
N-PAT: A Nested Model-Checker
(System Description)

Hadrien Bride1, Cheng-Hao Cai2, Jin Song Dong1,3, Rajeev Gore4, Zhé Hóu1,
Brendan Mahony5 and Jim McCarthy5

1 Institute for Integrated and Intelligent Systems, Griffith University, Australia
2 School of Computer Science, University of Auckland, New Zealand
3 School of Computing, National University of Singapore, Singapore

4 Research School of Computer Science, The Australian National University, Australia
5 Defence Science and Technology, Australia

Abstract. N-PAT is a new model-checking tool that supports the verification of
nested-models, i.e. models whose behaviour depends on the results of verification
tasks. In this paper, we describe its operation and discuss mechanisms that are
tailored to the efficient verification of nested-models. Further, we motivate the
advantages of N-PAT over traditional model-checking tools through a network
security case study.

1 Introduction

Model-checking is the problem of formally verifying that a model of a system meets
a given specification. Automated model-checking techniques have been successfully
applied to find subtle errors in complex industrial designs of e.g., hardware circuits,
software controllers, and communication protocols [1]. However, the adoption rate of
model-checking remains low in software engineering because of the computational
complexity of model-checking algorithms. The state-space explosion problem [2] makes
the verification of large models intractable unless high-level abstractions are used in the
development and leveraged during verification.

Nowadays, complex systems are often designed in a modular and hierarchical fash-
ion. Hierarchical models, also called multilevel models, are abstract representations of
systems that span multiple levels of abstraction. They encode the hierarchical structure
of systems explicitly and therefore enable reasoning about how properties of one level
reflect across multiple levels of the model [5].

In this paper, we introduce the notion of nested model and nested model-checking.
The main idea is to break up a large model-checking task into a hierarchy of smaller
model-checking tasks. A Nested model is a high-level model which may contain several
child models nested inside; its behaviour depends on the verification results of its child
models. Note that the properties to be verified in child tasks may be different from the
properties to be verified in parent tasks.

We present N-PAT – a nested model-checker suited to the verification of hierar-
chical systems and designed to perform nested model-checking tasks. In hierarchical
modelling, some verification tasks may be used to determine and lift the properties of

underlying child models to parent models. This structural abstraction provides mod-
ellers with the ability to structure the verification and guide the state-space exploration
of model-checking methods, it also provides significant benefits in term of scalability
for verification when compared to the traditional approach to modelling. We implement
several optimisations leveraging the hierarchical structure of nested models. Also, since
the time and space complexity of model-checking algorithms with respect to the size of
models is super-linear, the divide-and-conquer approach employed by N-PAT signifi-
cantly reduces the overall verification time. What sets N-PAT apart from existing model
checkers (e.g., [7], [6], [4]) is the abstraction level of the modelling language. In our
work, the modelling language of nested models has high-level primitives such as model
checking and nested model instantiation.

2 Nested Model-checking

Standard model checking is the problem of verifying whether a standard model com-
plies with a given property. A standard model is a static and finite-state representation
of a system, which may exhibit non-deterministic and probabilistic behaviours. The
semantics of a standard model can be specified as a labelled transition system or a
Markov decision process. Properties that can be verified include reachability, deadlock-
freeness, divergence-freeness, reachability, and LTL formulae. The result of a model
checking task depends on the type of the model. When checking a property over a
non-probabilistic model, the result is 0 (not satisfied) or 1 (satisfied). When checking
a property over a probabilistic model, the result is the min (alt. max) probability that
the property is satisfied. Note that we only consider results in natural numbers, and
a probability is represented in e.g., per thousand. Formally, let Ms be the set of stan-
dard models and Φ be the set of properties. We denote by mc : Ms×Φ → N the model
checking function that returns the results of checking a property over a standard model.

A meta model, also commonly referred to as a template, is a model of standard
models. It can be viewed as a function that has a finite number of arguments and returns
a standard model. Formally, a meta model is a function of the form A1× ...×An→Ms

where n ∈ N and A1, ...,An ∈ N. We denote by Mm the set of meta models. In order to
instantiate a meta model, every argument must be known. An instantiated meta model
is a standard model and can be verified using standard model checking.

Traditionally, meta models are instantiated from values specified by the modeller. In
our work, we consider the verification of meta models instantiated from values that are
the result of model checking tasks. Such a meta model is called a nested model and de-
noted as Mn. Figure 1 illustrates the structure and components of a nested model. Each
diamond represents a standard model. Each box represents a meta model. Verification
tasks are symbolised by circles. The text within each circle is the property to be checked
in the corresponding verification task. The arrows symbolise dependencies among ver-
ification tasks. In Figure 1, there are two standard models: M2 and M3, and two meta
models: M0 and M1. For instance, M1 requires the verification results from mc(M2,φ2)
and mc(M3,φ3) to be instantiated. After instantiation, M1 will become a standard model.
To verify the property φ0 over the nested-model M0, we need to evaluate the following
expression: mc(M0(mc(M1(mc(M2,φ2),mc(M3,φ3)),φ1),mc(M3,φ4)),φ0).

M0

M1

M2 M3

φ 1

φ 2 φ 3

φ 4

Fig. 1: Illustration of the structure of a nested model.

A nested model checking problem is an expression that can be evaluated to an inte-
ger; it is formulated in a language that has two main primitives: meta model instantiation
and standard model checking. For convenience, the language of nested model check-
ing problems is extended with integers, basic arithmetic operations and restricted scope
constant definitions. Let const be the set of constant identifiers, the syntax of nested
model checking problems is given by the grammar in Figure 2, where [α]∗ denotes
repeating α zero or more times.

binding ::= const = expr mc ::= mc(model, Φ)
model ::= Ms |Mm(binding [, binding]∗) op ::= expr (+ | − | × | /) expr
de f ::= let binding [, binding]∗ in expr expr ::= N | op | mc | const | de f

Fig. 2: The BNF grammar of nested model checking problems.

We assume that the set of verification tasks related to a nested model form a directed
acyclic graph (as in Figure 1), which defines the dependencies of tasks, and that the
tasks and the graph are known before the verification stage. When a let expression
introduces multiple bindings, these bindings must be independent of one another, non-
recursive, and may be evaluated in parallel.

The semantics of nested model checking problems in a given context is defined
by the evaluation function eval, given in Figure 3. A valued binding is a tuple 〈c,v〉
where c ∈ const and v ∈ N. A context is a set of valued bindings. Let Γ be a context,
e,e1, ... ∈ expr be expressions, c,c1, ... ∈ const be constant identifiers, ms ∈ Ms be a
standard model, mm ∈ Mm be a meta model, m ∈ Ms ∪Mm be a model, φ ∈ Φ be a
property, n,v,v1, ... ∈ N be numbers, and op ∈ {+,−,∗,/} be an integer operator.

eval(n, Γ) = n eval(ms, Γ) = ms eval(c, Γ) = v where 〈c,v〉 ∈ Γ

eval(e1 op e2, Γ) = eval(e1, Γ) op eval(e2, Γ) eval(mc(m, φ), Γ) = mc(eval(m, Γ), φ)

eval(mm({〈c1,e1〉, ...,〈cn,en〉}), Γ) = m({〈c1,v1〉, ...,〈cn,vn〉}) where
v1 = eval(e1, Γ), ..., vn = eval(en, Γ)

eval(let {〈c1,e1〉, ...,〈cn,en〉} in e) = eval(e, Γ ′) where
Γ ′ = Γ ∪{〈c1,eval(e1, Γ)〉, ...,〈cn,eval(en, Γ)〉}

Fig. 3: The semantics of nested model checking problems.

3 N-PAT: Implementation

N-PAT is built on top of Process Analysis Toolkit [7] (PAT) – an industrial scale model-
checker which employs an expressive modelling language called Communicating Se-
quential Processes with C# (CSP#) developed by Hoare [3] and others [9]. PAT features
a model editor and an animated simulator using a mature and IDE-style user interface.
Further, PAT facilitates new language and algorithm design and implementation as ex-
tended modules. Over the past 10 years, we have extended PAT with new verification
modules for timed automata [9], real-time systems [8], and probabilistic systems [10].
We implemented N-PAT in C# as an extension of PAT. N-PAT is open-source and freely
available online.6

Standard models are specified by (probabilistic) CSP# models and properties are
specified by CSP# assertions [7]. Meta models are specified by a meta-level CSP#
language. This language, called meta-CSP#, introduces labelled place-holders, of the
form [id] where id ∈ const is a label. These labelled place-holders extend the CSP#
language and can be used in place of integer constants (e.g., variable initial values,
choice probabilities). Let m be a meta-CSP# model and id1, ..., idn where n ∈ N be the
set of placeholders that appears in its definition. Let v = {〈id1,v1〉, ...,〈idn,vn〉} where
v1, ...,vn ∈ N be a set of valued bindings. The meta-CSP# model m can be instanti-
ated using v into a CSP# model by substituting the occurrences of [idi] by vi for all
i ∈ {1, ...,n}. Nested model checking problems are specified using the language de-
scribed in Section 2. Model checking is performed by N-PAT through the orchestration
of calls to PAT.

CSP# Models

N-PAT

Results

M-CSP# Models

Nested Model
Checking Problem

PAT

Fig. 4: N-PAT data-flow overview.

Figure 4 depicts the overall data-flow of N-PAT. The input of N-PAT is a set of
standard CSP# and meta-CSP# models and a nested model checking problem. N-PAT
evaluates the result of the nested model checking problem similarly to how a dynamic
interpreter evaluates an expression. The nested model checking problem is first parsed,
and a corresponding abstract syntactic tree is built. This step is implemented using
parser combinators (i.e., using recursive descent parsing). The resulting abstract syn-
tactic tree is then recursively evaluated in a bottom-up fashion.

6 https://formal-analysis.com/research/npat/index.html

N-PAT exploits the hierarchical nature of nested models and provides improved
verification scalability when compared to traditional model checkers that operate on
flattened models. First, since CSP# models are static (i.e., they are not modified dur-
ing execution), N-PAT applies stage-wise partial evaluation of verification sub-tasks to
optimise the verification phase of nested CSP# models. Second, given a nested CSP#
model, we assume that its verification sub-tasks are independent and can be computed
concurrently. Thus N-PAT uses parallelism to speed up verification on modern archi-
tectures with multiple cores. This parallelism manifests itself in three places: bindings,
operands, and the evaluation of meta model arguments.

4 Case Study and Experiment

We introduce a network security case study to illustrate the modelling and scalability
advantages of nested model-checking. The case study is concerned with computing the
probabilistic security level of a network. It is a simplified version of a real-life example
which is studied by Australian Defence. The problem is hierarchical by nature, which
illustrates code-reuse and modularisation of the proposed modelling approach. Another
nice property of this example is that we can create models of different sizes to test the
scalability of the verification, as will be shown in the experiment.

The details of the example are as follows: suppose there is a cluster of computation
nodes, and each node can be in one of the three states: safe, compromised, and isolated.
Initially, each node is safe, but it has a chance to be hacked, which changes the state of
the node to compromised. When a node is compromised, it can either be patched, which
will make the node safe again, or be isolated, which will disconnect the node from the
cluster. If a node is isolated, then it loses the connection to other nodes and thus cannot
contribute to the computational power of the cluster. When the node is isolated, it has a
chance to be recovered, which will lead the node to the safe state again. Otherwise, the
node stays isolated, in which case we increase down nodes counter, i.e., the number
of nodes that are offline, by 1. For simplicity, we assume that the hacking of each node
is independent. We model two types of nodes: normal node and premium node, where
the latter has a higher chance to be patched when it is compromised and a higher chance
to be recovered when it is isolated.

Traditional Method: We shall formalise the above as a Markov chain in CSP#, and we
have to define the state transitions for both types of nodes. Next, we model a cluster
manager, which iterates through each node in the cluster and checks whether the node
is offline. The manager will report that the cluster is in critical condition if at least
half of the nodes in the cluster are offline. Consider an example where there are only
two nodes in the network: the first node is a normal node, and the second node is a
premium node. We show the overall Markov chain in Figure 5. We annotate the event
and its probability on the arrows. The upper part of the figure describes the process
of checking the normal node, which can be either safe or isolated. The lower part of
the figure splits into two cases when checking the premium node. The Down = x line
in each circle indicates the down nodes counter. The premium node in Figure 5 has
a higher chance to be hacked than because in our hypothetical scenario, the hacker is
more likely to target a premium node.

Fig. 5: The Markov chain of the traditional model, exemplified with two nodes.

Nested Model Checking Method: We break the model in Figure 5 down into two levels
of abstraction: the node level and the cluster level. The idea is to create more modular
models so that the model for a node can be used for both normal nodes and for premium
nodes, and potentially can be used in future developments of other models. At the node
level, we study the common properties of the two types of nodes, and try to generalise
the model so that the model-checking result is exactly what we need at the cluster level.
As the cluster manager, we only need to know whether a node is offline or not. There-
fore, besides safe, isolated, and compromised, we give a node two additional states: ok
and down. Like in the traditional model, each node is initialised to be in the safe state.
Since we do not consider cluster manager operations at the node level, we do not use
the counter for offline nodes. Instead, when the node stays isolated, we change its state
to down, and when it is not hacked/patched/recovered, we change its state to ok. The
state transition diagram is shown in Figure 6a.

At the cluster level, we abstract the notion of a node into only two states: ok and
down. The probability of going to these two states will be given by the model-checking
results from the node level. If a node is down, then we increment down nodes counter.
We then model the cluster manager similarly as in the traditional model. The (partial)
Markov chain for checking nodes is illustrated in Figure 6b, where we only show two
nodes. Note that places holders for probabilities in Figure 6a, such as [Isolated],
will be instantiated with specific values, depending on the type of the node, at run-time.
Place holders in Figure 6b will be instantiated with the results of node-level verification
at run-time. Compared to the traditional model (cf. Figure 5), the nested model is much
simpler, and we will show that this leads to significant improvement in scalability.

(a) Node Level (b) Cluster Level

Fig. 6: Modular models of Figure 5 for nested model checking.

Experimental comparison: We compare the performance of both modelling approaches
by evaluating the overall security of network of different sizes. In each case, the num-
ber of normal nodes are 4/5 of the total number. All experiments were carried on a
desktop with Core i7-7700 quad-core processor at 3.6GHz and 32GB RAM. We ver-
ify multiple instances of the above models, starting with 8 nodes in a cluster, and in-
crease the number of nodes by 2 at a time, and maintain the number of normal nodes at
(4×num o f nodes)/5. We then observe the time used in model checking as the num-
ber of nodes increases. We run each test 5 times and compute the average time spent to
obtain the results.

Number of Nodes 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Runtime Traditional (ms) 248 306 569 1771 7411 35K 279K Out of memory
Runtime N-PAT (ms) 427 430 430 430 430 431 445 438 442 461 458 469 465 476

Table 1: Experiment of traditional (probabilistic) model-checking compared with nested
model checking.

Discussion: As seen from the results in Table 1, the run-time of traditional model-
checking grows rapidly as the size of the model (the number of nodes) increases. On
the other hand, the run-time growth of nested model checking is moderate, and it solves
instances up to 34 nodes less than 0.5 seconds. N-PAT also uses very little memory
compared to PAT which uses up to 26.6GB memory when running the 20 nodes in-
stance. For small examples, the traditional modelling approach may be faster because
the verification of nested models involves several calls to PAT which incur marginal
overhead. However, the nested model checking approach scales better. The source code
of this experiment, i.e. both the traditional model and the hierarchical model, can be
found online.7

7 https://formal-analysis.com/research/npat/examples.html

5 Conclusion and Future Work

We presented N-PAT – a high-level model checker that enables the verification of mod-
els that relies on the results of other verification tasks. We demonstrated in a case study
in network security that this tool permits the use of high-level abstraction mechanisms
and can therefore significantly improve the time and memory efficiency of verification
tasks. These results indicate that nested model checking provides a novel modelling
approach that can in some cases scale better than traditional model-checking.

In future work, we intend to provide more modelling flexibility by allowing dynamic
calls to verification tasks that are not known a priori. We also planned to apply dynamic
language optimisation techniques such as memoisation to speed up verification. Finally,
we planned on supporting a fully reflective modelling language that permits inspection
and modification of the behaviour and structure of models at verification-time.

References

1. Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer, 2018.

2. Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model checking
and the state explosion problem. In LASER Summer School on Software Engineering, pages
1–30. Springer, 2011.

3. Charles A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, August 1978.

4. Jesús J López-Fernández, Esther Guerra, and Juan De Lara. Meta-model validation and
verification with metabest. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, pages 831–834. ACM, 2014.

5. Ovidiu Pârvu and David Gilbert. A novel method to verify multilevel computational models
of biological systems using multiscale spatio-temporal meta model checking. PloS one,
11(5):e0154847, 2016.

6. Bernhard Steffen and Alnis Murtovi. M3c: modal meta model checking. In International
Workshop on Formal Methods for Industrial Critical Systems, pages 223–241. Springer,
2018.

7. Jun Sun, Yang Liu, and Jin Song Dong. Model checking CSP revisited: Introducing a process
analysis toolkit. In International symposium on leveraging applications of formal methods,
verification and validation, pages 307–322. Springer, 2008.

8. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne André. Modeling and
verifying hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng.
Methodol., 22(1):3:1–3:29, March 2013.

9. Jun Sun, Yang Liu, Jin Song Dong, and Xian Zhang. Verifying stateful timed CSP using
implicit clocks and zone abstraction. In Karin Breitman and Ana Cavalcanti, editors, For-
mal Methods and Software Engineering, pages 581–600, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

10. Jun Sun, Songzheng Song, and Yang Liu. Model checking hierarchical probabilistic sys-
tems. In Proceedings of the 12th International Conference on Formal Engineering Methods
and Software Engineering, ICFEM’10, pages 388–403, Berlin, Heidelberg, 2010. Springer-
Verlag.

