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Abstract. The paper introduces probabilistic CSP# (PCSP#) as a for-
mal language for modeling probabilistic systems, emphasizing its foun-
dational role in concurrent and parallel computation. PCSP# is an ex-
tension of communicating sequential programs (CSP#) that enables the
modeling of probabilistic behaviors and uncertainties in system designs.
We provide the formal syntax and a denotational semantics for PCSP#
based on the UTP framework. We also introduce the Process Analy-
sis Toolkit (PAT) as a formal modeling and verification tool for com-
plex concurrent and probabilistic systems, particularly focusing on its
extension CSP# and its variant, PCSP#. The paper explores the ap-
plications of PCSP# in sports analytics, specifically in modeling tennis
matches. It demonstrates how PCSP# can be used to analyze match out-
comes, develop strategies, and provide training recommendations based
on past match data. Experimental results from historical data in the
past decade show that formal methods applied to sports analytics yield
high-performance and accurate models that are explainable and suitable
for strategy and training recommendations.
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2 Introduction

Communicating Sequential Processes (CSP) [14] is a formal language for describ-
ing patterns of interaction in concurrent systems. Developed by Tony Hoare in
the late 1970s, CSP serves as a foundational model for studying concurrent and
parallel computation. The language provides a rigorous framework for specifying
the behavior of concurrent processes, emphasizing communication and synchro-
nization between them.

In CSP, concurrent processes are represented as independent entities that
communicate by sending and receiving messages over channels. These channels
serve as communication pathways, enabling processes to exchange information
and coordinate their activities. The language allows for the definition of com-
plex systems by composing simpler processes and specifying their interactions
through communication events. Key concepts in CSP include process behav-
ior, communication primitives, and synchronization mechanisms. Processes in
CSP exhibit sequential behavior, executing a series of steps in a defined order,
while communication primitives such as channel input and output operations
facilitate message passing between processes. Synchronization mechanisms, such
as synchronization barriers and process synchronization, ensure that processes
coordinate their activities in a coherent manner.

CSP has found applications in various domains, including concurrent pro-
gramming, distributed systems, and formal verification. Its formal semantics en-
ables rigorous analysis of system properties, such as deadlock freedom, liveliness,
and safety [31]. Additionally, CSP has inspired the development of other con-
currency models and programming languages, contributing to the advancement
of concurrent computing theory and practice.

A prominent application of CSP is the Process Analysis Toolkit (PAT) [43],
which is a comprehensive software tool designed for the formal modeling, anal-
ysis, and verification of concurrent systems. PAT provides a user-friendly envi-
ronment for specifying and analyzing complex systems using formal methods.
PAT supports various formal modeling languages, including CSP, allowing users
to describe concurrent systems as sets of interacting processes. These processes
communicate and synchronize their actions through channels, enabling the mod-
eling of intricate systems with concurrency and communication patterns.

PAT has been widely used in academia and industry for the formal veri-
fication of concurrent systems, including communication protocols, distributed
systems, and hardware designs. Its user-friendly interface and powerful analysis
capabilities make it a valuable tool for researchers, engineers, and developers
working in the field of concurrent and distributed computing. Notably, PAT
extends the CSP language with C# to make the modeling task user-friendly
for programmers, resulting in communicating sequential programs (CSP#) [41].
Moreover, PAT has various modules that extend CSP# further to variants such
as Stateful Timed CSP# [42] and probabilistic CSP# (PCSP#) [44]. This paper
focuses on the latter and its applications.

PCSP# allows users to specify probabilistic behaviors and uncertainties in
system designs. It enables the representation of systems that exhibit stochas-
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tic or non-deterministic behaviors, such as probabilistic transitions, uncertain
actions, and random events. This probabilistic extension enhances the expres-
siveness of CSP#, enabling the modeling of a wider range of real-world systems,
including stochastic processes, randomized algorithms, and probabilistic proto-
cols. The key features include probabilistic transitions, uncertain actions and
random events. PCSP# is widely used in probabilistic systems modeling, relia-
bility analysis, fault tolerance analysis, security analysis, performance evaluation,
and so on. This paper demonstrates its application from a new angle: sports an-
alytics. We show how PCSP# is used to model a tennis match, considering a
variety of actions in the game and how they transit to each other. The probabil-
ities are mined from past match data. Such a model enables in-depth analysis
of the tennis match, including match outcome prediction, strategy analysis and
training recommendations.

In what follows we will describe the syntax and semantics of PCSP#, and
then we will give a detailed case study on tennis analytics. Similar techniques
can be easily applied to other racket sports.

3 The Probabilistic CSP# Language (PCSP#)

A PCSP# model comprises definitions of constants, shared variables, channels,
and processes. Constants are defined by keyword #define followed by a name
and a value, shared variables are declared with keyword var followed by a name
and an initial value with global scope, and channels are declared using keyword
channel with a name. The process is an extension of CSP# with probabilistic
multi-choice. The syntax is defined as follows.

Program ::= PCSP#Par∗ – model
PCSP#Par ::= #define cons v – constant

| var x = v1 – variable
| channel ch – channel
| ProcDel – process

ProcDel ::= Proc(ParDel) = P | Proc = P – process declaration
ParDel ::= i | i ,ParDel – parameter
P ,Pi ,Q ::= Stop | Skip – primitives

| a → P – event prefixing
| ch!exp → P – channel output
| ch?m → Proc(m) – channel input
| e{prog} → P – data operation prefix
| [b]P – state guard
| P □ Q | P ⊓ Q – choices
| P ; Q – sequence
| P

∖
X1 – hiding

| P ∥(X1,X2)
Q | P |||X2

Q – parallel/interleaving
| N | µN · P – recursion

| pcase{pr0 : P0; pr1 : P1; · · · ;
prk : Pk}

– probabilistic
multi − choices
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where cons is an identifier for a constant whose value is v , x is an identifier for a
variable whose initial value is v1, ch is an identifier for a channel, Proc is a process
name, i is an identifier for a variable denoting a process formal parameter, P ,
Pi , Q range over processes, a is an action name, exp is an arithmetic expression,
m is a bound variable, e is the name of a non-communicating event denoting
sequential program prog which updates global shared variables, b is a Boolean
expression, X1 is a set of actions, X2 is a set of synchronous channel inputs and
outputs, N is an identifier, and pri is a positive integer to express the probability
weight. The syntax of program prog can be referred to [36].

Process Stop communicates nothing and process Skip terminates success-
fully. Process a → P engages in action a first and then behaves as process P .
Synchronous channels communicate through handshaking. Specifically, a process
ch!exp → P which is ready to perform an output through ch will be enabled
if another process ch?m → Proc(m) is ready to receive an input through the
same channel ch simultaneously, and vice versa. The expression exp in ch!exp is
evaluated atomically with the occurrence of the output. Process e{prog} → P
generates an event e, executes prog atomically, and after that process behaves
as P . Note that global shared variables are updated in the atomic execution of
the program prog . Process [b]P waits until condition b becomes true and then
behaves as P . The condition checking is conducted atomically with the occur-
rence of the first event or state transition in P . Two choices are supported, i.e.,
P □ Q for external choice, and P ⊓ Q for internal choice. Sequential compo-
sition P ; Q behaves as P until P terminates and then behaves as Q . Process
P

∖
X1 hides all occurrences of events in X1. In process P ∥(X1,X2)

Q , P and
Q run in parallel and communicate through multi-part event synchronization
(i.e., common events in X1 and synchronous channels in X2). In contrast, in
process P |||X2

Q , P and Q run independently (except for communications
through synchronous channels in X2). Lastly, in probabilistic multi-choices pro-
cess pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk}, with probability pri

pr0+pr1+···prk ,
the process behaves as Pi .

4 The Denotational Semantics for PCSP#

The Unifying Theories of Programming (UTP) [15] offers a mathematical frame-
work to describe and analyze programs across various paradigms, such as im-
perative, concurrent and so on. For each programming paradigm, a program is
modeled as a relation between its initial and subsequent (intermediate or final)
states. Relations are represented as predicates over observational variables to
capture all aspects of program behaviours.

In the UTP framework, theories of programming paradigms contain three es-
sential elements: alphabet, signature and healthiness conditions. The alphabet is
a set of observational variables that can be used to record external observations
of the program behaviour. These variables include both inputs to and outputs
from the program. Variables of initial observations are undashed, representing
the state before program execution, and variables of subsequent observations are
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dashed, representing the state after execution. The signature defines the syntax
of the rules to represent the elements of a theory. The healthiness conditions
are a selection of laws identifying valid predicates that characterise a theory. A
healthiness condition is associated with observational variables in the alphabet.
It is defined by an idempotent function on predicates. A healthy program rep-
resented by predicate P satisfies healthiness condition ϕ if it is a fixed point of
ϕ: P = ϕ(P).

4.1 Semantic model

To address the challenge of designing an appropriate semantic model which can
cover different paradigms like communications, shared variables and probabilistic
choices for the denotational semantics of PCSP#, we blend probability with com-
munication events and states containing shared variables. We introduce mixed
traces to record the interactions of processes with the global environment and
its associated probability.

Observational Variables The following variables are introduced in the alpha-
bet of observations of PCSP# process behaviours. Some of them (i.e., ok , ok ′,
wait , wait ′, ref , and ref ′) are similar to those in the denotational semantics of
CSP# [35]. The key difference is that probabilities are recorded in the traces in
PCSP#.

– ok , ok ′: Boolean are used to model the stability of a process. For example,
when ok is true before a process’s execution, it indicates that the process
is ready to start. When ok is true after a program’s execution, it indicates
that the process has reached a stable state.

– wait , wait ′: Boolean distinguish the intermediate observations of waiting
states from the observations of final states. For example, when wait is false,
it records that the execution of the previous process has finished and the
current process may start. When wait ′ is false, it records that the next ob-
servation is in a terminated state.

– ref , ref ′: PEvent denote a set of actions and channel inputs/outputs that
can be refused before or after the observation. The set Event denotes all pos-
sible actions and channel input/output directions (e.g., ch?, ch!). An input
direction ch? denotes any input through channel ch, and a channel output
direction ch! denotes any output through channel ch. The set Act denotes
all possible actions, similar to its definitions in CSP# [36].

– tr , tr ′: seq((S×S⊥×P)∪(S×E×P)) record a finite sequence of observations
on the interaction of the processes with the global environment. It is a 3-tuple
consisting of pre-state, event/post-state and associated probability.
• S is the set of all possible mappings (states), and a state s : VAR → int

is a total function which maps global shared variables names from VAR
into values of integer int. Notice that the types of variable values and
channel messages are integer in our proposed semantics.
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• E is the set of all possible events, including actions, channel inputs or out-
puts, synchronous channel communications and event τp which indicates
the probabilistic choice selection.

• P is the set of probabilities with the range of [0..1].
• S × S⊥ × P is the set of 3-tuples, where each tuple consists of a pre-

state recording the initial variable values before the observation, a post-
state recording the final values after the observation, and its associated
probability. S⊥ =̂ S∪{⊥} represents all states, where the improper state
⊥ indicates non-termination.

• S×E×P denotes a set of occurring events under the pre-states with corre-
sponding probabilities. The reason of recording the pre-state is that the
value of the expression which may contain shared variables in a channel
output shall be evaluated under this state. Additionally, we record the
probability for the occurrence of the event.

Healthiness Conditions In PCSP#, processes satisfy the following healthi-
ness conditions.

Hp = R1 ◦ R2 ◦ R3 ◦ CSP1 ◦ CSP2
R1 ensures that a process can only extend the record and never change the

past history of the observations.
R1(P) = P ∧ tr ≤ tr ′

R2 restricts that the execution of a process is independent of the history
before its activation.

R2(P(tr , tr ′)) = ⊓s P(s, s ⌢ (tr ′ − tr))
R3 characterises that a process cannot start if its predecessor has not fin-

ished, or otherwise, the values of all observational variables are unchanged.
R3(P) = II ◁ wait ▷ P

where P ◁ b ▷ Q =̂ b ∧ P ∨ ¬b ∧ Q and II =̂ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ =
tr ∧ wait ′ = wait ∧ ref ′ = ref ).

CSP1 captures that when a process is in a divergent state, it can only
arbitrarily extend the trace.

CSP1(P) = (¬ok ∧ tr ≤ tr ′) ∨ P
CSP2 states that if an observation of a process is valid when ok ′ is false,

then the observation should also be valid when ok ′ is true.
CSP2(P) = P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref )
Although PCSP# satisfies the same healthiness conditions of CSP#, obser-

vational variables tr , tr ′ in our semantic model record additional information
for probability. We adopt the same names for the idempotent functions used in
CSP# for consistency.

4.2 Semantics of Processes

We first illustrate our semantic definitions of core processes: event prefixing,
synchronous channel output/input, data operation prefixing, probabilistic multi-
choices, and parallel composition. These process operators are frequently used to
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specify complex probabilistic systems involving channel-based communications,
shared variables, and probabilistic behaviour. We further present the semantics
of other process operators and refinement at the end.

Event prefixing Process a → P engages in action a first and afterwards be-
haves as process P . Action a occurs instantaneously, and may require simultane-
ous participation by more than one processes, which is captured when the process
is in a waiting state ¬wait ′, it cannot refuse this action a (represented by pred-
icate a ̸∈ ref ′). When a process performs action a and terminates with its trace
extended with the observation (represented by predicate tr ′ = tr ⌢ ⟨(s, a, 1)⟩).
Note that we record the probability of the action occurrence is 1 since there is
no probabilistic choice for selection.

a → P =̂ Hp

ok ′ ∧

a ̸∈ ref ′ ∧ tr ′ = tr
◁wait ′▷
∃ s ∈ S · tr ′ = tr ⌢ ⟨(s, a, 1)⟩

 ; P

Synchronous channel output/input PCSP# allows messages to be sent or
received synchronously through channels. In the pairwise synchronisation, a syn-
chronous channel communication ch.exp can take place only if an output ch!exp
is enabled and a corresponding input ch?m is also ready. There are two possible
behaviours: when a process is waiting to communicate on channel ch (repre-
sented by ¬wait ′), it cannot refuse any channel input over ch provided by the
environment to perform a channel communication (represented by ch? ̸∈ ref ′)
for channel output process or any channel output provided by the environment
(represented by ch! ̸∈ ref ′) for channel input process; or a process sends the out-
put/receives a message through ch and terminates without divergence. Note that
probability recorded in the trace is 1 and the definition of semantics function A
for arithmetic expressions can be referred to [36].

ch!exp → P =̂ Hp

ok ′ ∧

 ch? ̸∈ ref ′ ∧ tr ′ = tr
◁wait ′▷
∃ s ∈ S · tr ′ = tr ⌢ ⟨(s, ch!A[[exp]](s), 1)⟩

 ; P

ch?m → Proc(m) =̂

∃ v ∈ int ·

Hp

ok ′ ∧

 ch! ̸∈ ref ′ ∧ tr ′ = tr
◁wait ′▷
∃ s ∈ Sṫ r ′ = tr ⌢ ⟨(s, ch?v , 1)⟩

 ; Proc(v)


Data Operation Prefixing In process e{prog} → P , the sequential program
prog is executed atomically and its observation is the updates on shared vari-
ables after the execution of all programs. If the program does not terminate
(represented by (s,⊥) ∈ C[[prog ]]), then the process enters a waiting state, and
its trace is extended with the record of non-termination. On the other hand,
if the evaluation succeeds and terminates, then the process terminates and the
state transition is recorded in the trace. In both cases, the probability is recorded
as 1 in the extended trace. Function C defines the semantics of the sequential
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programs which can be referred to [36]. Note that the non-communicating event
e is not recorded in the trace since such an event would not synchronise with
other events and it is a label to denote the data operation.
e{prog} → P =̂

Hp

ok ′ ∧ ∃ s ∈ S ·


wait ′ ∧ tr ′ = tr ⌢ ⟨(s,⊥, 1)⟩
◁(s,⊥) ∈ C[[prog ]]▷
¬wait ′ ∧ ∃ s ′ ∈ S · (tr ′ = tr ⌢ ⟨(s, s ′, 1)⟩
∧(s, s ′) ∈ C[[prog ]])


 ; P

Probabilistic multi-choices In process pcase{pr0 : P0; pr1 : P1; · · · ; prk :
Pk}, if pcase is activated, then it transmits to a process via event τp with a cor-
responding probability. Event τp denotes the probabilistic choice selection which
will not synchronize with other events. The semantics covers all cases of reaching
the successive states following different probability weights. For example, after
the execution, the process moves into process P0 with the probability pr0

pr . In this
case, the trace is extended with the tuple (s, τp , pr0

pr ). Note that pr =
∑k

i=0 pri
is the sum of all the probability weights.
pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk} =̂∨

i∈{0..k}

Hp

ok ′ ∧

 tr ′ = tr
◁wait ′▷
∃ s ∈ Sṫ r ′ = tr ⌢ ⟨(s, τp , pri

pr )⟩

 ; Pi


Parallel Composition Probabilistic multi-choices process executes indepen-
dently when running in parallel with other processes. Thus, the semantics def-
inition of parallel composition P ∥(X1,X2)

Q in PCSP# is similar to that in
CSP#. The trace execution covers three aspects: (1) common actions of P and
Q require simultaneous participation, (2) synchronous channel output in one
process occurs simultaneously with the corresponding channel input in the other
process, and (3) other kinds of events occur independently. Note that set X1

contains common actions and set X2 covers all synchronous channel inputs and
outputs.
P ∥(X1,X2)

Q =̂

Hp


∃ 0.ok , 0.wait ,
0.ref , 0.tr ,
1.ok , 1.wait ,
1.ref , 1.tr

·

P [0.ok , 0.wait , 0.ref , 0.tr/ok ′,wait ′, ref ′, tr ′] ∧
Q [1.ok , 1.wait , 1.ref , 1.tr/ok ′,wait ′, ref ′, tr ′] ∧
M (X1,X2)




where M (X1,X2) =̂


(ok ′ = 0.ok ∧ 1.ok) ∧
(wait ′ = 0.wait ∨ 1.wait) ∧
(ref ′ = (0.ref ∩ 1.ref ∩ X2) ∪ ((0.ref ∪ 1.ref ) ∩ X1)

∪ ((0.ref ∩ 1.ref )− X1 − X2))
(tr ′ − tr ∈ (0.tr − tr ∥X1

1.tr − tr))


The merge predicate M (X1,X2) encapsulates four types of behaviours in a

parallel composition. Firstly, the composition diverges if either process diverges
(expressed as ok ′ = 0.ok ∧ 1.ok). Secondly, the composition terminates if both



PCSP# Denotational Semantics with an Application in Sports Analytics 9

processes terminate (wait ′ = 0.wait ∨ 1.wait). Thirdly, the composition handles
synchronous channel outputs/inputs that are refused by both processes (0.ref ∩
1.ref ∩X2), all actions in the set X1 that are refused by both processes ((0.ref ∪
1.ref )∩X1), and events not in the set X1 and X2 but refused by both processes
((0.ref ∩ 1.ref ) − X1 − X2). Lastly, the trace of the composition belongs to the
set of traces produced by the trace synchronisation function ∥X1

as elaborated
below.

Function ∥X1
models how to merge two individual traces into a set of all

possible traces; there are five cases covering both traces are empty, one of the
trace is empty and both traces are non-empty. In the following definitions, s1, s ′1,
s2, s ′2 are representative elements of variable states with termination, a, a1, a2
are representative elements of actions, ch is a representative element of channel
names, τp is the event denoting the probabilistic choice selection, v , v1, and v2
are values with integer type, and p1 and p2 are probabilities with range of [0..1].

– Firstly, function ∥X1
is symmetric, i.e., t1 ∥X1

t2 = t2 ∥X1
t1.

– The first case covers (case-1) two scenarios, (1) if both input traces are
empty, the result is a set of an empty sequence; (2) if only one input trace is
empty, the result is determined based on the first observation of that non-
empty trace: if that observation is an action in the set X1 which requires
synchronisation, then the result is a set containing only an empty sequence,
or otherwise, the first observation is recorded in the merged trace.
case-1
1◦ ⟨ ⟩ ∥X1

⟨ ⟩ = {⟨ ⟩}

2◦ ⟨(s1, h, p1)⟩⌢ t ∥X1
⟨ ⟩ =

{{⟨ ⟩} if h ∈ X1

{⟨(s1, h, p1)⟩⌢ l | l ∈ t ∥X1
⟨ ⟩} otherwise

where h ∈ {a, ch?v , ch!v , ch.v , τp , s ′1,⊥}
– The second case (case-2) covers a communication is over a synchronous

channel. There are two aspects, (1) if the first observations of two input
traces match (see Definition 1 below), then a synchronisation may occur
(denoted by the set G1) or at this moment a synchronisation does not occur
(denoted by the set G2); (2) Otherwise, either channel communication exe-
cutes. Function matchp returns true if channel input and output from two
processes respectively are enabled under the same pre-state with the same
value.
Definition 1 (Match). Given two 3-tuples tp1 = (s1, h1, p1) and tp2 =
(s2, h2, p2), where h1 ∈ {ch?v1, ch!v1, ch.v1}, h2 ∈ {ch?v2, ch!v2, ch.v2}, we
say that they are matched if s1 = s2, {h1, h2} = {ch?v1, ch!v1}, and v1 =
v2are satisfied, denoted as matchp(tp1, tp2).

case-2 ⟨(s1, h1, p1)⟩⌢ t1 ∥X1
⟨(s2, h2, p2)⟩⌢ t2 ={

G1 ∪ G2 if matchp((s1, h1, p1), (s2, h2, p2))
G2 otherwise

where h1 ∈ {ch?v1, ch!v1, ch.v1}, h2 ∈ {ch?v2, ch!v2, ch.v2}, G1 =̂ {⟨(s1, ch.v ,
p1 × p2)⟩ ⌢ l | l ∈ t1 ∥X1

t2}, and G2 =̂ {⟨(s1, h1, p1)⟩ ⌢ l | l ∈ t1 ∥X1

⟨(s2, h2, p2)⟩⌢ t2} ∪ {⟨(s2, h2, p2)⟩⌢ l | l ∈ ⟨(s1, h1, p1)⟩⌢ t1 ∥X1
t2}.
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– The third case (case-3) considers the synchronisation of two actions (a1 and
a2). There are four scenarios with respect to the initial states (s1 and s2) and
actions from the first observations of two traces: (1) if both actions are in
the set X1 but different or actions under different pre-states, then the result
is a set containing only an empty sequence; (2) if actions from X1 are the
same and under the same pre-state, then a synchronisation occurs; (3) if one
of the actions is not in X1, the execution of the action is postponed to occur;
and (4) if both actions are not in X1, then either action can occur.

case-3 ⟨(s1, a1, p1)⟩⌢ t1 ∥X1
⟨(s2, a2, p2)⟩⌢ t2 =

{⟨ ⟩} a1, a2 ∈ X1∧
(a1 ̸= a2 ∨ s1 ̸= s2)

{⟨(s1, a1, p1 × p2)⟩⌢ l | l ∈ t1 ∥X1
t2} a1, a2 ∈ X1

∧a1 = a2 ∧ s1 = s2
{⟨(s2, a2, p2)⟩⌢ l | l ∈ ⟨(s1, a1, p1)⟩⌢ t1 ∥X1

t2} a1 ∈ X1 ∧ a2 ̸∈ X1

{⟨(s1, a1, p1)⟩⌢ l | l ∈ t1 ∥X1
⟨(s2, a2, p2)⟩⌢ t2}

∪
{⟨(s2, a2, p2)⟩⌢ l | l ∈ ⟨(s1, a1, p1)⟩⌢ t1 ∥X1

t2}
a1 ̸∈ X1 ∧ a2 ̸∈ X1

– The fourth case (case-4) deals with the situation that the first observation
of one input trace is in a waiting state (captured by ⊥). The waiting state is
due to the evaluation of the sequential program does not terminate. There
are three scenarios for consideration: (1) if both observations are in waiting
states, the result is a set of either observation, (2) if the other first observation
is an action requiring the synchronisation (h ∈ X1), the result contains
the waiting observation only, (3) or otherwise, either observation from two
processes occurs.
case-4
1◦⟨(s1,⊥, p1)⟩ ∥X1

⟨(s2,⊥, p2)⟩ = {⟨(s1,⊥, p1)⟩, ⟨(s2,⊥, p2)⟩}
2◦⟨(s1,⊥, p1)⟩ ∥X1

⟨(s2, h, p2)⟩⌢ t ={{⟨(s1,⊥, p1)⟩} if h ∈ X1

{⟨(s1,⊥, p1)⟩} ∪ {⟨(s2, h, p2)⟩⌢ l | l ∈ ⟨(s1,⊥, p1)⟩ ∥X1
t} otherwise

where h ∈ {a, ch?v , ch!v , ch.v , τp , s ′2}
– The last case (case-5) defines the case when the first observation of one

trace is an action a, a post-state s ′1, or a τp event, and the other is a channel
input ch?v , output ch!v , communication ch.v , a τp event, or a post-state s ′2.
The merged observation depends on the action a in set X1 or not, (1) if so,
then its occurrence is postponed (G3), (2) or otherwise, either observation
from two processes occurs (G3 ∪ G4).

case-5 ⟨(s1, h1, p1)⟩⌢ t1 ∥X1
⟨(s2, h2, p2)⟩⌢ t2 =

{
G3 if h1 ∈ X1

G3 ∪ G4 otherwise
where h1 ∈ {a, τp , s ′1}, h2 ∈ {ch?v , ch!v , ch.v , τp , s ′2}, G3 =̂ {⟨(s2, h2, p2)⟩⌢ l |
l ∈ ⟨(s1, h1, p1)⟩ ⌢ t1 ∥X1

t2}, and G4 =̂ {⟨(s1, h1, p1)⟩ ⌢ l | l ∈ t1 ∥X1

⟨(s2, h2, p2)⟩⌢ t2}.
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Other processes and refinement The semantics of other processes is the
same as those counterparts in the CSP# model [36] except state guard ([b]P).
For process [b]P , Boolean expression b is evaluated simultaneously with the
occurrence of the first event of process P . Like CSP#, in some situation, the
process P behaves like Skip. Thus, no state could be observed to judge the truth
of condition b. To address this, we construct process P̂ from P by adding a
stuttering step.
[b]P =̂ P̂ ◁ (B(b)(π1(head(tr ′ − tr))) ∧ tr < tr ′) ▷ Stop
P̂ =̂ P ∧ tr < tr ′ ∨ P(tr , tr) ∧ ∃ s ∈ S · tr ′ − tr = ⟨(s, s, 1)⟩

Refinement is a powerful technique for developing software systems that are
correct by construction. In the UTP theory, it is expressed as an implementation
satisfying a specification.

Definition 2 (Refinement). Let P and Q be predicates for PCSP# processes
with the same shared variable state space, the refinement P ⊒ Q holds iff [P ⇒
Q ].

In the above definition, universal quantification implication means that for all
observational variables, ∀ ok , ok ′,wait ,wait ′, ref , ref ′, tr , tr ′ · P ⇒ Q holds. In
our current definition, the refinement ordering is strong; every observation that
satisfies P must also satisfy Q . It requires that the associated probability in every
observation of the trace shall be the same. The discussion on the probability
comparison in the definition of refinement will be our future work.

5 Sports Analytics Using Probabilistic Model Checking

Sports analytics refers to the utilization of data science, artificial intelligence
(AI), psychology, and Internet of Things (IoT) devices to enhance sports perfor-
mance, strategic planning, and decision-making processes. It involves the collec-
tion, processing, and interpretation of data from various sources such as video
recordings and scouting reports. This data aids in assessing both individual
player and team performances, mitigating the risk of injuries, and assisting
coaches in making well-informed decisions during both gameplay and training
sessions. In this study, we employ Probabilistic Model Checking (PMC), a tech-
nique commonly employed in reliability analysis for intricate safety systems.
We explain how this methodology can be adapted to sports strategy analyt-
ics, thereby augmenting the likelihood of achieving victory by considering the
reliability of a player’s specific sub-skill sets.

5.1 Overview

This section takes tennis as a paradigmatic example, our methodology has the
potential for generalization across other racket sports like table tennis and bad-
minton, as well as team-based sports such as soccer, basketball, and American
football. In tennis, an individual’s overall probability of winning is typically
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contingent upon the reliability of their constituent skills, such as serving, re-
turning, forehand, and backhand [6]. Furthermore, players may exhibit varied
playing styles in response to different opponents. Our approach involves the
modeling of tennis matches utilizing Markov Decision Processes (MDP) incor-
porating shot-by-shot actions, thus encapsulating intricate behaviors, including
non-deterministic occurrences like coin tosses to determine the serving player and
strategic choices such as body serves. The model leverages diverse match-related
information, including player archetypes and potential actions, with probability
distributions and success rates of these actions derived from historical data. Us-
ing the MDP model, we perform probabilistic reasoning for in-depth strategic
analysis, such as deep strategy analytics for performance enhancement, facili-
tated by the Process Analysis Toolkit (PAT) model checker [43]. Although there
is existing work on modeling tennis using MDP, our method, to the best of our
knowledge, is the first to apply probabilistic model checking (PMC) for analytical
purposes in this domain.

To rigorously evaluate the efficacy of our proposed strategies, we employ
the MDP model to predict match outcomes and analyze alterations in winning
probabilities ensuing from the implementation of different strategies. Our pre-
dictions are validated using data sourced from professional tennis matches (ATP
and WTA) spanning the last decade. Furthermore, we execute experiments to
directly compare our suggested strategies with actual strategic adaptations ob-
served in past match data. The empirical findings demonstrate a strong corre-
lation between the majority of our recommended strategies and the strategic
adjustments applied by elite players, resulting in notable enhancements in their
win rates.

5.2 The proposed approach

In this section, we introduce our methodology for tennis strategy analytics. The
overview of our approach is given in Fig. 1. Initially, data is collected from
online repositories, and video analytics methodologies are employed to enable
automated data fusion. Subsequently, we model a tennis match as a Markov
Decision Process (MDP), thereby enabling the simulation of matches involving
any player pairing. The developed MDP model is instantiated in the PCSP#
language and facilitates the prediction of match outcomes and the execution of
strategy analytics via probabilistic model checking.

Data mining The dataset utilized in our investigation comprises comprehensive
shot-by-shot descriptions for both players, crucial for constructing tennis models.
To acquire this data, information is gathered from various sources.

– Online data source. Initially, our dataset is sourced from tennisabstract.com,
an online repository that aggregates and annotates over 10,000 ATP and
WTA matches dating back to 1959, encompassing comprehensive match
data. Below illustrates an instance of a shot-by-shot record for a single point:

https://www.tennisabstract.com
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Fig. 1. The system pipeline of our approach.

1st serve wide; forehand return crosscourt;
backhand crosscourt; forehand down the middle;
forehand inside-out; forehand crosscourt;
backhand crosscourt; forehand crosscourt;
backhand down the line; backhand forced error.

We have developed a C# program to autonomously retrieve the matches of
interest and extract data from the specified website. Furthermore, we have
crafted a parser to extract related data, compute corresponding probabili-
ties for individual sub-skills, and seamlessly integrate the outcomes into our
pipeline as input parameters for the PCSP# model. Additionally, the pro-
gram can automatically invoke the PAT console, facilitating the launch of
the APT toolkit and the extraction of the desired results.
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– Video analytics. In addition to data sourced from online repositories, there
remains a dearth of detailed shot-by-shot information for many matches. To
augment data coverage and cater to athletes at all levels, including college
and junior players, we have devised a transformer-based seq2seq model ca-
pable of accurately recognizing intricate action sequences from fast-paced
videos. Notably, this model can be trained end-to-end on a single GPU.
Moreover, recent advancements in Large Language Models (LLMs) have ex-
panded their capabilities to perform multi-modal inference, enabling textual,
visual, and auditory inputs. Specifically, GPT-4 exhibits proficiency in an-
alyzing video content by processing image sequences. Initial evaluations on
sports datasets showcase GPT-4’s adeptness in various video comprehen-
sion tasks, such as sports genre classification, contextual understanding, and
action identification, albeit with certain limitations in fine-grained classifi-
cation and temporal analysis.

5.3 Modeling tennis in MDP

The task of modeling tennis matches is intricate, necessitating a delicate bal-
ance between precision and efficiency. An optimal model must accurately reflect
the dynamic conditions of matches while also maintaining an appropriate level
of abstraction to facilitate explainability and efficient analysis. Our modeling
approach adeptly addresses these requirements by giving an expressive repre-
sentation coupled with analytical capabilities.

In this section, our emphasis lies on singles tennis matches, wherein two play-
ers are denoted as P1 and P2. To predict the match outcome, we examine the
winning probability within a simplified tiebreak game, modeled as a represen-
tation of the entire match. In a simplified tiebreak game, victory is attained by
the player who first accumulates 7 points. In this example, 7-6 still counts as a
win. Our analysis operates under the premise that the player with the highest
likelihood of triumphing in the tiebreak game also possesses a superior prob-
ability of clinching the entire match. This abstraction improves computational
performance when using PAT.

We model a tennis match using Markov Decision Processes (MDP), incor-
porating insights derived from expert knowledge in tennis. States and actions
within the model are described using tennis-specific terminology to facilitate
understanding by players and coaches. The model integrates diverse factors in-
cluding court positioning (deuce court, middle court, or ad court), player charac-
teristics (right-handed or left-handed), and various shot types. The ingredients
of the MDP are outlined below.

State space. A state within the model corresponds to the instance when a
player performs a shot. These states are grouped into four distinct categories:
serve, return, stroke, and termination states. Serve states have four types: first
serve in the deuce court, second serve in the deuce court (if the initial serve
is unsuccessful), first serve in the ad court, and second serve in the ad court
(if the first serve is unsuccessful). Return states denote the action of returning
a serve and are classified into four types: forehand return of a serve from the
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deuce court, backhand return of a serve from the deuce court, forehand return
of a serve from the ad court, and backhand return of a serve from the ad court.
Stroke states include actions executed within the deuce court, middle court, and
ad court. Termination states signal the completion of the tiebreak game. Possible
termination state outcomes include scores such as 7-1 (a win for P1), 5-7 (a win
for P2), and 7-6 (a win for P1).

Action space. For each state s, a player has a range of potential actions
depending on their positioning on the court and handedness. In total, there are
16 actions available, comprising:

– First/Second serve to T, B, W;
– Fore/Backhand (FH/BH): cross-court (CC), down the line (DL), down the

middle (DM), inside-out (IO), inside-in (II).

Transition function. The transition function, denoted as P : S ×A× S →
[0, 1], quantifies the probability of transitioning to a new state given a state-
action pair. Each state-action pairing can result in one of three possible out-
comes: in (indicating that the action succeeds without immediately resulting in
a point), winner (denoting that the action directly leads to winning a point), or
error (signifying that the action fails). In the event of a winner or error, the
process advances to a new state for the subsequent serve, with a point awarded
to the rally winner. Upon either player accumulating 7 points, the process tran-
sitions to the termination state. Conversely, if the action outcome is in, the
process progresses to a non-termination state depending on the current state
and action undertaken.

Policy. The policy π denotes the probability distribution across all possible
actions for each state, expressed as π(a | s) = Pr(A = a | S = s). It characterizes
how players select various actions within each state. For instance, a serving policy
might allocate 60% probability to serving to T, 30% to W, and 10% to B.

The policy and transition probabilities for the MDP are derived from histor-
ical data. The likelihood of a player selecting action a from a given state s (i.e.,
the policy) is determined by

Pr(a | s) = N (s, a)
N (s)

.

The transition probability, indicating the likelihood of transitioning to the sub-
sequent state s ′ after executing action a from state s, is computed by

Pr(s ′ | s, a) = N (s, a, s ′)
N (s, a)

,

where N (s) represents the frequency of a player’s visits to state s, N (s, a) is
the number of times a player has executed action a in state s, and N (s, a, s ′) is
the number of times when a player has taken action a from state s, resulting in
state s ′.

Alternative models. Several alternative methods exist for modeling a ten-
nis match. For example, we have developed models that feature more detailed
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Fig. 2. A partial MDP model demonstrating a serve.

Table 1. Nadal’s serve distributions against Federer.

0-0 30-0 15-40 30-30 30-40 40-AD
T 0.849 0.700 0.571 0.643 0.353 0.238
B 0.038 0.033 0.143 0.119 0.412 0.477
W 0.113 0.267 0.286 0.238 0.235 0.285

court divisions by incorporating front and backcourt distinctions. Furthermore,
we have devised models that consider the varying pressure levels associated with
different score scenarios. By integrating scores into the state space, the prob-
ability distributions of actions are adjusted accordingly. An example of Rafael
Nadal’s serve distributions against Roger Federer at different scores is illustrated
in Table 1.

However, in this study, we have chosen to present a simplified 6-region model
without point-level analytics to facilitate player comprehension and streamline
our data processing methods. It is crucial in actual tennis matches to avoid
inundating players with excessive information that may lead to hesitation. Fig-
ure 2 presents a partial illustration of our MDP model, wherein P1 executes the
first serve from the ad court with three possible actions (i.e., 41% serve T, 10%
serve B, and 49% serve W). Each action entails three possible outcomes (i.e.,
in, error, winner) with corresponding transition probabilities leading to various
subsequent states.

5.4 Implementation in PCSP#

We demonstrate the application of the developed MDP model in the PCSP#
language through an example of a tiebreaker game played between two right-
handed players. The tennis court is partitioned into 6 regions, as depicted in
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Fig. 3. A 6 region tennis court with ball position variables 1-6. Variable 0 indicates a
winner, and 9 indicates an error.

Figure 3, where the labels de, mid , and ad denote the deuce court, middle
court, and ad court, respectively.

Model for Serve Each player has the option to serve from either their deuce
court or ad court, with a second serve opportunity available if the first attempt
is unsuccessful. The ensuing example depicts a right-handed player executing
their initial serve from the ad court, mirroring the process depicted in Figure 2.

Ad P1Serve = pcase {
20 : ServeT in{ball = 5} → Ad P2 FHR
8 : ServeT winner{ball = 0} → Ace{score1 + + ;

if (score1 == 7) {won = P1}} → NextPt
13 : ServeT err{ball = 9} → Ad P1Serve 2nd
25 : ServeW in{ball = 4} → Ad P2 BHR
5 : ServeW winner{ball = 0} → Ace{score1 + + ;

if (score1 == 7) {won = P1}} → NextPt
19 : ServeW err{ball = 9} → Ad P1Serve 2nd
7 : ServeB in{ball = 4} → (Ad P2 FHR []Ad P2 BHR)

0 : ServeB winner{ball = 0} → Ace{score1 + + ;

if (score1 == 7) {won = P1}} → NextPt
3 : ServeB err{ball = 9} → Ad P1Serve 2nd } ;

To associate actions with their corresponding probabilities during serving,
the aforementioned process employs the PCSP# probabilistic choice operator
“pcase”. There exist three available actions: (1) 41% serve to the T (ServeT ), (2)
49% serve wide (ServeW ), and (3) 10% serve to the body (ServeB). Each action
entails three potential outcomes: in, winner , or err . Taking the action ServeT
as an example, player P1 possesses a 20% probability of successfully hitting the
ball in without directly scoring a point (modeled by event ServeT in, with the
ball variable set to 5), with their opponent responding by returning a forehand
shot from the ad court (modeled by process Ad P2 FHR). There is a 13% chance
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of failing the initial ServeT (modeled by ServeT err , with the ball variable set
to 9), necessitating a second serve, depicted by the process Ad P1Serve 2nd .
Additionally, there is an 8% probability of directly scoring a point (modeled
by ServeT winner , with the ball variable set to 0), resulting in an increment to
player P1’s score (score1++). If P1 attains 7 points, the won variable is updated
to P1; otherwise, the process transitions to NextPt for the subsequent serve or
the conclusion of the game.

Model for Return A player has the option to return a serve from the deuce
or ad court using either a forehand or backhand shot. For instance, the process
Ad P2 BHR describes how player P2 executes a backhand return against player
P1’s wide serve from the ad court.

Ad P2 BHR = pcase {
24 : BH CrossCourt in{ball = 3} → P1 ad stroke
21 : BH DownLine in{ball = 1} → P1 de stroke
36 : BH DownMid in{ball = 2} → P1 mid stroke
4 : Ad BHR winner{ball = 0} →Winner{score2 + + ;

if (score2 == 7) {won = P2}} → NextPt
15 : Ad BHR err{ball = 9} → {score1 + + ;

if (score1 == 7) {won = P1}} → NextPt } ;

When player P1 serves from their ad court, player P2 may opt to return using
a backhand cross-court (BH CrossCourt), backhand down the line (BH DownLine),
or backhand down the middle (BH DownMid), each with different probabilities.
Processes P1 de stroke, P1 ad stroke, and P1 mid stroke represent player P1’s
stroke from the deuce, ad, and middle courts, respectively. To simplify the model,
all potential winning shots (or errors) are amalgamated into a single event de-
noted as Ad BHR winner (or Ad BHR err). If player P2 returns with a winning
shot, they score directly (i.e., score2++); conversely, if they commit an error,
player P1 gains one point (i.e., score1++).

Model for Stroke Each player has a stroke process for each court position
(deuce, ad, or middle court). The process for each court incorporates strokes
executed with both forehand and backhand techniques, as well as scenarios in-
volving winning shots and errors. The following exemplifies player P1’s stroke
from the deuce court.

P1 de stroke = pcase {
40 : FH CrossCourt in{ball = 6} → P2 de stroke
11 : FH DownLine in{ball = 4} → P2 ad stroke
23 : FH DownMid in{ball = 5} → P2 mid stroke
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0 : BH InsideOut in{ball = 6} → P2 de stroke
2 : BH InsideIn in{ball = 4} → P2 ad stroke
1 : BH DownMid in{ball = 5} → P2 mid stroke
9 : de stroke winner{ball = 0} →Winner{score1 + + ;

if (score1 == 7) {won = P1}} → NextPt
14 : de stroke err{ball = 9} → {score2 + + ;

if (score2 == 7) {won = P2}} → NextPt } ;

Predict winning probability To predict the probability of a player win-
ning, we establish a predicate designating the target player as the victor of
the tiebreaker game (i.e., the first to accumulate 7 points), and subsequently
find a state that meets the criteria using probabilistic reachability analysis. For
instance, the below assertion describes the property of player P1 emerging vic-
torious in the game.

# define player1Win won == player1;
# assert TieBreakGame reaches player1Win with prob;

5.5 Strategy recommendations

Through PAT’s capability to check the ramifications of alterations to the prob-
ability distribution of actions, we can propose strategies aimed at enhancing a
player’s likelihood of winning, drawing on sensitivity analysis derived from prob-
abilistic model checking. Two primary categories of strategies can be discerned,
as outlined in Algorithm 1.

Pre-match strategy. The first category of strategy pertains to intricate
tactics concerning play patterns. This category is inherently linked to the prob-
ability distributions of actions. For instance, one might opt to shift 10% of T
serves to W serves against a specific opponent if historical data indicates that
the opponent struggles with returning W serves. Since coaching is prohibited
during a tennis match, we denote this first type of strategy as “pre-match strat-
egy”, as it can be directly implemented by a player prior to the commencement
of the match without altering the ability (i.e., reliability/success rate) of their
sub-skills. The details of this strategy are outlined in Algorithm 1, wherein opti-
mal actions to increase are identified for each state (e.g., player P1 should utilize
more forehand cross-court shots in the deuce court against player P2).

Training strategy. The second category of strategy aims to enhance the
success rates of specific shot types through targeted training. This strategy is
termed “training strategy”. It may not be immediately applicable just before a
match, as a player cannot instantaneously improve a skill. For instance, prior to
facing Nadal, renowned for his potent forehand, Federer might concentrate on
refining his backhand down-the-line shots in the ad court to reduce errors by
2%. Such a strategy not only elevates Federer’s success rate with his backhand
but also diminishes the threat posed by Nadal’s forehand, as the down-the-line
shot directs play to Nadal’s backhand side.
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Algorithm 1: Computing the optimal strategy.
Data: current state s, policy π, percentage change δ%, maximum increase in

winning chance ∆max

Result: abest (the best action to increase in state s)
1 ∆max ← −∞; abest ← None;
2 for a ∈ π(s) do
3 if pre-match strategy then

// pre-match strategy
// add action a’s percentage by δ%

4 Pr(a | s)← Pr(a | s) + δ%;
5 for a ′ ∈ π(s) \ [a] do
6 Pr(a ′ | s)← Pr(a ′ | s)− δ%

|π(s)| ;
7 else

// training strategy
// reduce action a’s error by δ%

8 Pr(in | s, a)← Pr(in | s, a) + δ%;
9 Pr(err | s, a)← Pr(err | s, a)− δ%;

// compute the increase in winning chance
10 ∆pwin ← increase in winning chance;

// update the best action to increase
11 if ∆pwin > ∆max then
12 ∆max = ∆pwin ; abest = a;

5.6 Evaluation

We employed the PAT model checker to realize our model and conducted exper-
iments on real-world professional tennis matches to evaluate the effectiveness of
our strategy analytics methodology. Specifically, our experiments were devised
to address the following research questions:

RQ1: How accurate is the model in predicting players’ winning chances when
playing against different opponents?

RQ2: Does our model provide effective pre-match and training strategies to
increase players’ winning chances?

RQ3: What new insights a player/coach can get from our strategy recommen-
dations?

RQ1: Winning chance prediction accuracy To predict one’s probability
of winning against a specific opponent, our framework offers the flexibility to
extract data from pertinent matches occurring prior to the date of the target
match. For example, let us consider predicting a match between players P1
and P2, each with Elo rankings e1 and e2, respectively. To acquire data for
P1, we gather information from matches involving P1 and opponents akin to
P2 during the preceding two years. Here, “akin” denotes opponents sharing (1)
the same handedness as P2, and (2) Elo rankings falling within the range of
[e2 − δelo , e2 + δelo ], where δelo ∈ N. A similar approach is adopted to gather
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data for player P2. Once the relevant matches have been selected from historical
records, we can construct the MDP model and predict the outcome of the match.
Typically, the processing time for each match is approximately 1 second.

We utilize the bookmakers’ odds4 as our reference point, as it currently rep-
resents the state-of-the-art approach in the domain. Previous investigations have
not consistently outperformed the predictions made by bookmakers over an ex-
tended period. This is primarily attributed to the valuable information typically
possessed by bookmakers, including weather conditions, recent player perfor-
mances, injury reports, and insider insights, which are often challenging to ac-
cess. Nevertheless, we demonstrate that our predictions yield positive returns
when compared to the bookmakers’ odds through betting simulations spanning
the past decade. Furthermore, we conduct a comparative analysis of our method-
ology against existing tennis prediction models documented in the literature.

Betting simulation. In our experiment, we apply a well-established betting strat-
egy — Kelly criterion [45], which is given as

f = k × (p − 1− p
b

) (1)

where p represents the predicted probability of winning the bet, b signifies the
payout resulting from a successful bet, k denotes the Kelly multiplier for risk
management, and f denotes the fraction of the current bankroll to be wagered
(with betting being avoided when f < 0). To assess profitability, we compute the
return on investment (ROI) and the annualized return on investment (annualized
ROI) [29]. The initial bankroll is initialised at $10,000.

We investigate different constraints regarding the range of Elo ranking dif-
ferences, denoted as δelo ∈ [50, 200], during the selection of related historical
matches. When δelo assumes a smaller value, the chosen matches exhibit higher
quality, albeit potentially limited in quantity. Conversely, with an increase in
δelo , a larger pool of matches is included, albeit they may possess less direct
relevance to the target matches.

We designate the Kelly multiplier as k = 0.1 for the purpose of long-term
betting strategies. Additionally, our betting approach concentrates exclusively
on matches that entail a minimum of 4 relevant historical matchups for each
player, ensuring prediction accuracy. The outcomes of the betting simulations
are depicted in Table 2. Examination of the table reveals that models with δelo =
50 and 100 yield long-term profits, with annualized ROIs of 7.49% and 14.98%,
respectively. However, a further elevation in δelo leads to negative profitability.
This occurs because, although a larger number of matches become available for
betting, the selected historical matchups exhibit decreased relevance to the tar-
get players. Consequently, a value of δelo = 100 emerges as the optimal point
for performance. This experiment underscores the exceptional predictive perfor-
mance of our model in determining the winning probability of tennis matches.

4 http://www.tennis-data.co.uk/

http://www.tennis-data.co.uk/
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Table 2. Betting results over the past 10 years.

δelo (±) # of bets Profits ROI Annualized ROI
50 461 $10,592 105.92% 7.49%
100 1,388 $30,385 303.85% 14.98%
150 2,177 -$8,194 -81.94% -15.73%
200 2,871 -$8,471 -84.71% -17.12%

Table 3. ECE scores for different methods.

Method ECE
Point-based [16] 0.0973

Paired comparison [25] 0.0317
Bookmakers 0.0207

Our method 0.0099

Comparison with existing methods. A reliable winning probability prediction
model should support well-calibrated estimations that closely align with real-
world outcomes. Notably, predictions indicating a 70%-30% chance or 95%-5%
chance of winning significantly impact performance analytics, despite both sce-
narios predicting the same winner. Traditional metrics such as accuracy and
log-loss do not adequately capture the true winning probabilities. To address
this limitation, we assess the models’ predictions using the expected calibration
error (ECE) [10]. The ECE quantifies the disparity between predicted proba-
bilities and observed outcomes. For instance, if player P1 is predicted to have
a winning probability of 40% against player P2, we gather all matches where
the predicted winning chance hovers around 40% and ascertain whether approx-
imately 40% of those matches indeed resulted in victory for player P1.

Formally, we partition the predicted winning probabilities into M bins and
calculate the average discrepancy between the predicted and observed outcomes.
This calculation is weighted by the number of examples in each bin. The ECE
is computed as follows:

ECE =

M∑
m=1

| Bm |
N

| acc(Bm)− conf (Bm) | (2)

where Bm is the mth bin, | Bm | is the size of the bin, N is the number of
samples, acc(Bm) is the proportion of positives in bin Bm , and conf (Bm) is the
average predicted probability in bin Bm . In our experiment, we use M = 5.

We evaluate the performance of our model with δelo = 100 against other es-
tablished match outcome prediction models, which include a point-based method
[16], a paired comparison method [25], and bookmakers. As illustrated in Table 3,
our model exhibits the best performance with the lowest ECE of 0.0099.

Our model demonstrates accurate prediction of players’ winning probabili-
ties, validated through betting simulations spanning the last decade, achieving
an annualized ROI of 14.98%. Furthermore, our model surpasses existing pre-
diction models, exhibiting the lowest ECE.
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Table 4. The system recommends actions for enhancement compared to the ac-
tual strategy adjustments made by players. "Win%" indicates the likelihood of win-
ning. "Align P" represents the proportion of our pre-match suggestions that align with
players’ actual strategy adjustments. "Align T" indicates the fraction of our training
recommendations that align with players’ actual sub-skill enhancements.

Player Opponent Turning-point year Win% before year Win% after year Align P Align T
Federer R. Nadal R. 2017 20.0% 83.3% 9/11 8/11
Nadal R. Djokovic N. 2017 26.1% 60.0% 7/11 8/11
Wawrinka S. Djokovic N. 2016 28.6% 50.0% 8/11 7/11
Murray A. Nadal R. 2015 14.3% 50.0% 10/11 8/11
Thiem D. Nadal R. 2018 16.7% 57.1% 6/11 6/11
Medvedev D. Zverev A. 2020 25.0% 83.3% 6/11 7/11
Zverev A. Tsitsipas S. 2021 20.0% 50.0% 8/11 7/11
Thiem D. Djokovic N. 2018 25.0% 60.0% 9/11 6/11
Djokovic N. Tsitsipas S. 2020 50.0% 100.0% 9/11 8/11
Zverev A. Nadal R. 2020 20.0% 66.7% 6/11 8/11
Federer R. Murray A. 2014 40.0% 100.0% 6/11 9/11
Djokovic N. Medvedev D. 2021 50.0% 100.0% 9/11 7/11
Zverev A. Federer R. 2018 33.3% 66.7% 8/11 9/11
Thiem D. Federer R. 2019 50.0% 100.0% 7/11 10/11
Djokovic N. Murray A. 2014 58.3% 82.4% 7/11 7/11
Cilic M. Djokovic N. 2016 0.0% 33.3% 8/11 8/11
Rublev A. Medvedev D. 2021 0.0% 50.0% 7/11 10/11

RQ2: Tennis strategy effectiveness Our system empowers users to assess
the impact of different pre-match or training strategies on their performance,
facilitating the identification of optimal approaches for improvement. However,
assessing the real-world efficacy of these strategies poses challenges, as asking
professional players to modify their playing styles or skill levels for observation
is impractical. Therefore, we evaluate the effectiveness of these strategies based
on insights gleaned from historical data.

For example, consider the dataset comprising 16 documented matches be-
tween Roger Federer and Rafael Nadal from 2011 to 2022. Prior to 2017, Federer
won only 2 out of 10 matches, yielding a 20% winning rate. However, post-2017,
his winning rate surged to 83% after securing victories in 5 out of 6 matches.
Notably, upon analyzing Federer’s actions and the reliability of his sub-skills,
noticeable differences are evident before and after 2017. To ascertain whether
this improvement stems from strategic alterations, we constructed two Markov
Decision Process (MDP) models based on historical data—one before 2017 and
the other after. Employing Probabilistic Model Checking, we computed Federer’s
winning rate, yielding results of 35.7% and 53.2%, respectively, aligning with the
actual outcomes.

Moreover, we aim to investigate whether our system can aid players in pin-
pointing pre-match and training strategies to attain optimized enhancements in
the future. Our objective is to evaluate the following:

– For pre-match strategy, identify the best action to increase in each state by
modifying probability distributions.
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– For training strategy, identify the best action to improve/train on in each
state by modifying success rates.

– Check whether the player has indeed increased/improved on the identified
actions later on.

For instance, utilizing data predating 2017, our system suggests that Federer’s
optimal pre-match maneuver against Nadal involves employing the "forehand
cross-court" strategy when returning the ball at the deuce court. Post-2017 data
corroborates that Federer did indeed execute more forehand cross-court returns.
Concerning training strategies, leveraging data from before 2017, our approach
suggests that Federer’s most advantageous improvement opportunity in the “ad
court stroke” scenario entails employing the “backhand down the line” tactic
toward Nadal’s backhand side. Subsequent to 2017, data indicates that Federer
did, in fact, enhance this sub-skill, achieving an increased success rate.

We implemented the aforementioned approach across all 11 states for both
pre-match and training strategies. The outcomes revealed that: (1) concerning
pre-match strategies, 9 out of 11 optimal actions identified by our method cor-
responded with Federer’s actual adjustments; and (2) for training strategies, 8
out of 11 recommended enhancement actions were in concordance with Federer’s
actual improvements, specifically in terms of elevating action success rates.

To further corroborate our methodology, we curated additional instances
akin to Federer’s matchups against Nadal and subjected them to the same vali-
dation procedure. These instances adhere to a pattern wherein a player exhibits
a notable surge in win rate against a specific opponent subsequent to a cer-
tain temporal threshold (e.g., the year 2017). We leveraged data predating this
threshold to formulate recommendations and utilized post-threshold data to ver-
ify our suggestions. Table 4 synthesizes the empirical findings, revealing that the
majority of recommendations delineated by our system align with players’ actual
strategy adjustments and enhancements. Hence, we conlude that our strategy
analytics approach is both rational and efficacious.

The strategies posited by our model demonstrate effectiveness as they closely
correspond with real-world strategy adaptations made by elite players, resulting
in substantial enhancements when facing specific opponents, as evidenced by
historical data.

RQ3: New insights for players and coaches It may be contended that our
recommendations significantly coincide with the practices already employed by
professional athletes. Nonetheless, these invaluable insights may not be readily
available to players lacking equivalent levels of coaching staff and resources. Our
objective is to democratize high-caliber strategy analysis for the wider tennis
community. In this section, we will delve further into the insights engendered
by our system and illustrate how players and coaches can derive benefits from
them.

Our system is capable of generating opponent-specific strategy recommen-
dations tailored to various player matchups. Table 5 showcases examples of our
pre-match and training strategy suggestions. It’s important to emphasize that
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Table 5. Different pre-match and training strategies at each state.

Player Opponent De Serve Ad Serve De FHR Ad FHR De BHR Ad BHR De Stroke Mid Stroke Ad Stroke
Pre-match Strategy
Nadal R. Djokovic N. W W CC DL CC IO FH IO FH IO BH IO
Wawrinka S. Djokovic N. W T CC II IO DL BH II BH IO FH IO
Thiem D. Djokovic N. T W CC CC IO CC FH CC BH IO FH II
Cilic M. Djokovic N. T B DL CC DM DL FH CC FH IO BH DL
Zverev A. Tsitsipas S. B T CC CC CC CC FH DL FH CC FH II
Zverev A. Nadal R. T W DL IO CC CC FH CC FH IO FH DM
Zverev A. Federer R. T T CC DM II DM FH DL FH CC BH DL
Training Strategy
Thiem D. Nadal R. T W CC II IO DL FH CC FH CC FH II
Thiem D. Djokovic N. T W CC CC IO DL FH CC FH CC BH DL
Thiem D. Federer R. W T DL II DM CC FH DL FH IO BH CC

we present only the most effective strategy in some states, which corresponds
to the action yielding the highest gains when increasing the probability dis-
tributions or success rates by 2%. Our strategy recommendations demonstrate
significant diversity across different matchups. For example, we propose distinct
pre-match strategies for Zverev against different opponents, such as employ-
ing more forehand cross-court (FH CC) against Nadal and forehand down the
line (FH DL) against Federer in the De Stroke state. Moreover, when different
players face the same opponent, our system suggests Wawrinka to increase his
forehand inside-out (FH IO) and Cilic to enhance his backhand down the line
(BH DL) at Ad Stroke when playing against Djokovic.

At times, our method can propose “unusual” or novel strategy suggestions
that players or coaches may not have considered. For example, through ana-
lyzing matches between Roger Federer and Andy Murray before 2014, our sys-
tem indicates that Federer’s most effective pre-match strategy was to employ
more backhand down the line shots towards Murray’s forehand, contrary to the
common belief that attacking the opponent’s backhand side is more effective.
Interestingly, after 2014, Federer did not lose any match against Murray and
indeed increased his usage of backhand down the line shots by 4.8%. Given our
model’s ability to accurately predict match outcomes, we can provide formal
verification that our suggested strategies have the potential to enhance players’
winning chances in theory.

Moreover, even if players or coaches are aware of the specific sub-skills requir-
ing refinement, they may lack precise guidance on the adjustments or improve-
ments needed to maximize their winning probabilities effectively. Our system is
able to compute exact figures for these enhancements. One potential application
is to aid players in tailoring their training regimes more efficiently. For instance,
if two players are both instructed to enhance their forehand down the line, but
the anticipated impacts on their winning probabilities vary (for instance, by re-
ducing the error rate of forehand down the line by 2%, one player’s winning
probability may increase by 4%, while the other’s may increase by 8%), the sec-
ond player should allocate a larger proportion of their training regimen to this
skill, assuming a fixed training duration.
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Overall, our model offers insightful strategy recommendations that surpass
conventional knowledge. These strategies demonstrate significant diversity across
various matchups and can be rigorously validated. Furthermore, we can provide
players with tailored training regimens to enhance their performance efficiently
and effectively.

6 Related Work

TCOZ [21–23], proposed by Mahony and Dong, is a formal language that inte-
grates two formal specification languages, Object-Z [37] and Timed CSP [5], and
is inspired by Woodcock’s research on formal mathematics for systems specifica-
tion and design [48]. TCOZ combines the strengths of Object-Z in complex data
and algorithm modeling with the advantages of Timed CSP in real-time con-
current modeling. Inspired by TCOZ, CSP# is proposed by replacing Object-Z
with C# to leverage the benefits of C# as a widely-used programming lan-
guage, which offers better support for model checking and practical implemen-
tation. Later, Dong and his team developed the model checker Process Analysis
Toolkit (PAT) [40,43], which adopts CSP# as the modeling langauge. PAT has
then been extend with numerous modules that encompass different variants of
CSP#, including Stateful Timed CSP [26,42], probabilistic CSP [38], probabilis-
tic real-time module [39], game theory module [7], and nested and hierarchical
model checking [2]. Such variety of modeling and verification techniques support
applications in many different domains, including PDDL modeling [19], program
verification [53], cybersecurity [18], smart homes [17], and so on.

Unifying Theories of Programming (UTP) [15] proposed by Hoare and He in
the late 1990s aims to unify different “theories of programming” by providing a
common mathematical language for expressing semantics, which formalises the
theories of different programming paradigms, such as sequential programming,
object-oriented programming [12,20], concurrent programming through reactive
processes and communications, higher-order logic programming, and so on. The
UTP framework is built on the principles of algebraic theories and provides a
mathematical basis for reasoning about the semantics of programming languages.
Its algebraic foundations and support for various programming paradigms make
it a valuable framework for formal specification and verification. The semantics
of programming languages based on the UTP theories include CSP [3, 15], Cir-
cus [27,28], Circus Time [34,46], TCOZ [30], CSP# [36], Modelica [8], rCOS [12],
Web service [11], and MDESL [33].

Miyazawa et al. [24] proposes a formalisation of RoboChart which is a state
machine-based notation designed for modelling real-time current robot systems.
The formalisation uses CSP [3] and its dialect tock-CSP [32] based on the UTP
framework. Conserva Filho [4] defines the semantics of the probabilistic oper-
ator in RoboChart using the CSP probabilistic operator ⊞ [9]. Woodcook et
al. [49] proposes a probabilistic denotational semantics to the RoboChart lan-
guage using the powerful approach of weakest completion semantics, addressing
challenges related to demonic and probabilistic choice. The methodology ensures
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consistency and facilitates the transition of programming concepts between the
standard and probabilistic languages. In [51], a new construct for probabilis-
tic choice in introduced in RoboChart’s state machines for probabilistic mod-
elling. The RoboChart model is transformed into a PRISM model for verification
through model checking.

He et al. [13] discusses two models for an extension of Dijkstra’s language of
guarded commands, focusing on the introduction of a probabilistic choice opera-
tor to express randomized algorithms. Bresciani et al. [1] introduces a probability
modeling framework in the style of UTP, offering a solution that allows for bet-
ter consideration and handling of probabilistic properties in the modeling and
verification of systems. While the paper extends UTP to handle probabilities,
there might still be limitations in terms of the expressiveness of the formalism.
Certain probabilistic concepts or advanced modeling scenarios may not be fully
captured within the proposed framework.

Zhu et al. [52] provides a foundational denotational semantics model for a
probabilistic timed shared-variable language. By presenting a rigorous denota-
tional semantics model, the paper lays a solid theoretical foundation for under-
standing the intricacies of system behavior encoded in such languages. However,
it may not explicitly address event-driven characteristics commonly found in
probabilistic CSP# models.

7 Conclusion

PCSP# enables the specification of probabilistic behaviors and uncertainties in
system designs, expanding the expressiveness of CSP to model a broader range
of real-world systems. Its features, including probabilistic transitions, uncertain
actions, and random events, have found applications in various domains such
as probabilistic systems modeling, reliability analysis, fault tolerance analysis,
security analysis, and performance evaluation. This paper has demonstrated a
novel application of PCSP# in sports analytics through the PAT model checker,
specifically in modeling tennis matches. By leveraging past match data, PCSP#
facilitates detailed analysis of match outcomes, strategy assessment, and train-
ing recommendations. Moving forward, the continued development and adoption
of PCSP# and similar formal modeling techniques hold great potential for ad-
vancing sports analytics and enhancing the understanding and optimization of
complex systems in various domains.
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