fixed ver.).

10. p1 and p2 send obsolete PREV OTE(id(v)) messages for round 0, which are
discarded by others.

11. The system reaches deadlock with p1 and p2 stuck in round 0, and p3 and p4
in round 4, resulting in a denial-of-service attack.

To fix this vulnerability and prevent a malicious entity from exploiting it, we
need to wrap the entire body of the function StartRound into an if statement
that checks if the round round to be entered is not smaller than the round the
process p is currently in, i.e., if round >= rounds[p], as shown in Figure 6.

3.5 Reduction Techniques

With the vulnerability identified above addressed, it remains crucial to verify the
patched protocol to ensure that the fix does not introduce new bugs and that
the protocol continues to satisfy both safety and liveness properties. However,
model-checking the corrected version still presents a significant challenge due to
the state-space explosion problem, as the number of states grows combinatori-
ally with all possible interleavings of rules across processes, often causing the
verification engine to exceed memory limits and abort.

Among those well-known strategies for state space minimization, we applied
two key optimizations that are considered most effective in our model, partial-
order reduction and symmetry reduction, designed to address the intractability
of model checking highly concurrent distributed protocols like Tendermint; we
ensure that the optimizations reduce state space without omitting any potential
counterexamples from the full model in tools like PAT.

Partial-order Reduction (POR) POR reduces state space by representing
multiple interleaving executions with a single partial order execution, leveraging
the connection between interleaving semantics, which treats executions differing
only in independent transition order as equivalent, and partial order semantics,
which orders events causally. This mitigates the state space explosion problem
in concurrent systems by generating a compact state space that ensures coun-
terexamples, if present, are preserved in the reduced state space.

We present an example of applying POR in Figure 7, where our model’s
separation into two distinct processes, TendermintBootstrap and Tendermint,
shown on the bottom, is preferred over the more intuitive but naive approach of
interleaving all participating validators into a single process, shown on the top. In
our optimized model, each validator is represented by its own process, V alidator,
consisting of a general choice of those processes denoting upon rules, which is
then general-choiced with processes denoting other validators in Tendermint,
which is then sequentially composed with the process StartRound of all val-
idators to enforce a total ordering on the execution sequence of the function
StartRound at the beginning of model checking, given that this approach sig-
nificantly reduces the state space—by an order of magnitude—by mitigating the
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1 Tendermint() = ||| p: {0..N-1} @ (
2 StartRound(p,0) ||| DaemonThread(p) ||| Mutex(p) |||
3 UponProposalNewValue(p) ||| UponProposalOldValue(p) |||
4 UponSufficientPrevoteAny(p, 0) ||| UponSufficientPrevoteValue(p, 0) |||
5 UponSufficientPrevoteNil(p) ||| UponSufficientPrecommitAny(p, 0) |||
6 UponSufficientPrecommitValue(p) ||| UponSufficientMessageAny(p, 0));

1 Validator(p) = UponProposalValue(p) []
2 UponSufficientPrevoteAny(p) [] UponSufficientPrevoteValue(p) []
3 UponSufficientPrevoteNil(p) [] UponSufficientPrecommitAny(p) []
4 UponSufficientPrecommitValue(p) [] UponSufficientMessageAny(p);
5 TendermintBootstrap() = StartRound(0, 0); StartRound(1, 0);
6 StartRound(2, 0); StartRound(3, 0); Tendermint();
7 Tendermint() = Validator(0) [] Validator(1) [] Validator(2) [] Validator(3) []
8 OnTimeoutPrevoteManual() [] OnTimeoutPrecommitManual();

Fig. 7: A comparison of example code without (top) & with (bottom) POR.

complexity introduced by the interleaving operator, which otherwise generates
all possible execution orders, thereby successfully addressing the timeout and
out-of-memory issues encountered in earlier models that naively modelled con-
currency. The decision to impose a predefined order in TendermintBootstrap
and replace interleaving with general choice operators in Tendermint is driven
by the observation that nearly all transitions (i.e., operations at each step) are
local/internal. Excluding pure events that do not introduce side effects to the
global states, these transitions only mutate local variables, neither interfering
with other processes nor disabling each other (i.e., satisfying enabledness), and
can be commutated with each other while leading to the same final state (i.e.,
satisfying commutativity), indicating their independence.

Correctness of our POR. Next, we discuss the correctness of our partial-order
reduction. We adopt the definitions from Clarke et al.’s partial-order reduction
technique [13,14]. This technique operates within a model checking algorithm ap-
plied to a transition system modelled as a Kripke structure K = ⟨S, I,R, L,AP ⟩
over a set of atomic propositions AP where S is a set of states, I ⊆ S is a set of
initial states, R ⊆ S×S is a transition relation between states, and L : S → 2AP

is a labelling function that maps each state to a subset of atomic propositions.
A transition α is considered enabled in state s if there is another state s′ where
(s, s′) ∈ R. If only one transition is enabled from s, α is a deterministic transi-
tion, expressible as s′ = α(s). Additionally, execution paths are assumed infinite,
even if deadlocks occur, by introducing self-transitions. This framework supports
reasoning about transition reordering in model checking algorithms.

Definition 2 (Independence Relation). The independence relation IR ⊆
R×R is a symmetric and anti-reflexive relation on transitions. A pair of inde-
pendent transitions (α, β) ∈ IR satisfies the following for each state s ∈ S:
– Enabledness: If α, β ∈ enabled(s), then α and β remain enabled in each other’s

resulting state.
– Commutativity: If α, β ∈ enabled(s), then executing α followed by β gives the

same result as executing β followed by α.

We introduce the concept of invisible transitions to address the variability in
verification outcomes caused by reordered execution sequences with independent
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transitions. These transitions help clarify how specifications differentiate between
states, despite the states appearing equivalent based on their transition orders.

Definition 3 (Invisible Transitions). A transition α ∈ R is termed invisible
concerning a subset AP ′ of atomic propositions AP if its execution between any
two states does not alter their labellings. This means for states s and s′ where
s′ = α(s), it holds that L(s) ∩AP ′ = L(s′) ∩AP ′.

Definition 4 (Stuttering Equivalence of Paths). Two infinite paths σ =
s0, s1, s2, ... and ρ = r0, r1, r2, ... are stuttering equivalent, denoted σ ≡st ρ, if
there exist sequences of indices 0 = i0 < i1 < ... and 0 = j0 < j1 < ... such
that for all k ≥ 0, L(sik) = L(sik+1

) = L(rjk) = L(rjk+1
), indicating matching

labelled subsequences in both paths.

Definition 5 (Stuttering Invariance of LTL Formulas). An LTL−X for-
mula ψ (without “next”) is invariant under stuttering if for any two stuttering
equivalent paths σ and σ′ (i.e., σ ≡st σ

′), it holds that σ |= ψ iff σ′ |= ψ.

Definition 6 (Stuttering Equivalence of State Transition Systems). Two
state transition systems M and M ′ are considered stuttering equivalent if:
– For every path σ starting from an initial state of M , there exists a path σ′

from an initial state of M ′ such that σ ≡st σ
′.

– For every path σ′ starting from an initial state of M ′, there exists a path σ
from an initial state of M such that σ′ ≡st σ.

Based on the definitions of stuttering equivalence of state transition systems
in Definition 6 and stuttering invariance of LTL−X formulas in Definition 5, we
conclude that if two state transition systems M and M ′ are stuttering equivalent,
then M |= ψ iff M ′ |= ψ for any LTL−X formula ψ. This justifies the validity of
using the partial order reduction technique to create a structure that is stuttering
equivalent to the original system.

Lemma 1 (Correctness of Partial-Order Reduction). Given a transition
system represented as a Kripke structure K = ⟨S, I,R, L,AP ⟩ and the reduced
structure Kp = ⟨Sp, Ip, Rp, Lp, AP ⟩ via the above partial-order reduction, K and
KP are stuttering equivalent.

Theorem 1 (Correctness of POR Tendermint Model). Given the Ten-
dermint consensus protocol modelled as K = ⟨S, I,R, L,AP ⟩ and the reduced
model Kp = ⟨Sp, Ip, Rp, Lp, AP ⟩ via partial-order reduction, if a counterexample
exists in the state space of K then it also exists in the state space of Kp.

Role-based Symmetry Reduction (SR) Structural symmetries, such as
replicated components in concurrent systems, often go unnoticed but can help
reduce the state space explosion problem. Symmetry reduction treats states that
differ only in the arrangement of identical processes as equivalent. This technique
collapses these symmetric states, called orbits, into a single representative during
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1 UponSufficientPrevoteValue(p) =
2 [decisions[p]==NIL && steps[p]>=PREVOTE && (effective_rounds[p]/2)%2==0 &&

message_log.ContainsProposalAndSufficientPrevotesForPrecommitting(all_messages,
rounds[p]) &&

3 ((honest_processes[p]==true && message_log.GetProposalValue(all_messages, rounds[p]
)==DECISION_T) ||

4 (honest_processes[p]==false && message_log.GetProposalValue(all_messages, rounds[p]
)==DECISION_F))]

5 enable_second_flag_in_effective_round_for_process.p{effective_rounds[p]=
effective_rounds[p]+2;} -> UponSufficientPrevoteValueAuxiliary(p, rounds[p]);

6 UponSufficientPrevoteValueAuxiliary(p, round) =
7 ifa (steps[p]==PREVOTE) {
8 update_locked_value_and_locked_round_for_process_in_round.p.round{locked_values[p]=

message_log.GetProposalValue(all_messages, round); locked_rounds[p]=round;} ->
9 BroadcastPrecommitMessage(p, round, message_log.GetProposalValue(all_messages,

round));
10 update_step_for_process_in_round.p.round{steps[p]=PRECOMMIT;} -> Skip};
11 update_valid_value_round_for.p.round{valid_values[p]=message_log.GetProposalValue(

all_messages, round); valid_rounds[p]=round;} -> Tendermint();

1 UponSufficientPrevoteValue(p) =
2 [(p==0 || (rounds[p-1]==rounds[p] && steps[p-1]>=PRECOMMIT) || rounds[p-1]>rounds[p]

) && decisions[p]==NIL &&
3 (effective_rounds[p]/2)%2==0 && steps[p]>=PREVOTE && message_log.

ContainsProposalAndSufficientPrevotesForPrecommitting(all_messages, rounds[p])
&&

4 ((honest_processes[p]==true && message_log.GetProposalValue(all_messages, rounds[p]
)==DECISION_T) ||

5 (honest_processes[p]==false && message_log.GetProposalValue(all_messages, rounds[p
])==DECISION_F))]

6 enable_second_flag_in_effective_round_for_process.p{effective_rounds[p]=
effective_rounds[p]+2;} ->

7 ifa (steps[p]==PREVOTE) {
8 update_locked_value_and_locked_round_for_process_in_round.p.rounds[p]{locked_values

[p]=message_log.GetProposalValue(all_messages, rounds[p]); locked_rounds[p]=
rounds[p];} ->

9 BroadcastPrecommitMessage(p, rounds[p], message_log.GetProposalValue(all_messages,
rounds[p]));

10 update_step_for_process_in_round.p.rounds[p]{steps[p]=PRECOMMIT;} -> Skip};
11 update_valid_value_and_valid_round_for_process_in_round.p.rounds[p]{valid_values[p]

=message_log.GetProposalValue(all_messages, rounds[p]); valid_rounds[p]=rounds[
p];} -> Tendermint();

Fig. 8: A comparison of example code without (top) & with (bottom) SR.

model checking. Unlike partial order reduction, which minimizes independent
transition interleavings, symmetry reduction focuses on collapsing equivalent
states. It ensures that any counterexample in the full state space is still found in
the reduced space, improving efficiency without sacrificing verification accuracy.

We show an example code snippet modified for symmetry reduction in Fig-
ure 8 where in addition to the original conditions for the upon rule two ex-
tra constraints added to the guarded expression of our corresponding process
UponSufficientPrevoteValue(p) with respect to two orthogonal dimensions in
data values, namely round and step serve as the key to a significant reduction
of the state space by an order of magnitude, via imposing a strict total ordering
on the executions of upon rules by different processes at different steps within
the same round (i.e., p == 0||(rounds[p − 1] == rounds[p]&&steps[p − 1] >=
PRECOMMIT )), as well as those executions of this upon rule similarly by
different processes at potentially same or different steps across different rounds
(i.e., p == 0||rounds[p−1] > rounds[p]), so that unnecessary exploration of sym-
metric executions may be avoided to enable a faster termination of the model
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checking process. Note that other upon rules (omitted here for brevity) also ap-
ply the same modifications to their guarded conditions to enforce a total ordering
on their executions as well.

Correctness of our SR. We now show, on a high level, the correctness of our
symmetry reduction. We again use a Kripke structure K = ⟨S, I,R, L,AP ⟩, and
its associated behaviours (enabled transitions, deterministic paths, and infinite
execution paths). We adopt definitions from prior work [12,15,19] to reason about
the correctness of symmetry reduction applied at the model level for distributed
protocols modelled into a state transition system.

To formalize the definitions of symmetric states and paths, which help in
selecting one representative from each equivalence class for analysis, we begin
with the concept of a permutation. From this, we define the symmetry group and
orbit within a transition system.

Definition 7 (Permutation). A permutation σ : S → S on a set S is a
bijection of S onto itself, meaning (∀s ∈ S : ∃=1σ(s) ∈ S)∧ (∀σ(s) ∈ S : ∃=1s ∈
S), where ∃=1 means exists only one.

Definition 8 (Symmetry Group). In a Kripke structure K = ⟨S, I,R, L,AP ⟩,
a subgroup G of all permutations of S (denoted Perm(S)) is a symmetry group if
every permutation σ ∈ G preserves the transition relation R, meaning (s1, s2) ∈
R iff (σ(s1), σ(s2)) ∈ R. Each σ ∈ G is called an automorphism of K.

Definition 9 (Equivalence Relation & Orbit). A symmetry group G acting
on a Kripke structure K defines an equivalence relation ≡ on S, where s1 ≡ s2 if
∃σ ∈ G such that s2 = σ(s1). The equivalence class [s] = {t | ∃σ ∈ G : σ(s) = t}
is called the orbit of s under G, with rep([s]) as the representative.

Definition 10 (Quotient Structure). Given a Kripke structure K = ⟨S, I,R,
L,AP ⟩ and a symmetry group G acting on K, the quotient structure for K modulo
G is a Kripke structure KG = ⟨SG, IG, RG, LG, AP ⟩, where SG = {[s] | s ∈ S},
IG = {[s0] | s0 ∈ I}, RG = {([s], [t]) | (s, t) ∈ R}, LG([s]) = L(rep([s])) = L(s)
for all s ∈ S.

Definition 11 (Invariance Group). In a Kripke structure K = ⟨S, I,R, L,AP ⟩,
a symmetry group G is an invariance group for an atomic proposition p if:
∀σ ∈ G : ∀s ∈ S : L(s) = L(σ(s))

Definition 12 (Bisimulation Relation). Given two Kripke structures K1 =
⟨S1, I1, R1, L1, AP ⟩ and K2 = ⟨S2, I2, R2, L2, AP ⟩, a binary relation B ⊆ S1×S2

is a bisimulation relation if (s1, s2) ∈ B implies:
– L1(s1) = L2(s2)
– if (s1, s′1) ∈ R1, then ∃s′2 ∈ S2 s.t. (s2, s′2) ∈ R2 and (s′1, s

′
2) ∈ B

– if (s2, s′2) ∈ R2, then ∃s′1 ∈ S1 s.t. (s1, s′1) ∈ R1 and (s′1, s
′
2) ∈ B

Lemma 2 (Correctness of Symmetry Reduction). Given a transition sys-
tem represented as a Kripke structure K = ⟨S, I,R, L,AP ⟩ and its quotient
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structure KG = ⟨SG, IG, RG, LG, AP ⟩ w.r.t. an invariance group G for all atomic
propositions p ∈ AP in symmetric LTL formulas ϕ, the structure KG is bisim-
ulation equivalent to K.

Theorem 2 (Correctness of SR Tendermint Model). Given the Tender-
mint consensus protocol modelled as K = ⟨S, I,R, L,AP ⟩ and the reduced model
Ks = ⟨Ss, Is, Rs, Ls, AP ⟩ via symmetry reduction, if a counterexample exists in
the state space of K then it also exists in the state space of Ks.

3.6 Other Notable Optimisations

Abstraction of Timed Components from the Initial TCSP# Model. Initially, we
modelled the system using the RTS Module of the PAT model checker, which
employs a global clock to impose a total order on events. However, the clock sig-
nificantly increased model complexity and state space, causing the model checker
to freeze. We then switched to the standard CSP# Module, removing the clock
after realizing that event order could still be determined without exact timings.
This shift led to a “result-oriented” approach, focusing on the outcomes of timed
events like timeouts and deadlines while considering all possible interleavings.
Eliminating the clock, which merely recorded timestamps, reduced the state
space and simplified the model without compromising correctness.

Abstraction of Synchronization Primitives. The intended functions of certain ar-
tificially modelled synchronization primitives, such as distributed mutexes, which
do not contribute to the core logical behaviour of the protocol, can be achieved
more concisely using higher-level built-in constructs like unconditional choice
operators. Since the unconditional choice operator inherently allows only one
participating process to proceed, it naturally enforces mutual exclusion and pre-
vents concurrent access to critical sections, eliminating the need for explicit syn-
chronization. Following the "result-oriented" approach, these primitives can be
abstracted away, avoiding manual steps like mutex acquisition and release while
preserving the model’s semantics. This simplification reduces process complexity
and the number of possible interleavings, thus minimizing the state space.

Shared Use of A Single Instance of Message Log. Another optimization that may
seem counter-intuitive is using a single message log for all processes, rather than
giving each process its own log. Although individual logs might align more closely
with the system’s semantic interpretation, they are unnecessary and redundant
in PAT. The primary concern — distinguishing the arrival order of a broadcast
message across n processes (yielding n! possible orders) — is effectively addressed
by using a general choice operator. This operator randomly selects the next pro-
cess to handle the broadcast message, ensuring that all possible execution traces
are explored. Given that our system model assumes a partially synchronous net-
work (where all messages are eventually delivered), the variability lies in timing
rather than in message drops or corruption.



16 Yisong Yu et al.

Property: safety + liveness
Exp. Timeout Byzantine Reduction Result TimeNo. Mech. POR SR

1 ✓ × × × CRASH 2 days
2 ✓ × ✓ × VALID 10 hours
3 ✓ × ✓ ✓ VALID 325.82s
4 ✓ ✓ ✓ × CRASH 2 days
5 ✓ ✓ ✓ ✓ VALID 242.59s
6 × × ✓ ✓ VALID 0.21s
7 × ✓ ✓ ✓ VALID 0.14s

Table 1: Verification results of our CSP# models for Tendermint. Specs: Intel
Core i7 11800H / 32GB RAM.

Unlike the constant-factor improvements in time and space complexity achieved
by abstracting synchronization primitives and using a single message log, ab-
stracting timed components from our original TCSP# model leads to exponen-
tial state space reduction, from 4n to 2n, where n is the number of processes,
for the decisions on timeout.

3.7 Discussions on Generalisability

Our proposed partial-order reduction techniques are also applicable to other BFT
protocols because usually only a few dependencies between functions or proce-
dures within the same process or across different processes can be observed (since
if not, all steps are dependent on one another, forming a totally-ordered execu-
tion sequence, which obviously does not need to be further reduced), opening up
the door to reduce these interleaved executions which are stuttering equivalent
and therefore well-founded linearizations of the partial order execution.

Our symmetry reduction techniques can similarly be applied to exploit sym-
metries inherent in other typical BFT protocols which share a similar structure
with respect to the concept of rounds and steps (or sometimes called phases)
within a round (i.e., both properties are orderable and hence can be sorted), and
at the same time do not distinguish between roles undertaken by their participat-
ing nodes/processes and treat them as equal counterparts that perform exactly
the set of rules or procedures at an appropriate time (i.e., upon the stipulated
pre-condition of each rule becomes true).

4 Verification Results

The verification results of our CSP# model built specifically for the Tendermint
consensus algorithm were produced via the PAT model checker under differ-
ent honesty configurations, as shown in Table 1. Note that before applying the
reduction techniques, the verification used up all the RAM after 2 days.

In the verification, we check LTL formulae of the form

□♢(decision[0] == T ∧ decision[1] == T ∧ · · · )
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to express both the safety property and the liveness property (cf. end of Sec-
tion 2) — from any state (□), eventually (♢), the decisions of node 0, 1, · · · will
be made and will be the same (T ). We examined all honest processes and cases
where one process is Byzantine, applying our vulnerability fix. The results show
that the algorithm maintains both safety and liveness even when a Byzantine
process is present. The Byzantine process can reject valid proposals or make
invalid ones, but its behaviour is limited to keep the state space manageable
and ensure termination. Complex behaviours like equivocation and amnesia are
excluded to simplify analysis.

From Table 1, we can observe that if we remove the timeout mechanism
in the protocol (last two rows in Table 1) the verification time is significantly
reduced. Timeouts significantly increase the state space complexity, as they add
variability in message delays and process execution timing, which needs to be
accurately modelled for realistic verification.

The successful verification of Tendermint’s safety and liveness properties
and the application of reduction techniques are notable contributions of this
work. They represent a breakthrough in addressing the complexities of Byzan-
tine fault-tolerant consensus verification, offering a more robust solution than
existing verifications such as that in TLA+, which could not verify liveness due
to limitations in managing state space.

These verification results prove the correctness of the Tendermint consensus
algorithm at a single blockchain height. By induction, the correctness of the
entire blockchain is established. Starting with the base case, the genesis block
is inherently valid as the blockchain’s founder creates it. For the inductive step,
assuming correctness up to height k, the block at height k + 1 must also be
correct when derived using this consensus algorithm. This completes the proof,
ensuring both safety and liveness of the blockchain.

Also shown in Table 1, the only experiment (5) that finished verification in a
reasonable time when considering both timeout mechanism and Byzantine nodes
has to implement both of our proposed reduction techniques. Note that verifi-
cation results about the impact of other notable optimizations in subsection 3.6
are omitted from Table 1, as their exponential improvement is asymptotically
less effective in practice than the primary techniques discussed above.

5 Related Work

Blockchain Consensus. Numerous consensus protocols have been proposed for
blockchain, as surveyed in [27]. Among them, BFT based consensus protocols
form a large category. Compared to other protocols like PoW (proof-of-work)
and PoS (proof-of-stake) which assign the participants with high computing
power, stakes and storage, a higher priority in winning the leader competition,
BFT-based allow participants to reach consensus through voting. Tendermint
protocol analysed in this work is BFT-based in general, and their voting weight
are decided following the idea of PoS which is beyond the scope of this work.
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Formal Verification of Blockchain Consensus. Compared to the vast number of
consensus protocols, only a few have been formally verified. Notable examples
include the Snow White consensus for the Avalanche blockchain, proven using
mathematical proof [16]; the Algorand consensus [3] and Raft consensus [26],
verified using Coq; the Stellar consensus, verified with the model checker UP-
PAAL [28]; the Red Belly consensus, verified with ByMC [25]; and the Beacon
Chain in Ethereum 2.0 and the Trust-based Blockchain Crowdsourcing (TBC)
consensus protocol, verified with PAT [1,2]. Additionally, a branch of work fo-
cuses on formal verification logic and techniques for fault-tolerant distributed al-
gorithms, verifying protocols like Last Voting, OneThirdRule, and Paxos [17,6],
which ensure crash fault tolerance but lack the Byzantine fault tolerance.

Formal Verification of Tendermint. Notably the following:

Manual Analysis. The work [4] manually proved a few properties of Tender-
mint, including termination, validity, integrity and agreement of one-shot con-
sensus, termination, validity and agreement of multiple rounds, and fairness, con-
sidering Byzantine nodes. Similar to this work, we also verified multiple rounds
in the presence of Byzantine nodes. By contrast, we did not verify fairness (due
to the required game theory verification being challenging for model checkers),
and we used automated formal verification to reduce human errors in proofs.

The TLA+ Model. The work [22] models the Tendermint consensus protocol
using TLA+, but does not incorporate any Byzantine behaviours. Properties like
equivocation (i.e., sending multiple messages that vote for different values within
the same round to other processes) and amnesia (i.e., locking a new value in a
round without unlocking a previously locked value from some earlier round) are
modelled and proven. However, the safety and liveness properties are excluded
from the verification objectives, likely due to the set-theory-based characteris-
tics inherent in the TLA+ specification language, which, while expressive and
helpful in simplifying definitions through constructs such as universal and exis-
tential quantifiers, lacks the ability to enforce an execution order of upon rules
among different processes. Under the same project, TLA+ has been used to ver-
ify other related protocols such as Fastsync—a synchronization mechanism to
recover from network disconnection [7], which is beyond the analysis target of
this work. The work [5] also used TLA+ to model Tendermint consensus, how-
ever, focusing on verifying a Nash Equilibrium property to identify free-riding.

The Ivy Model. The same project as in [22] has also provided an Ivy model
of Tendermint consensus and proves the safety property by refinement of an
abstract model with the actual model. However, the property is with respect to
Byzantine nodes, which do not support sending forged messages.

The PAT model. Maung et al. [21] used PAT to analyse Tendermint consensus
for safety properties BUT NOT liveness property. They verified a few attack
scenarios for multiple rounds, but they used the old Tendermint specification,
which suffers from liveness attacks. In contrast, this work verified the new version
of Tendermint, proved its liveness, and identified other vulnerabilities.
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Compared to previous works, we have successfully verified both safety and
liveness properties using advanced reduction techniques, even in scenarios with
either no Byzantine processes or exactly f Byzantine processes among 3f + 1
total processes. This extends the state space coverage and accounts for a wider
range of arbitrary Byzantine behaviors, making our verification results more
robust and trustworthy.

6 Conclusion and Future Work

This work verified the new Tendermint consensus protocol in multiple rounds
with Byzantine nodes. It advanced existing verification by enhancing the ability
to verify liveness in multiple rounds using a timeout mechanism. The approach
can be applied to other blockchain consensuses with similar state-space chal-
lenges. We found a vulnerability in Tendermint that could lead to a Denial
of Service attack and proposed a fix to eliminate it. We optimized our model
with reduction techniques to minimize the state space, resulting in an efficiently
model-checked model. Our patched model meets both safety and liveness prop-
erties. Future work includes modelling a more complete set of Byzantine be-
haviours, scaling up the number of nodes in the model checking process, extend-
ing verification scope from specifications to actual implementations to examine
behavioural consistency, and applying our reduction techniques to other BFT
protocols towards a universal framework compatible with existing tools.

Data Availability. All versions of our models and detailed proofs are available at
https://tinyurl.com/4hbaf62m. The PAT model checker can be downloaded
at https://pat.comp.nus.edu.sg/resources/pat3_5_1/.
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