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Abstract In order to define executable hardware description language while
at the same time be fit for formal proofs of properties, a hardware description
language VeriFormal, embedded in Isabelle/HOL, was created. VeriFormal, to-
gether with a translator and Isabelle/HOL proof facility, provides a platform
for designing, simulating and reasoning about hardware designs. Building such
an environment is challenging due to the fact that the designer must have ex-
pertise in programming language design, the specific domain and theorem
prover. It requires selection of a language design criteria, host language, gram-
mar, embedding approach and techniques and mechanisms to address deter-
minism and termination issues. When the language in question is a hardware
description language, it requires specialized treatment of events, their schedul-
ing, data types and assignments. In this paper, we report on our experience
of embedding hardware description language VeriFormal in theorem prover
Isabelle/HOL. In particular, the structure and execution of programs in the
context of theorem provers and their impact on the overall language design are
discussed. Among the main features of VeriFormal include formal semantics
of the language, support for mechanical reasoning about designs and compiler
and type checking of modules using Isabelle/HOL as well as VeriFormal type
checkers.
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1 Introduction

To verify hardware circuits and systems, one proves the correctness of the
implementation with respect to some formal specification. Due to the size and
complexity of digital systems, they are described in terms of functions using
higher-level mathematical notations such as Hardware Description Languages
(HDLs). Most of the HDLs, such as Verilog [54] and VHDL [4], do not have
formal semantics and such a loosely defined semantics [49] restricts them only
to simulation. While simulation-based verification is common in the industry to
show presence of errors, it fails to guarantee their absence [49]. Furthermore,
a property P of the design under test D defined in Verilog can be tested
by simulating only against limited number of inputs: it is computationally
infeasible to simulate the design for all possible inputs (2256) when each input
is 256-bits wide.

There is a semantic gap [24] between such HDLs and the logic used in the
formal verification and hence they cannot be used to mathematically prove
properties of the designs described in them. Hardware circuits can directly be
modelled using other mathematical logic notations [30,32], but this approach
is not acceptable to many designers and computer tools such as simulators
[10]. To fill this gap, a semantic approach [10] is taken: a formal model of
hardware description language is built in a theorem proving environment such
as Isabelle/HOL. The formal language, ideally defined in a proof assistant,
enables semi-automated verification of hardware designs. The HDL VeriFormal
[36] is such a language with formal semantics embedded in the proof assistant
Isabelle/HOL [47].

Fig. 1: Formal verification of digital circuits [28]

The formal approach to checking correctness of digital circuits is described
in the Figure 1. Formal models of the digital circuit under verification and
the properties of interest as theorems (both described in VeriFormal) are fed
into an ITP engine (Isabelle/HOL in our case) and a mathematical proof that
the (model of the) circuit holds the properties is carried interactively. Unlike
simulation, the property P of the design D defined in an HDL with formal
semantics can be mathematically proved, against all possible inputs, using the
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logic behind the HDL (see an example of proof of property against all possible
inputs to a program in Figure 2).

The semantic approach of embedding an HDL in a theorem prover is use-
ful in many ways [10]. It gives formal, and thus precise, semantic definitions
of various notations. Through embedding in Isabelle/HOL, mechanical sup-
port for HDL Verilog, including mechanical checking of proofs, is provided.
The type checker of the theorem prover is used to statically check the syntax
and types of the programs using a computer. Using the proof facility of the
theorem prover, formal proofs about the classes of programs and constructs
can be carried and checked mechanically. Furthermore, if the semantics of the
language is developed in a functional style, designs can be executed thereby al-
lowing designs simulation. For this later purpose, an executable simulator can
be automatically extracted using code generation facility of Isabelle/HOL. Ad-
ditionally, the semantic approach can be used as a step towards verification of
compilers (e.g., Verilog simulators).

Defining an HDL with formal semantics has numerous benefits as described
above, though, there are various challenges to address before availing these
benefits. The first question that arise is whether to define a formal seman-
tics for all or a carefully chosen subset of notations and constructs of the
language. Considering the amount and frequency of work required to extend
constructs and carry proofs, an approach for semantic embedding based on
deep or shallow embedding [26,55] is chosen. HDLs consist of sequential as
well as concurrent constructs with the later being more challenging to dealt
with while defining the formal semantics. In particular, language constructs
that either do not terminate or terminate in non-trivial fashion are difficult
to formalize in languages that accepts only total functions. To ease program-
ming in the new language, its syntax should be kept in a natural style with
syntactical structure similar to other known languages (e.g., Verilog). In this
research work, the challenges confronted while embedding the domain-specific
language VeriFormal in a theorem prover and approaches taken to address
them are discussed.

This paper is an extended version of our previous work on VeriFormal pub-
lished as a conference paper [36]. It highlights the syntax and semantic chal-
lenges faced when embedding VeriFormal in Isabelle/HOL. In other words, the
conference paper described syntax and semantics (what part) of the language
while the existing paper focusses on how and why different approaches were
taken to address the challenges encountered. The major contributions of this
paper are the following:

– The checker predicate of VeriFormal is extended with an additional check
on always blocks (Figure 17).

– The meta-programming construct, generate loop statement, is added to the
VeriFormal translator to support parametric designs.

– Two proof examples, one interactive proof and one type checking, in Is-
abelle/HOL are added (Section 3). The examples are simple, though, they
highlight the significance of embedding HDL in a theorem prover.
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– An in-depth analyses and discussions on language design criteria, host lan-
guage, context-free grammar, embedding approach, bit-vector assignment,
event formation and scheduling are included (Sections 4 and 5).

– The peculiarities of formal description of (non)-deterministic behaviour,
non-terminating and non-trivially terminating processes are presented with
examples (Section 6).

– The impact of designing a separate type checker on the language design
and correctness of programs are discussed (Section 7).

Readers are recommended to refer to the paper [36] and source codes at
link https://github.com/wilstef/veriformal for detailed description of
language syntax and operational semantics.

The rest of the paper is organized as follows. In next section, an introduc-
tion to HDL VeriFormal, formal specification and proving in Isabelle/HOL is
given. The creation of VeriFormal is motivated in Section 3. The language de-
sign criteria and embedding approach are discussed in Section 4. The syntax
challenges faced while embedding VeriFormal are discussed in Section 5. A
detailed discussion on formalizing non-deterministic and non-terminating be-
haviours are given in Section 6. The syntactical complexity distribution among
the embedded language, a separate type checker and translator is described in
Section 7. Few examples of formal verification using VeriFormal are included
in Section 8. A summary of the related work is given in the Section 10. The
paper is concluded in Section 11.

2 Background

VeriFormal is a formal version of DSL Verilog, embedded in the higher order
logic of theorem prover Isabelle/HOL as the host language. In this section,
formal specification and verification using theorem proving approach is briefly
introduced. Furthermore, the syntax of VeriFormal is described and compared
with the syntax of Verilog. This section also highlights significance of formal
methods in designing domain-specific languages.

2.1 Formal specification and verification using theorem proving

To formally reason about systems, a formal model of the system and the
property of interest is built in the logic of a theorem prover (such as Coq [7]
and Isabelle/HOL [47]). The proof facility of the theorem prover is used to
carry a proof that the (model of the) system holds the property and the proof
checker of the tool is used to mechanically check if the proof is valid. For a
system (e.g., programming language) to be more ’prover friendly’, it must be
consistent to the logic of the prover. If it is not, the system is re-defined in the
logic of theorem prover which enables one to carry proofs about the system
using the logic of the tool. Theorem provers are similar to other programming
languages, however, in addition to programming, they can be used to reason
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about programs defined in the logic of theorem prover. Another approach to
formal verification is based on model checking [16] and is out of scope of this
paper.

1 theory natproof

2 imports Main

3 begin

4 datatype nat = zero | S nat

5 primrec add :: "nat ⇒ nat ⇒ nat" where

6 "add zero m = m"

7 | "add (S n) m = S (add n m)"

8 lemma add_m_o: "add m zero = m"

9 apply (induct m)

10 apply auto

11 done

12 end

Fig. 2: Interactive proof in Isabelle/HOL

To describe formal developments and proofs using theorem prover, a simple
system of numbers is defined and reasoned about using the tool Isabelle/HOL.
To begin with, numbers are inductively defined as data type nat using the
keyword datatype with two constructors for generating elements of the type
nat (line 4, Figure 2). The definition nat states that zero is nat and if n is
nat then S n is also nat. The term S (S (S zero)), for example, is a number
(3) in nat.

Next we define a recursive function add (lines 5–7) on the numbers just
defined. The function returns the second argument m if first argument is zero
and it returns S (add n m) if first argument is of the form S n. A lemma
add m o, that add m zero = m holds for any value of m, is stated and proved in
Figure 2 (lines 8–11). The lemma is proved using induction on the construction
of m. During the proof process, the Isabelle/HOL tool is guided interactively
by providing commands called tactics (lines 9–11).

2.2 Introduction to VeriFormal

VeriFormal is a formal version of Verilog, embedded in the proof assistant
Isabelle/HOL. The syntax of VeriFormal include formal definitions of expres-
sions, statements and top statements. Context-free grammars exp, statement
and top, respectively, are used to define these constructs. An example VeriFor-
mal module is listed in Figure 3 (right), side-by-side with equivalent descrip-
tion as Verilog module (left). Among the major syntactic differences between
Verilog and VeriFormal constructs are the following. In VeriFormal,

– every term is preceded by a constructor name (directive) to help host lan-
guage compiler in parsing (e.g., b t1 [+] t2 to model binary operation +
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1 module addint(Xi, Yi);

2 input [7:0] Xi, Yi;

3 wire [7:0] X, Y;

4 reg [7:0] Z;

5

6 assign #0 X = Xi;

7 assign #0 Y = Yi;

8

9 always #2

10 begin

11 Z = X + Y;

12

13 $finish;

14 end

15 endmodule

1 module ([Xi, Yi])

2 [ input [7:0] [Xi,Yi],

3 wire [7:0] [X,Y],

4 reg [7:0] [Z],

5

6 assign #0 [nX] = nXi,

7 assign #0 [nY] = nYi,

8

9 always ( [#]2

10 BEGIN : [None]

11 ([nZ] [=] [#] -1

12 (b nX [+] nY));;

13 ($finish)

14 END) ]

15 endmod

Fig. 3: Hardware descriptions in Verilog (left) and VeriFormal (right)

on terms t1 and t2). The other constructor in the Figure 3 is n (for names
when used as terms),

– related sequence of identifiers or terms are grouped in lists. Identifiers in the
input port (line 1) and declarations (lines 2−4) and terms in assignments
(lines 6, 7, 11) are combined into lists []),

– operators are enclosed in brackets to avoid conflict with Isabelle/HOL no-
tations (e.g, [+]), and

– statements within a BEGIN. . . END block are separated by double semi-
colons ’;;’ (line 12, right, Figure 3) and enclosed in parenthesis to help
Isabelle/HOL in disambiguating sentences during parsing.

A VeriFormal module is of the form module (P) T endmod, where P is a
list of input ports and T is a list of top statements separated by comma ’,’
(right, Figure 3). The name of module is skipped in the VeriFormal module
definition (line 1, right, Figure 3) and is later added as name of a definition (of
type program) using the Isabelle/HOL keyword datatype (see below). All the
top statements (declarations, continuous assignments and always blocks) in a
module are grouped into a list separated by comma ’,’ which together with
module. . . endmod and input ports form a program in VeriFormal. The [None]

(line 10) is an optional code block name, -1 (line 11) is delay (no delay) and
parenthesis are used for disambiguating terms. Finally, the module is included
in a definition of type program to build the design. The VeriFormal module
in the Figure 3, for example, is defined as a program and simulated using
simulate function as the following

definition addint :: program where "addint = module definition"

value "simulate 2 (fedinput [(Xi, 2), (Yi, 5)] (state addint))"
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The Isabelle/HOL command value evaluates the term following it. The
function state creates a tuple of events from the design (program) and the
fedinput initializes the two input port variables with values 2 and 5, re-
spectively. The state, together with two values is simulated for two simulation
cycles and the updated state (with updated values of variables) is returned. To
simulate a design for all possible inputs, a separate interface program (written
in C++) feeds all the inputs into the simulator, runs it and stores the result
in a file. For more details about VeriFormal syntax, state creation, operational
semantics and simulation, readers are recommended to refer to [36].

2.3 Formal methods based embedded DSLs

Internal DSLs, defining a DSL by embedding it in a host language, are equally
popular as external DSLs among the research community (47.8% and 52.2%,
respectively, as shown in the Table 1). Unlike general purpose programming
languages, domain-specific languages constructs are simple, well-defined and
offers feasible facilities for analysis and verification in terms of DSL constructs
[45]. There are a number of widely used DSLs such as Verilog, VHDL, MAT-
LAB and SQL, just to name a few, however, only limited number of DSLs uses
formal approaches for describing syntax and semantics [37].

Table 1: Research distribution in DSL [37].

Approach Percentage
Internal 47.8
External 52.2

Design Domain
analysis

Formal 16.8 5.7
Informal 83.2 94.3

The research community has widely studied both the design and domain of
DSLs, though, very few has used formal approaches in the design and domain
analysis (16.8% and 5.7%, respectively). According to the systematic analy-
sis carried by Kosar et al. [37], many researchers (about 48%) have used the
internal (embedded) approach in DSL implementation, however, the authors
identified there is a clear lack of formal methods within domain analysis and
semantic description of DSLs. This emphasise the adoption of formal meth-
ods to the design and domain analysis of DSLs. VeriFormal, is an embedded
implementation of a DSL entirely in the higher-order logic of formal language
Isabelle/HOL. For an in depth analysis and visual comparison of literature on
the implementation approaches of DSLs, readers are advised to see references
[37] and [45].
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3 Yet Another HDL?

The first question that arise is, if there exists popular and well-established
HDLs, why do we need yet another HDL VeriFormal? VeriFormal is an HDL
with formal foundation that, a) includes type checkers to check hardware de-
scriptions for type errors and supports mathematical reasoning, and b) the
executable simulator is automatically created using trusted code generation
facility.

3.1 An HDL with formal foundation

The main objective of VeriFormal is to enable hardware designers to design
hardware, simulate and then carry mathematical proofs about the language
itself, a particular design as well as a class of hardware designs. The first two
facilities, namely hardware design and simulation, are available in existing
HDL Verilog [54] and VHDL [4], however, the last facility requires the language
to have a mathematical foundation. As none of these languages have formal
foundation, it motivated the creation of HDL VeriFormal.

1 definition mulbyprod:: "int ⇒ program" where

2 "mulbyprod x =

3 module ([])

4 [ wire [3:0] [R1],

5 assign #-1 [nR1] = b v(x,4) [*] v(2,4) ]

6 endmod"

Fig. 4: Multiplication using product operator

1 definition mulbyshift:: "int ⇒ program" where

2 "mulbyshift x =

3 module ([])

4 [ wire [3:0] [R1],

5 assign #-1 [nR1] = ((v(x,4)) [<<] 1) ]

6 endmod"

Fig. 5: Multiplication using shift operator
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1 lemma mul2equiv [simp]:

2 "simulate 0 (fedinput [] (state (mulbyshift 3)))

3 = simulate 0 (fedinput [] (state (mulbyprod 3)))"

4 apply (simp add: stepsim_def mulbyshift_def mulbyprod_def

5 mkconfig_def initconfig_def state_def processba_def

6 updateconfig_def nextcycleb_def nextpassb_def

7 updatevar_def slicebv_def maskn_def binopbv_def Let_def

8 shiftl_int_def bvlsn_def)

9 done

Fig. 6: Proof of equivalence of multiplication using product and shift

To highlight the prevailing difference between conventional HDLs and Ver-
iFormal, a simple example is described in Figures 4–6. The module mulbyprod
in Figure 4 multiplies a value (of type integer) by 2 using the product ?
operator and the same operation is implemented using left-shift operator in
module mulbyshift (Figure 5). The lemma mul2equiv in Figure 6 states that
both modules are functionally equivalent for a specific input value 3. The Is-
abelle/HOL tactics (commands) on lines 4–9 unfolds the functions involved
and closes the mathematical proof. The lemma mul2equiv is specific but it
can be extended to a general lemma for any integer. In addition to theo-
rem proving, all the designs described in VeriFormal are type checked using
Isabelle/HOL and VeriFormal type checkers. Any design written in VeriFor-
mal is type checked by the Isabelle/HOL type checker (part of compiler) and
only well-typed modules are accepted. The designs, however, are additionally
checked for conformances to best practices. See Section 8 for other examples
of type checking and reasoning about VeriFormal terms and modules.

3.2 Trusted simulator

The VeriFormal executable simulator in OCaml is automatically generated
from Isabelle/HOL definitions using the export code command. The correct-
ness of the code generation process is required for the correctness of the sim-
ulator. The code generator in Isabelle/HOL has been formally verified correct
[29,33] in a purely proof theoretic way using higher-order rewrite systems. The
proof of correctness of the code generation facility in Isabelle/HOL ensures the
generated simulator exactly corresponds to the Isabelle/HOL definitions.

4 Deep Embedding in Theorem Prover

Unlike general purpose programming languages, domain-specific languages are
tailored towards more specific applications such as hardware description. Using
a DSL for a particular domain, one can develop programs more quickly and
effectively as compared to general purpose languages. Programs written in a
DSL are concise, easier to maintain and reason about [31]. To implement a
DSL, a natural question arise about the language implementation approach:
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develop a separate DSL ecosystem (external) or embed the DSL in a general
purpose programming language (external).

4.1 Internal or external embedding

According to the study carried by Cuadrado et al. [20], the internal (embed-
ded) implementation approach is superior to the external approach. Cuadrado
et al. compared internal and external implementations of two model transfor-
mation languages RubyTL and Gra2MoL. They found that internal approach
requires almost 30% less effort in terms of lines of code as compared to external
approach. Furthermore, their study suggests that internal language is easier
to learn, cost effective, rich in features and easy to modify and experiment
with. The most important motivation towards embedding approach is to avail
the mechanical proof facilities available in the existing host languages, such as
Isabelle/HOL. With these advantages in mind, we adopt the internal approach
for the implementation of our DSL VeriFormal in Isabelle/HOL.

VeriFormal was embedded in Isabelle/HOL by writing 1232 lines of code
(the translator additionally required 2148 lines of code). Had it been imple-
mented as a standalone language, the study of Cuadrado et al. [20] suggests,
it would require about 1600 lines of code (1232 + 0.30*1232). One might ar-
gue that writing these additional number of lines is not that much effort. An
enormous amount of effort, though, would be again required to encode each
description in the higher order logic of a theorem prover to enable mechanical
reasoning.

4.2 Host language selection

In the external approach, a standalone DSL is developed with its own custom
syntax and semantics and standard compiler design techniques are used to
translate programs written in the DSL to a target language. This approach
provides a separate entire language ecosystem including its own editor, com-
piler and debugger. This approach may be modified in several ways [31]: use
computer tools Lex and Yacc to automatically generate lexer and parser or
write an interpreter rather than a compiler, just to name few. This design ap-
proach requires significant work to implement the language from the scratch
and document it [52,26,31]. To inherit the infrastructure and facilities of an
existing language tailored towards a domain of interest, an embedded approach
to DSL is taken.

The standalone approach is popular among the object-oriented community
[23,26] while the embedding approach is common among functional program-
mers [31,26]. It appears that the functional programming features such as
higher order functions extremely facilitate the embedding approach [26,25].
Embedding a DSL in a conventional language enables one to execute pro-
grams written in the embedded language, however, it does not provide any
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facility to reason about the programs. The HDLs Chisel [6], PyMTL [41], My-
HDL [22] are the examples of such languages embedded in Scala and Python.
The execution facility can be used to simulate programs (e.g., circuit designs)
by providing input vector, however, this feature alone may hinder run time
limitations [40], in particular when the simulation is exhaustive. Embedding
HDL in a theorem prover enables one to reason about circuits described in
the embedded DSL. Furthermore, if DSL is embedded in a functional style, in
addition, it would provide the execution facility. Keeping in mind these pre-
vailing benefits, the embedding approach with theorem prover Isabelle/HOL
as the host language is chosen for embedding VeriFormal. The higher order
logic of Isabelle/HOL can be used to prove theorems about the programs (see
Figure 6) and as VeriFormal has been defined in functional style, programs
can be simulated [36].

4.3 Deep or shallow embedding

When embedding a DSL in a theorem prover such as Isabelle/HOL, the de-
signer has to choose from deep or shallow embedding. When deep embedding
a DSL, the logical formulas in the language are defined as data types in the
(higher order) logic of theorem prover (Isabelle/HOL in this case) and in-
terpretation functions are defined to assign semantics to the algebraic data
types. On the contrary to deep embedding, in shallow embedding, the lan-
guage is represented directly with semantics in the logic of theorem prover
[26]. In this latter embedding style, VeriFormal formulas would become predi-
cates (on states) in Isabelle/HOL. Examples of shallow and deep embeddings
in the higher order logic of HOL theorem prover are given in [11] and [50],
respectively. Both, deep and shallow, embeddings have pros and cons. In deep
embedding, abstract syntax trees represented as data types complicate lan-
guage extension: adding a construct would require changes to both the syntax
tree and all functions manipulating the tree. In particular, the interpretation
functions in the semantics need to be updated to interpret the semantic mean-
ing of the type constructors added or updated. On the other hand, shallow
embedded language is easily extensible as long as language constructs are rep-
resented in the semantic domain [53]. VeriFormal is a replica of DSL Verilog
and rarely requires syntax extension, making the extensibility in deep embed-
ding less challenging. Furthermore, to reduce or more importantly modularize
the effort required to extend the language constructs and interpretation func-
tions, VeriFormal is augmented with a type checker predicate (Section 7) and
a translator [36]. The grammar productions are grouped by introducing ad-
ditional non-terminals making the constructor extension more organized and
easy (Section 5).

The proof script in shallow embedding is about twice as the size of proof
script in deep embedding [55,2]. On the other hand, deep embedding allows
one to quantify over syntactic structures thereby allowing to reason about
classes of programs [43]. The Isabelle/HOL proof facility is aimed to prove
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correctness of different designs described in VeriFormal. Considering the fact
that formal proofs carried in theorem prover requires huge effort [14,9], it is
important to focus on reducing the more frequently-needed proof effort than
the work required for rare language extension. Furthermore, as Verilog tools
are normally based on event-driven simulators, an operational-style semantics
is more suitable for Verilog [10] thereby advocating deep embedding approach
for VeriFormal in the higher order logic of Isabelle/HOL.

The syntactic structure of VeriFormal consists of expressions, statements,
top statements, events and processes. All these major constructs are defined
as data types in Isabelle/HOL using keyword datatype followed by functions
to interpret these constructs. A function mkconfig gets a list of constructs
(module) and creates a tuple called program state or configuration. A number
of other functions are defined to evaluate the state of the language created
by mkconfig. All these functions are combined in a single function simulate

which gets a module (program), creates an initial state for the module and
simulates it for a given number of simulation cycles.

5 Syntax Challenges

The first step in embedding a language is to precisely define the syntactical
structure of the programs. The language designer has to consider among dif-
ferent forms of context-free grammar, data types and keep the embedded lan-
guage as similar as possible to an existing language. Furthermore, assignment
to (tuple of) variables in HDLs is different than in general purpose languages
and is explained in this section.

5.1 On the choice of grammar

VeriFormal constructs are defined using the most widely used [45] formal nota-
tion called context-free grammar: shorthand notations for inductive definitions
of non-terminals representing sets of strings. The grammar of the language
must neither be ambiguous nor left-recursive. Ambiguous grammars result
different interpretations of the same program for the same input while left-
recursion causes the parser to get into looping. Both of these properties of
the grammar are more prominent in the standalone languages, however, they
are not required in languages embedded in theorem prover. The host language
compiler deals with ambiguity and left-recursion in the grammar and hence
are not considered while embedding VeriFormal in Isabelle/HOL.

This is further elaborated with few examples. Consider the grammar for
language of expressions in Figure 7 (left).
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1 exp → exp + exp

2 | exp - exp

3 . . .

1 datatype exp =

2 exp_sum exp exp

3 | exp_sub exp exp

4 . . .

Fig. 7: Grammar and its implementation as datatype

1 exp ⇒ exp + exp

2 ⇒ exp - exp + exp

3 ⇒ 3 - exp + exp

4 ⇒ 3 - 2 + exp

5 ⇒ 3 - 2 + 1

1 exp ⇒ exp - exp

2 ⇒ exp - exp + exp

3 ⇒ exp - exp + 1

4 ⇒ exp - 2 + 1

5 ⇒ 3 - 2 + 1

Fig. 8: Left-most and right-most derivations

This grammar is ambiguous: the string (program) ”3 - 2 + 1” has two (left-
most and right-most) derivations (syntax trees) and hence is evaluated to two
different values 2 (left) and 0 (right), respectively (Figure 8). To remove am-
biguity, disambiguation rules [3], such as operator precedence may be applied
to the grammar. Domain-specific language embedded in a theorem prover has
an advantage: the syntax of the program is defined using unique constructors
(right, Figure 7) checked using pattern matching which is sufficient to enforce
determinacy [8].

The program ”3 - 2 + 1” is encoded as exp sum (exp sub 3 2) 1 if it is
meant to evaluate the subtraction first, otherwise, it is encoded as exp sub

3 (exp sum 2 1)1. The program exp sum exp sub 3 2 1 is not accepted as
it results a unification error: the first argument of constructor exp sum must
be of type exp. In such cases, Isabelle/HOL compiler require the programmer
to insert parenthesis in the programs to disambiguate them. In any case, Is-
abelle/HOL compiler/type checker accepts only unambiguous programs with
only one interpretation, thereby relieving the designer of the DSL (in theorem
prover) to rewrite an unambiguous version of the grammar by introducing a
new non-terminal (see [3] for examples). Such a refinement in the grammar
is enforced in Isabelle/HOL using mutually (depended) recursive types which
are relatively difficult to dealt with in proofs. Another issue with the grammar
in the example is left-recursion: a grammar is left-recursive if the non-terminal
on the left of arrow also precedes the body on the right. In standalone lan-
guage, left-recursion is a critical issue: the parser may not return. In language
embedded in theorem prover, it is not: there is a unique constructor name
for each constructor (such as exp sum and exp sub) which helps the theorem
prover compiler selecting the proper constructor (production) using pattern
matching. The host language compiler does not get into looping even if the

1 Numbers are expressions and its constructor is skipped for simplicity.
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grammar is left-recursive. Unique constructors play a vital role as described
in previous sections, however, they are tedious to dealt with when writing a
translator for Verilog programs (Section 5.2).

5.2 Similarity with existing language

To write programs in the new DSL designed, a programmer has to learn the
syntax of the language to write programs. Another option would be to use com-
puter tools to automatically translate programs from existing known language
to the embedded language. This later approach is crucial when translation of
the existing programs to the new language is needed: to reason about exist-
ing Verilog designs mathematically, they need to be translated to VeriFormal.
Both, translation to and programming in the embedded language (VeriFor-
mal) is easy provided the embedded language is designed with syntax similar
to an existing language (Verilog in this case). Isabelle/HOL allows to use sym-
bolic notations for non-terminals and constructors which enables the new DSL
similar in syntax to existing language. After notations are used, VeriFormal
declarations are the same as in Verilog with minor differences: in VeriFormal,
identifiers are enclosed in the brackets and size [0:0] is included for single
bit variables. In general, Verilog declarations of type var type [n1:n0] vm, . . . ,
v2, v1, v0 are translated to VeriFormal declarations var type [n1:n0] [vm, . . . ,
v2, v1, v0]. To disambiguate VeriFormal expressions while at the same time
keep its syntax similar to Verilog, constructors with symbolic notations are
used: the short notation for VeriFormal term exp bop (exp name x) bvsPLUS

(exp name y) is b nx [+] ny which resembles the Verilog term x + y.
As observed, constructor notations help in disambiguating implementa-

tion of the ambiguous grammars, however, such notations must be inserted in
proper places to create equivalent terms in the target language making direct
programming and translation into VeriFormal tricky. To translate the Verilog
expression x + y to an equivalent VeriFormal expression b nx [+] ny, it re-
quires enclosing + in brackets and insertion of constructor subscripts b and n

in proper places.

5.3 Data type of values

In HDLs, the most common data type is the sequence of logic values represent-
ing signals on wires (e.g., buses) or storage units (e.g., registers). To represent
these sequences of logic values, Isabelle theories provide the facility to define
word type of specific word length [21]. Through these theories, the embed-
ded language can use the host language (Isabelle/HOL) built-in operations on
words (bits) and all the existing theorems and lemmas defined on words can
be exploited while reasoning about the language. Unfortunately, word type
definitions with arbitrary length has to be explicitly defined. In HDLs such
as Verilog, it is common to design circuits with various word sizes (e.g., buses
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with width 8, 16, . . . ) and defining word types of each size is tedious. An
alternative is to use single but general type bit-vector [44] for all words of
any length. A bit-vector is a pair of the form (v, s) where the value v is an
integer and the size s is a natural number. There are downsides of bit-vectors,
though, that the Isabelle/HOL theorems and lemmas defined on words can
not be applied to bit-vectors and the operations on these vectors need to be
re-defined. Luckily, a partial support exists in Isabelle theories: theories such
as Groups, Divides, Bits and Orderings [47] support arithmetic, bit-wise
and relational operations directly on integers, which are extended with some
effort to operations on bit-vectors.

As an example, the relational operation less-than on bit-vectors v1 and
v2, is defined as the following: booltobv(fst(v1) < fst(v2)). The functions
fst returns the first (integer) value of the vector pair and booltobv converts
the boolean result to a bit-vector of length one. The symbol < is a shorthand
for calling less function defined in Isabelle/HOL theory Orderings.

5.4 Assignment to tuple

Verilog allows updating more than one variables in a single assignment state-
ment and the same has been formalized in VeriFormal. Assignment with one
identifier on the left is straight forward: the identifier name and bit-vector
pair is registered as an update event and added to the events store. Formal
definition of assignment to a tuple of identifiers is tricky. A simple Verilog
assignment statement involving tuple of identifiers on the left is given below
followed by equivalent VeriFormal statement and described pictorially in Fig-
ure 9.

assign {idm,...id2,id1,id0} = expbv

assign #-1 [nid0, nid1, nid2,...,nidm] = expbv

id0 id1 id2
. . . idm = bvm . . . bv2 bv1 bv0

..
.

Fig. 9: Bit-vector assignment to tuple

The body of assignment expbv evaluates to a bit-vector bv and is assigned
to m + 1 identifiers on the left. Part of the bit-vector, equal to the width of
identifier, is assigned to each identifier in the tuple. Assignment of these sub-
vectors happens in a natural style in Verilog: right-most part of the vector bv is
assigned to right-most identifier in the tuple. In VeriFormal, though, things are
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different: the tuple is modelled as a list. In this setting, the right-most identifier
in the Verilog statement is the left-most in VeriFormal statement as shown in
the example statement. In VeriFormal assignment statement, the assignment
occurs as the following: the right-hand side of the statement is evaluated to
a bit-vector bv which is split into m − 1 slices where slice bvi is equal to the
width of identifier idi. In other words, the assignment is divided into m − 1
sub-assignments of the form idi = bvi as shown in the Figure 9. Finally, each
assignment is executed by registering an update event which upon execution
adds (or updates) a binding (idi, bvi) to the environment in the store.

5.5 Inductive or recursive definitions

While defining the semantics of a language in Isabelle/HOL, many formal
definitions such as interpretation functions can be expressed as a recursive
function as well as inductive definition in Isabelle/HOL. Recursive functions
support evaluation and hence are ideal for executable semantics while inductive
definitions are suitable for conducting proofs, in particular, when case analysis
is needed. The interpretation functions of VeriFormal have been defined as
recursive functions to ease executing (simulating) VeriFormal designs while at
the same time can be used for conducting proofs. In Isabelle/HOL, there is an
automatic tool [39] to extract recursive function from inductive definition. This
motivates inductive definition (for conducting proofs) of the interpretation
functions and then automatically extracting recursive definitions for evaluating
programs. This is an interesting domain and worth studying and is left as a
future work.

6 Semantic Challenges

To assign semantic meaning to constructs as defined by the syntax of the
language, an operational semantic is defined to execute VeriFormal modules.
VeriFormal allows the programmer to choose the order of execution (in a deter-
ministic way) of concurrent processes and define non-terminating constructs
using guard conditions. Starting from events scheduling, formal definitions
of (non-) deterministic and non-terminating behaviours are described in this
section.

6.1 Scheduling VeriFormal events

To execute programs written in VeriFormal, an interpreter function simulate

[36] is defined in Isabelle/HOL. A function mkconfig of the interpretor takes a
VeriFormal module (list of top statements) and creates a state: tuple of event
stores, an environment, simulation cycle, finish flag and set of disabled names.
Executions starts with an empty state where event stores, environment and set
of disable names are empty, initial cycle is 0 and the finish flag value is false.



On Embedding a Hardware Description Language in Isabelle/HOL 17

The environment of the initial state is populated from the declarations where
a name-value pair entry, with initial values 0, is added to the environment for
each variable in the declaration.

All other top statements in the module are mapped to a list of events
(or processes) of six types scheduled for execution as shown in the Figure 10.
The dotted and dashed arrows represent the effect of an event (e.g., update
event triggers listening event), the solid arrows show manual transformation
(e.g., converting inactive event to active event) and the loosely dashdotted
arrows (after the vertical dotted line) show transformation (e.g., future event
conversion to update event) in the next cycle. Simulation cycles are separated
by the vertical dotted line. The dotted arrows in the Figure 10 highlight the
looping and are discussed in detail in Section 6.3. A simulation cycle completes
when all the events of any type (except future events) are executed.

Processes

Order

or events

0

Update
events

Listening

events

1

Active
events

1

2 3
4

5

6

7

2

Inactive
events

3

Non-blocking
assign update

events

0

Update

events
8

9

Cycle n n + 1

Future
events

Fig. 10: Events schedule of execution

Continuous assignments without delay and without identifier in the right
hand body are executed by registering update event (events if tuple on the left
side). Continuous assignments without delay and at least an identifier in the
body is registered as listening event. Initial block is converted to active (event)
process which is executed after the update events. Similarly, statements with
zero delay are converted to in-active events, non-blocking assignment state-
ments are converted to non-blocking assign update events and statements with
non-zero delay are converted to future events. Update event may trigger lis-
tening events into active events (arrows 1–2) and active event may in turn
add to listening, inactive, non-blocking assign update, update or future events
(arrows 3, 4, 5, 7 and 6, respectively). Inactive events are activated to active
events (arrow 8) and then executed. Non-blocking assign update events are
converted to update events (arrow 9). When all the events, scheduled for ex-
ecution in the current cycle, are executed, simulation enters next simulation
cycle to execute future events scheduled for execution in the new cycle (loosely
dashdotted arrows).
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The list of events in VeriFormal is exactly the same as found in the liter-
ature [40,44] with minor differences in the way they are implemented. Events
that are waiting for a trigger are modelled as a separate listening event in
VeriFormal and [44] and then converted to active event while it is directly
modelled as active event in [40]. Similarly, monitor event is explicitly included
in [40] and [44] but it is implicit in VeriFormal: the simulate function returns
the final state of execution with updated values of all the variables.

6.2 Formalizing non-deterministic behaviour

In Verilog, concurrency of hardware circuits can be modelled: there can be
multiple processes scheduled for execution at the same time. When multiple
processes are scheduled for execution at the same time, the order of execu-
tion is not specified by the IEEE standard [5] and hence an arbitrary (non-
deterministic) order is chosen by simulators. For robust design, linter [34] tools
may be used to detect and flag race condition cases and correct before simula-
tion. In VHDL [4], the language definition inherently guarantees determinism
by preventing the race conditions created by blocking assignments.

To model two components running in parallel (concurrent), Verilog is using
continuous assignments and procedural blocks (e.g., always block). One form
of non-deterministic behaviour can arise when two always blocks are scheduled
for execution in parallel. The two always blocks in Figure 11 have the same
sensitivity levels (both are triggered on the positive edge of x) and hence
the blocking statements inside the blocks are scheduled to be executed at
the same time. As software programs execute one statement at a time in
serial fashion, a simulator execute the two concurrent blocks serially in an
arbitrary order. This phenomenon of non-deterministic execution is called the
race condition. Depending on the order of execution chosen by a simulator,
the value of variable y will be different: for a specific value of d, the final value
of y will be d if the first block is executed last and complement of d if the
second block is executed last. The order of execution is not specified by the
IEEE standard [5] and both results are valid.

1 . . .
2 always @(posedge x)

3 y = d;

4

5 always @(posedge x)

6 y = ~d;

Fig. 11: Non-deterministic behaviour: two always blocks

To avoid the race problem, blocking assignments are replaced with non-
blocking assignments [40]. Unlike blocking assignments, which are executed at
the time when encountered, non-blocking assignments evaluates the value of
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right-hand expression when encountered and the assignment to the left-hand
side variables is performed at the end of the current simulation cycle. Non-
blocking assignments can not resolve race condition in all cases: for example,
the race-condition when non-blocking assignments are used inside an always
block (Figure 12). As both non-blocking assignments are triggered at the same
time on the positive edge of the common sensitivity, both assignments are
scheduled for execution at the same time. The order at which the value is
assigned to variable y is not specified and hence can result different value of y
depending on the order of execution.

1 . . .
2 always @(posedge x)

3 y <= 1’b0;

4 y <= 1’b1;

Fig. 12: Non-deterministic behaviour: assignments within an always block

Another unavoidable race condition arises when two blocks, with at least
one has more than one assignment, are scheduled to be executed at the same
time. The assignment statements from both blocks may be interleaved with
one another. That is, the simulator may execute statement of the other block
before finishing execution of all the statements in the current block [40]. This
unavoidable non-deterministic behaviour is shown Figure 13.

1 . . .
2 always @(posedge x)

3 y = 1’b0;

4 z = y;

5

6 always @(posedge x)

7 y = 1’b1;

Fig. 13: Non-deterministic behaviour: interleaving statements

The two orders of executions are given in the listings below. In both cases,
the value of z will be valid but different: z = 0 in the first (left) case and z = 1
in the second (right).

1 y = 1’b0;

2 z = y;

3 y = 1’b1;

1 y = 1’b0;

2 y = 1’b1;

3 z = y;

Any order of execution is valid [5] but the results are different and depend
on the order of execution chosen by a simulator. When embedding VeriFormal,
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there is a choice either to keep the non-deterministic behaviour as allowed by
the standard or execute concurrent constructs in the order specified by the
designer. To execute concurrent constructs in a specific order, the design com-
munity often follows the best practices guidelines. Such best practices required
by a language, though, are considered as a shortcoming of the language. Un-
like Verilog, determinism is inherently defined in the VeriFormal interpreter
which execute events in the order they happen in the code. This approach has
been used in VHDL [4] and conforms to Verilog standard: the standard allows
any order of execution. The difference is, in Verilog, the order of execution is
chosen by the simulator while in VeriFormal, it is chosen by the programmer.

To implement concurrent behaviour in a deterministic way, VeriFormal
stores listening events in a list. The data structure used for events is crucial:
when a set is used, events are chosen non-deterministically and when a list
is used, events are chosen in order. For the concurrent scenario described in
Figure 11, VeriFormal registers two listening events and store them in a list in
the store. When data type list is used, the order of execution is deterministic
and is chosen by the language designer: the list is extended at tail and the
triggered (listening) events are picked up in order from head to tail. It ensures
execution of concurrent processes (listening events) on first come first served
basis. This deterministic by compilation approach allows the programmers to
choose the order at which they want to execute the concurrent constructs.
The designer implicitly chooses the order as the constructs (processes) are
executed in order they are written in the design. In the example above (Figure
11), on the positive edge of x, the first always block is executed first followed by
the second block. Using list has an additional advantage: the semantics based
on lists is directly executable while the semantics with sets is not. To make
semantics with sets executable, a number of proofs must be carried about the
functions operating on sets.

6.3 Formalizing termination

In this sub-section, different scenarios of non-terminating and non-trivially
terminating processes are considered and the approaches taken while formal-
izing them are discussed in detail. The dotted arrows 1–3 and 7 in Figure 10
are loops: an update event (e.g. registered by continuous assignment) triggers
a listening event (registered by an always block) which triggers the listening
event registered by the continuous assignment (path 1→2→7). This scenario
is described by a VeriFormal code snippet in the Figure 14: the continuous
assignment changes the value of wire y which is in the sensitivity list of always
block. This triggers the listening event registered by the always block which
include the assignment that updates the variable x. As variable x is in the
right-hand expression of continuous assignment, it triggers the listening event
for continuous assignment and it repeats. Similarly, there are other scenarios
which indeed terminate, but Isabelle/HOL compiler cannot determine it (see
below).
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1 . . .
2 assign #-1 [ny] = nx,
3

4 always [@](trgexp ny)

5 nx = exp

Fig. 14: Non-terminating module: continuous assignment and always block

The higher order logic underneath Isabelle/HOL is a logic of total functions
where termination of the functions is a fundamental requirement to maintain
consistency [38]. The totality requirement is not specific to Isabelle/HOL and
is equally significant in other theorem provers as well [8]. When a recursive
function is defined in Isabelle/HOL, it automatically verifies if the function ter-
minates and accepts it if it does. However, in some cases (see example below)
it fails and the termination must be proved manually. A custom well-founded
relation is provided and proved that a termination argument decreases in ev-
ery iteration [38]. This approach requires proof effort, in particular, when the
recursive functions are complex such as those defined in VeriFormal. To avoid
tedious proofs of termination, a termination argument (guard condition) is
added to the arguments of recursive functions whose termination cant be ver-
ified automatically by Isabelle/HOL. The recursive call to the function from
within the body is subject to decrease in the argument value (by checking
it against the maximum number of executions using less-than relation). This
approach is similar to the proof of termination [38] with the major difference is
that a manual proof of termination is not required here. The automatic termi-
nation verification is, instead, assisted by providing extra information in terms
of termination condition checked inside the function. The termination issues
in recursive functions over, both, terminating and non-terminating constructs
and the way they are addressed are discussed in more detail in the following
paragraphs.

The recursive function execproc executes individual processes and is the
most tricky one to formalize in Isabelle/HOL. The approach taken for termi-
nation is a guard condition with a value (passed as argument) of type nat is
used in the less-than [38] relation inside the body of the function. The condi-
tion c′ < c is checked before every recursive call: c′ and c are the number of
computations in the process after and before the current iteration, respectively.

Terminating constructs For recursive functions to terminate, the value of at
least an argument must decrease in every iteration. If an argument reduces
in every recursive call, the compiler is happy with it. However, there are sce-
narios when the value of an argument (e.g., the number of sub-computations)
increases, remains the same or decreases but arbitrarily. In other words, the
count of the argument used for termination may increase in some iteration
and decrease in others and eventually reduces to zero causing termination.
This phenomenon is non-deterministic and hence the compiler can not deter-
mine if the execution will ever terminate. In VeriFormal, this is either caused
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by a sequence statement, which initially is counted as a single process but
consists of more than one statements separated by double semicolons ; ; or
a process that triggers other processes (e.g., listening events). In both cases,
the Isabelle/HOL compiler cannot determine if the recursive function, execut-
ing the process, will ever terminate and hence complains. Both scenarios are
demonstrated with examples following with a discussion on the way they are
executed.

Consider an always process cpt alw (s1;;s2), where s1 and s2 are two
blocking assignment statements (sub-computations). This is a three-computation
process as the sequence statement consist of two blocking assignments and a
no operation process ;;. Each assignment is executed separately by converting
it to an active process (and then to update event) and the semicolon pair is a
no-operation process (computation). In other words, when this (active) process
is executed, it generates three more processes with two consisting of blocking
assignments. To completely execute a process, the process itself and all of its
side-effects (sub-processes triggered) must also be executed. In this example,
to execute the always process, the two blocking assignments in the process
body and ;; must also be executed. Assuming the blocking assignments do
not trigger listening events, the compiler will still complain. The reason is that
in the first iteration, there was one process (just always process) which was
unfolded into three sub-processes. The value of argument (count of processes)
was increased during the first iteration while it should have been decreased
and hence the compiler will not accept it.

The example for the second case is a blocking assignment nx = exp and a
continuous assignment assign #-1 [ny] = nx and assuming y is not listed in
any sensitivity list. Without the guard condition, the process registered for the
first assignment is executed by the function execproc and updates the value
of x which triggers a listening event registered for the second assignment. The
function execproc has to continue its second iteration to execute the triggered
event, however, nothing reduces during the first iteration. In theory, the ex-
ecution of the initial process terminates after this second event is executed,
however, the compiler cannot find it and hence complains: a process was being
executed and it is still executing a process.

The guard condition, asserts that the number of computations (sub-processes)
reduces in every iteration, is added to the function execproc. The sum of num-
ber of computations in a process and listening events in the store are calculated
in the caller function execprocs using functions, countcpt and countcptel,
and passed as argument (of type nat) to execproc. The reason listening events
are taken into account is that a process may trigger some of them as described
in the previous paragraphs. To show how this treatment assist Isabelle/HOL to
verify termination automatically, we re-visit the example cpt alw (s1;;s2)

given above. Assume listening event store has n events and statements s1 and
s2 do not trigger2 any event. Initially, the total count of computations passed
as argument to execproc is c = n+3: there are n events in listening event store

2 This latter assumption is used to keep the scenario simple.
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and 3 sub-processes s1, s2 and ; ; in the current process cpt alw (s1;;s2).
During the first iteration, the body of sequence statement is unfolded, s1 is
executed and the no-operation computation ; ; is discharged. The total count
is now c′ = n + 1: only s2 is left to execute. As the condition c′ < c satisfies,
the execution proceeds to the next iteration with new termination argument
c = n+ 1. In the second iteration, the statement s2 is executed which reduces
the count to c′ = n + 0. The condition for recursive call still holds, however,
as the body of the initial process has been completely executed, it causes the
function to return. A similar explanation holds for the second example given
in the previous paragraph.

Non-terminating constructs The example in Figure 14 does not terminate:
the processes registered for continuous assignment and always block are mu-
tually dependent and triggers each other. The termination condition approach
discussed above is still helpful to terminate the function. Both, the contin-
uous assignment and always block are registered as listening events in the
store. Assume the listening event store only has these two events and a single-
computation process (e.g., process registered for nx = exp) that triggers the
first listening event is being executed. When execproc function is called to
execute the process, the termination count argument is c = 1 + 2: a single-
computation process + 2 listening events in the store. During the first iteration,
the listening event for continuous assignment is triggered which is converted to
active event to execute next. As the triggered listening event is removed from
the store, the count is c′ = 1+1: the activated event + a listening event in the
store. As the termination condition holds, c′ < c, the execution proceeds to
next call with new c = 2 is passed as argument. In next iteration, the activated
event is executed which triggers the listening event registered for the always
block. The new count c′ = 1: just the newly activated event (listening event
store is empty). The termination condition still holds, 1 < 2, and recursive
calls continue with updated argument c = 1. In the next iteration, the trig-
gered event for always block is executed which completes the execution of the
first process: the process itself and all the side-effects have been completely
executed. The termination condition still holds: 0 < 1, however, as there is
no event to continue with, the function returns. This last event should have
triggered the listening event for continuous assignment but as it has been re-
moved from the listening event store, the execution terminates. The main trick
that causes the function to terminate is the removal of listening event from
the store once triggered.

1 . . .
2 assign #-1 [ny] = nx,
3

4 always [@](trgexp ny)

5 nx = exp

Fig. 15: Non-terminating module: continuous assignment and always block
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Careful readers must have observed that, the listening event is triggered
only once, which is not in line with the actual behaviour of the circuit: a green
traffic signal must always (not just once) be turned green after a certain inter-
val. To incorporate such a non-terminating behaviour while at the same time
be acceptable to Isabelle/HOL compiler, the listening event is temporarily re-
moved (converted to an active process) from listening events and is restored
(converted) back to listening event store after the activated process is com-
pletely exhausted. This treatment will allow other processes to activate the
same listening event later on.

The timing of re-creation of a listening event is crucial. If it is not con-
verted back to listening event store, the real essence of listening event is lost
(as discussed above) and if it is converted back soon after the activated listen-
ing event is executed, then it gets into an infinite loop (e.g., case in Figure 14).
To understand the termination issue in non-terminating scenario, the Figure
14 is revisited again as Figure 15. Assume the variable x (line 2) is updated
by an assignment in the module which triggers the listening event registered
for the continuous assignment (line 2). When the body of the activated event
is executed, it will update the value of variable y which is listed in the sensi-
tivity list of the always block (lines 4–5). This will trigger the listening event
registered for the always block which updates the value of variable x. If the
listening event registered for the continuous assignment is not removed from
the listening event store, the always block will trigger it. Similarly, if the lis-
tening event registered for the always block is not removed from the store after
it is once triggered, it will be triggered again by the update in the continuous
assignment and hence the execution will enter into an infinite loop.

The execution of the process, that triggered this loop by updating the value
of variable x, completes when all the triggered processes are completely exe-
cuted. In this example, the process that triggered the loop completes when the
events registered for continuous assignment and always block are completely
executed. To break the loop while at the same time keep the triggered events
for latter calls, all the triggered listening events are removed from the store
until the process (that triggered them) is completely executed. In the above
example, both the listening events are restored back to the store after their
activated versions are completely executed.

1 . . .
2 always [@](trgexp nx)

3 nx = exp

Fig. 16: Non-terminating module: self-triggering always block

This treatment can also break the loop in self-triggering always block sce-
nario as described in the Figure 16. In a self-triggering always block, a non-
recommended coding style, the sensitivity variable x is driven by the assign-
ment in the always body. When the value of x is changed first time, it will
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trigger the listening event registered for the always block which executes the
assignment statement in the body of the always block. The listening event is
removed from the store while its activated version is being executed. When x
is updated by the assignment inside the always block, at that time the cor-
responding listening event is not in the store and hence can not be triggered
which terminates the loop. The listening event is restored soon after the body
of triggered always block is executed.

Terminating simulation A module simulation can get into looping even if there
is no non-terminating construct in the module. Nested future events, for ex-
ample, add other future events which can cause the simulation to run in loop.
This can happen when the delay changes dynamically. Furthermore, a simu-
lation may be desired to run until there is no future event left in the store.
This may not terminate either because of the reason above or it may not be
possible for the compiler to determine it will ever terminate. To resolve such
issues, the simulation is bounded above by the number of simulation cycles.
The intended max number of simulation cycles m is passed as argument to the
main simulation function simulate which decrements m after each simulation
cycle. The simulate function returns either if there is no future event to ex-
ecute (no event scheduled for execution at the next cycle) or the maximum
number of simulation cycles is reached.

7 Syntax Complexity Balancing

When embedding an HDL with the aim to enable mechanical reasoning us-
ing proof assistant, a simplicity first approach should be adopted. Such an
approach is needed to reduce proof effort by reducing number of language
constructs in the core of DSL while at the same time including most of the
language features. The DSL size can be reduced by considering more general
constructs with different interpretations implemented in other modules sepa-
rated from the core of the language. This would keep the core of the language
simple and elegant. In our case, the complexity of the core of DSL VeriFor-
mal is reduced by moving some features to the type checker and translator
modules.

7.1 Simplicity through separate type checker

The syntactic structure of the embedded language is defined using context-free
grammars that precisely define language constructs. To prove that a grammar
G generates a language L, one must show that every string generated by G
is in L and conversely prove that every string in language L can indeed be
generated by the grammar G [3]. Such a proof for a real life language is ex-
tremely tedious, though, careful analyses and scrutiny of the grammars of the
language is necessary. As a result of such an investigation, the productions
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that generate strings that should not be included in the language are removed
or replaced.

Luckily, embedding language in a theorem prover does not need to prove
that a language generates valid strings. In fact, the type checker of the theorem
prover checks the terms of the language and only accept programs (sentences)
that follow the grammar. It ensures that an accepted sentence conforms to the
language syntax, however, it does not guarantee that the sentence is valid in
the intended language. In Verilog, for example, an always block must include
procedural timing control with time delay # or sensitivity list @. The corre-
sponding formal definition of always block has the form: always statement ,
where a statement can be with or without timing control. That is the definition
does not enforce the timing control in always block while it should. For ex-
ample, the grammar accepts the (syntactically correct but) invalid (according
to the specification of Verilog) always statement: always ([nx] [=] [#]-1

exp).

It must be ensured that all the productions of the grammar must only
generate programs allowed by the specification. This property holds if no pro-
duction of the grammar generates any sentence against the language speci-
fication. It can be achieved by rewriting the grammar for statement: write
two grammars for statements, one with and the other without time control
(time delay and delay). This approach would require additional non-terminal
in the grammar and nested pattern-matching in functions operating on state-
ments. A different approach based on simplicity first is adopted here: keep the
grammar simple even if it produces ill-sentences. To rule out invalid sentences,
instead, rules are added in a separate checker program to eliminate sentences
that should not be part of the language. This, though, would require additional
work, however, would result a modular and simpler language design.

The checker (predicate) program wfprog [36] checks the correctness of the
VeriFormal module, such as checking validity of the always top statement.
The predicate wfprog is a conjunction of various other predicates (boolean
functions) representing different properties of the language. To check always
statement is defined with a timing control, a function hastimectrl (Figure 17)
is defined. Using pattern-matching on the structure of statement, the function
checks the existence of timing control in the statement. An always block is
well-formed (acceptable in the language) if the statement that follows has a
timing control and satisfy few other conditions.

1 fun hastimectrl :: "statement ⇒ bool" where

2 "hastimectrl (stm_sensl _ _) = True"

3 | "hastimectrl (stm_delay _ _) = True"

4 | "hastimectrl _ = False"

Fig. 17: Checking timing control in statement



On Embedding a Hardware Description Language in Isabelle/HOL 27

The checker predicate can be extended easily without affecting the syntax
of the embedded language. If a VeriFormal module (program) is well-formed
(passes the test), it indicates the module holds a number of properties: all al-
ways statements include at least a timing control. Adding boolean functions to
the checker program can be seen as adding a set of hypothesis in the proof con-
text. For example, the predicate wfprog p over a program p is a conjunction
of predicates including hastimectrl over statement. In general, the checker
predicates rule out non-recommending or invalid programming styles, leads to
modular language design and simplifies proofs.

7.2 Simplicity through the translator

Manual encoding of existing Verilog designs in the syntax of VeriFormal is
tedious and error prone. To automate translation from Verilog designs into
VeriFormal, a prototype translator has been written. The translator gets a
Verilog module as input and returns a VeriFormal module as an Isabelle/HOL
theory. One of the challenges in such a translation is the creation of unique
identifiers as names in VeriFormal and updating the type definitions accord-
ingly. The translator collects the list of all valid Verilog identifiers in the in-
put module and creates an Isabelle/HOL type definition for all VeriFormal
names (Verilog identifiers). It updates the type definition datatype name =

list of names in the theory Syntax.thy by replacing the existing names
list of names with new names separated by the Isabelle/HOL symbol |. The
generated output module includes all the required Isabelle/HOL theories and
can be type checked by the Isabelle/HOL compiler for type correctness. The
main objective of the translator available with VeriFormal is to translate ex-
isting Verilog modules into equivalent modules in VeriFormal, though, it can
be used to keep the core of VeriFormal simple. Two Verilog constructs, the
generate loop statement and module instantiation, have not been directly for-
malized in the VeriFormal syntax but included in its translator.

The Verilog meta-programming construct, generate loop statement, en-
ables parametric designs and circuits. One way to add the support for gen-
erate statement is to directly formalize it in Isabelle/HOL, however, this
would complicate the syntax of VeriFormal. Instead, the support for the meta-
programming generate loop construct is added to the VeriFormal translator.
An example of a Verilog module with meta-programming construct, its elab-
oration, RTL schematic and translation to VeriFormal are shown in Figure
18. The Verilog module in Figure 18-a is a description of 2×1 multiplexer
using the generate loop statement. The VeriFormal translator automatically
elaborates it to a Verilog module (Figure 18-b) without generate statement.
Both versions of the Verilog modules in Figure 18-a and b result exactly the
same schematic (Figure 18-c). The elaborated version of the Verilog module
is automatically translated to VeriFormal (Figure 18-d) which is now fit for
formal verification (see Section 8) using Isabelle/HOL theorem prover.
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module mux2x1(bus out, bus0, bus1, sel);
output [31:0] bus out;
input [31:0] bus0;
input [31:0] bus1;
input sel;
wire [31:0] inpbus [1:0];
wire [31:0] temp [1:0];

assign inpbus[0] = bus0;
assign inpbus[1] = bus1;

genvar i;
generate
for (i=0; i< 2 ; i++)
begin
assign temp[i] = (sel == i) ? inpbus[i] : 0;

end
endgenerate

assign bus out = temp[0] | temp[1];
endmodule

(a)

(c)

module mux2x1(bus out, bus0, bus1, sel);
output [31:0] bus out;
input [31:0] bus0;
input [31:0] bus1;
input sel;
wire [31:0] inpbus0;
wire [31:0] inpbus1;
wire [31:0] temp0;
wire [31:0] temp1;

assign inpbus0 = bus0;
assign inpbus1 = bus1;

assign temp0 = (sel == 0) ? inpbus0 : 0;
assign temp1 = (sel == 1) ? inpbus1 : 0;

assign bus out = temp0 | temp1;
endmodule

(b)
module ([bus out, bus0, bus1, sel])
[output [31:0] [bus out],
input [31:0] [bus0],
input [31:0] [bus1],
input [0:0] [sel],
wire [31:0] [inpbus0],
wire [31:0] [inpbus1],
wire [31:0] [temp0],
wire [31:0] [temp1],

assign #−1 [ninpbus0]=nbus0,
assign #−1 [ninpbus1]=nbus1,

assign #−1 [ntemp0]=

c(l nsel[==]v(0,1)) ninpbus0 v(0,32),
assign #−1 [ntemp1]=

c(l nsel[==]v(1,1)) ninpbus1 v(0,32),

assign #−1 [nbus out]=b ntemp0 [|] ntemp1]
endmod

(d)

Fig. 18: Automatic elaboration and translation of Verilog module - (a) with
and b) without generate statement, (c) schematic diagram of (a) and (b), (d)
VeriFormal module

Like many other programming languages, such as C++ and Java, Ver-
ilog includes modules to implement code-reuse. A module is defined once
and re-used many times by instantiating it inside another module. The mod-
ule instantiation feature of Verilog is not directly formalized in VeriFormal
but implemented through the translator. VeriFormal, instead of formalizing
module substantiation, compresses the entire Verilog design into one Ver-
iFormal module using flattening [19,18,27]. A top level module, a module
that instantiates other modules, is flattened [27] by renaming all local vari-
ables in the module instances to avoid clashes, replace all module instances
by the sequence of statements contained in the instantiated modules and
declare all local variables at top level. A simple example of flattening per-
formed by the VeriFormal translator is available at the Github repository
at https://github.com/wilstef/veriformal. As suggested by Gordon [27],
other transformations may also be included in the translator. One such trans-
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formation would be to replace continuous assignments with always blocks and
remove the definition of continuous assignment from VeriFormal syntax.

8 Circuit Verification in VeriFormal

The main motivation for creating VeriFormal was to support formal verifica-
tion of hardware descriptions described in HDL Verilog. The HDL VeriFormal
together with its translator, type checker and Isabelle/HOL compiler provides
a platform to formally type-check Verilog modules in an automatic way. An
existing Verilog module can be automatically translated to VeriFormal module
and then type-checked using VeriFormal and Isabelle/HOL type-checkers.

To demonstrate this feature with an example, we designed a 32-bit 8×1
multiplexer circuit in Verilog and automatically translated it to an Isabelle/HOL
theory. The generated theory contains definition of VeriFormal module mux8x1
and includes the required theories. All the identifiers in the VeriFormal mod-
ule have type name and must be defined, otherwise, the Isabelle/HOL compiler
will complain at run time. To resolve this issue, the translator additionally col-
lects the list of Verilog identifiers in the module and creates a type definition
name for all the identifiers. The type definition name in Figure 19 includes as
its members all the identifiers in the VeriFormal module described in Figure
20.

1 datatype name =

2 bus_out | bus0 | bus1 | bus2 | bus3 | bus4 | bus5 | bus6 |

3 bus7 | sel | inpbus0 | inpbus1 | inpbus2 | inpbus3 | inpbus4 |

4 inpbus5 | inpbus6 | inpbus7 | temp0 | temp1 | temp2 | temp3 |

5 temp4 | temp5 | temp6 | temp7

Fig. 19: VeriFormal identifiers as names
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1 module ([bus_out,bus0,bus1,bus2,bus3,bus4,bus5,bus6,bus7,sel])

2 [output [31:0] [bus_out],

3 input [31:0] [bus0],

4 input [31:0] [bus1],

5 input [31:0] [bus2],

6 input [31:0] [bus3],

7 input [31:0] [bus4],

8 input [31:0] [bus5],

9 input [31:0] [bus6],

10 input [31:0] [bus7],

11 input [2:0] [sel],

12

13 reg [31:0] [inpbus0],

14 wire [31:0] [inpbus1],

15 wire [31:0] [inpbus2],

16 wire [31:0] [inpbus3],

17 wire [31:0] [inpbus4],

18 wire [31:0] [inpbus5],

19 wire [31:0] [inpbus6],

20 wire [31:0] [inpbus7],

21

22 wire [31:0] [temp0],

23 wire [31:0] [temp1],

24 wire [31:0] [temp2],

25 wire [31:0] [temp3],

26 wire [31:0] [temp4],

27 wire [31:0] [temp5],

28 wire [31:0] [temp6],

29 wire [31:0] [temp7],

30

31 assign #-1 [ninpbus0]=nbus0,

32 assign #-1 [ninpbus1]=nbus1,

33 assign #-1 [ninpbus2]=nbus2,

34 assign #-1 [ninpbus3]=nbus3,

35 assign #-1 [ninpbus4]=nbus4,

36 assign #-1 [ninpbus5]=nbus5,

37 assign #-1 [ninpbus6]=nbus6,

38 assign #-1 [ninpbus7]=nbus7,

39

40 assign #-1 [ntemp0]=c(l nsel[==]v(0,3)) ninpbus0 v(0,32),

41 assign #-1 [ntemp1]=c(l nsel[==]v(1,3)) ninpbus1 v(0,32),

42 assign #-1 [ntemp2]=c(l nsel[==]v(2,3)) ninpbus2 v(0,32),

43 assign #-1 [ntemp3]=c(l nsel[==]v(3,3)) ninpbus3 v(0,32),

44 assign #-1 [ntemp4]=c(l nsel[==]v(4,3)) ninpbus4 v(0,32),

45 assign #-1 [ntemp5]=c(l nsel[==]v(5,3)) ninpbus5 v(0,32),

46 assign #-1 [ntemp6]=c(l nsel[==]v(6,3)) ninpbus6 v(0,32),

47 assign #-1 [ntemp7]=c(l nsel[==]v(7,3)) ninpbus7 v(0,32),

48

49 assign #-1 [nbus_out]=

50 b ntemp0 [|] b ntemp1 [|] b ntemp2 [|] b ntemp3 [|]

51 b ntemp4 [|] b ntemp5 [|] b ntemp6 [|] ntemp7]

52

53 endmod

Fig. 20: Type checking description of 8×1 MUX using VeriFormal type checker
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The VeriFormal description mux8x1 was type checked for type errors us-
ing the command value "wfprog mux8x1". The predicate wfprog in VeriFor-
mal returns True if the module conforms to certain typing rules defined in
Correctness library, otherwise, it returns False. We intentionally introduced
a type error by changing the type wire on line 13 to reg. The type checker
predicate wfprog returned False. The Verilog version of the same erroneous
module was not accepted by the Icarus Verilog simulator but accepted by Syn-
opsys VCS 2014. 10 (online) simulator3. The reason, VeriFormal type checker
and Icarus Verilog simulator did not accept it, was the type reg (line 13) of
identifier inpbus0: an identifier of type reg cannot be driven by a continuous
assignment. The Icarus Verilog 0.9.7 simulator captures this type error and
complains as error: reg inpbus0; cannot be driven by primitives or continuous
assignment. When the type of identifier inpbus0 is changed to wire in Verilog
and VeriFormal modules, the Icarus Verilog, Synopsys VCS and VeriFormal
simulators accept them.

Additionally, formal setting underneath VeriFormal and theorem proving
facility of Isabelle/HOL may also be used to interactively prove correctness
of VeriFormal expressions and modules. A simple example of such a verifica-
tion is given in Figure 21. The well-formedness of the expression exp name q is
checked interactively. The lemma well-formed-exp states that in the environ-
ment where identifier q is defined, the expression exp name q is well-formed.

1 lemma well-formed-exp: "wfexp [top_in n2 n1 [q]] (exp_name q)"

2 apply (simp add: wfexp_def env_def)

3 done

Fig. 21: Proving well-formedness of VeriFormal expression

Furthermore, the type checker module of VeriFormal has been used to stat-
ically type check many other descriptions for type correctness [36]. VeriFormal
has been successfully used to describe and verify hardware circuits [35]. A full
adder circuit was implemented in VeriFormal using two half adders and a 3-to-
8 lines decoder. These two different implementations of full adder circuit were
checked equivalent in the executable VeriFormal simulator. Similarly, a 4-bit
comparator circuit was described in VeriFormal and Verilog and the equiva-
lence of both designs was checked by running them in VeriFormal and Icarus
simulators. This kind of verification checks the correction of Verilog description
against a formal specification of the same design in VeriFormal. The source
codes of aforementioned designs are available at our Github repository at link
https://github.com/wilstef/veriformal-fyp2017.

3 The online Synopsys VCS and Icarus Verilog simulators were accessed from URL https:

//www.edaplayground.com/.
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9 Lessons Learned

Embedding domain-specific HDL in theorem provers is challenging but fun.
There are very few HDL embedded in the logic of theorem prover and hence
a detailed discussion on how the syntax of language constructs were defined
and interpreted is important for programming language design and hardware
verification community. Following is a non-exhaustive list of lessons learned
during this work.

– Embedding domain-specific language in a theorem prover requires multidis-
ciplinary expertise, namely in programming language design, the specific
domain (e.g., hardware descriptions), the theorem prover itself and the
logic behind it.

– Using a theorem prover as a host language provides many additional ben-
efits: proof facility in the logic of theorem prover and static type checking
of the programs.

– The type checker of theorem prover enforces the designer to choose unique
constructor names for each production of the grammar which the compiler
uses for disambiguation. Using pattern-matching on these constructors,
the theorem prover allows one to formalize ambiguous and left-recursive
grammars.

– Constructor names complicates translation from existing languages to the
new one: these names must be put in proper places to create equivalent
constructs in the new language.

– The notation feature in theorem prover facilitates making the new language
similar to an existing known language, but the requirement of unique con-
structors restricts this facility.

– While defining HDL in theorem prover, formalizing terminating constructs
can be as tricky as non-terminating constructs.

10 Related Work

There is a huge body of work on domain-specific languages in general [53,
52] and on HDLs in particular. Domain-specific HDLs defined in [6,41,22,
46] do not have formal semantics with logic suitable for formal reasoning and
hence are orthogonal to our work on VeriFormal. There are others HDLs with
formal semantics, however, they are either not widely used [10,12] as Verilog or
include only a subset of constructs [42] or the underlying logic is not powerful
and expressive [44] as the higher-order logic of Isabelle/HOL.

Programming languages tailored towards targeted domain, domain-specific,
are more expressive and easy to learn as compared to general purpose pro-
gramming languages. To define a DSL, it is either implemented as a stan-
dalone language with its own tools (external DSLs) or embedded in a host
language (internal DSLs) [23]. The later approach is often preferred for DSLs
[52] as it allows designers to leverage the host language tools. It is evident
that functional programming features facilitate the embedded approach [26,
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25]. Tony Sloane [52] explored the trade offs between embedding and stan-
dalone approaches to language implementation. The author went on to shar-
ing his experience of implementing DSLs, by embedding a simple imperative
language in Scala [48]. In particular, the Scala language features that assisted
in the embedding approach were investigated. Svenningsson and Axelsson [53]
presented a technique for combining deep and shallow embedding approaches
and demonstrated their technique by embedding a small functional language
FunC. According to the authors, their technique keeps the deep embedding
small, makes the embedded language extension easier and provides a natural
programming interface to the embedded language. Mernik et al. [45] defined
DSL development methodologies and guided language designers about when
and how to to define a DSL. They also discussed systems for language devel-
opment and tools to analyse the target domain of the language with the aim
to speed up the language designs.

VeriFormal is not the only embedded HDL. Among many others are Chisel
[6], PyMTL [41], MyHDL [22] and Bluespec [46]. The first one was embed-
ded in Scala, the second and third were embedded in Python and the last
one is a standalone language with strong type checking facility. None of these
languages have formal semantics and can not be used for formal reasoning.
Braibant et al. [13] defined a deep embedding of Fe-Si, a simplified version of
the higher-level language Bluespec, in the theorem prover Coq. In a recent sim-
ilar work, Choi et al. [15] developed a platform Kami for high-level parametric
hardware specification. Kami is a formalized version of a sub-set of Bluespec
in Coq. Both, Fe-Si [13] and Kami [15] differs VeriFormal in the level of hard-
ware specification: Bluespec is used for high-level hardware specification while
VeriFormal is a low-level language at RTL.

When programs in the language are desired to, in addition to execu-
tion, reason about them, the best choice is to embed the DSL in a language
with both facilities: functional programming and theorem proving. Languages
with both of these features are called interactive theorem provers, such as Is-
abelle/HOL [47] and Coq [7], to name a few. Boulton et al. [10] embedded three
HDLs ELLA, SILAGE and VHDL in theorem prover HOL [1]. The semantics
of the first two languages were represented denotationally in the logic of HOL
(shallow embedding) whereas an interpreter was defined for VHDL to inter-
pret program texts in an operational style (deep embedding). The embedded
approach to ELLA and SILAGE differs in the type of data structure chosen for
denotations: for the former, the denotations of programs are functions while
they are relations for the later.

Gordon [27] embedded a non-executable simplified version of Verilog us-
ing mathematical notations. With the aim to demonstrate the semantic chal-
lenges of Verilog, the author included only a small subset of Verilog features
and provided an informal operational semantics in English. Meredith et al.
[44] defined an executable semantics for Verilog by embedding it in the tool
Maude [17] with rewriting logic as the underlying logic. The formal seman-
tics in Maude motivates the work in VeriFormal, however, the rewriting logic
underneath Maude is inadequate in various reasoning scenarios [36]. Building
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upon the concepts behind proof-carrying code, Love et al. [42] implemented a
framework by formalizing a synthesizable subset of Verilog in proof assistant
Coq. Another closely related work is the HDL E [12], deeply embedded in
theorem prover ACL2 [51], which models a subset of Verilog. The hardware
units, designed as E modules using And-Inverter-Graph and Boolean function
representations, can be symbolically simulated.

11 Conclusions

This work highlights the significance of embedding DSL in theorem prover
and provides a basis for further research and developments towards compiler
verification, verification of Verilog simulators and formal tools for hardware
description language Verilog. To implement a domain-specific language, the
designer either implements it as a standalone language or embed it using a
general programming language. Embedding a DSL in a theorem prover results
many additional benefits over other general purpose programming languages
as the host languages: the tools of theorem prover can be used to statically
type check and reason about programs defined in the embedded language. A
domain-specific language, VeriFormal, embedded using the higher-order logic
of theorem prover Isabelle/HOL was investigated in this research work. While
embedding VeriFormal, a number of choices in language design were investi-
gated. In particular, the challenges inherent to hardware description languages,
were highlighted in the domain of theorem prover. Embedding a DSL in the-
orem prover, though, comes with a cost of confronting with defining total
functions and understanding and programming in the syntax of the embedded
language. VeriFormal currently supports simulation and formal reasoning and
an extension towards synthesis is in future plans.
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