
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Position: Trustworthy AI Agents Require the Integration of
Large Language Models and Formal Methods

Anonymous Authors1

Abstract
Large Language Models (LLMs) have emerged
as a transformative AI paradigm, profoundly in-
fluencing broad aspects of daily life. However,
despite their remarkable performance, LLMs ex-
hibit a fundamental limitation: hallucination—the
tendency to produce misleading outputs that ap-
pear plausible. This unreliability poses signifi-
cant risks, particularly in high-stakes applications
where trustworthiness is paramount.

On the other hand, Formal Methods (FMs), which
share foundations with symbolic AI, provide
mathematically rigorous techniques for model-
ing, specifying, reasoning and verifying the cor-
rectness of systems. They have been extensively
employed in mission-critical domains such as
aerospace, defense, blockchain, and cybersecurity.
However, FMs remain limited due to steep learn-
ing curves and challenges related to efficiency and
adaptability in daily applications.

To build trustworthy AI agents, we argue that the
integration of LLMs and FMs is necessary to over-
come the limitations of both paradigms. While
LLMs offer adaptability, creativity and human-
like reasoning, they need formal guarantees to en-
sure correctness and reliability. Conversely, FMs
provide rigor but need enhanced accessibility and
automation to support broader adoption.

1. Introduction
The rapid advancement of modern AI techniques, partic-
ularly in the realm of Large Language Models (LLMs)
like GPT (Achiam et al., 2023), Llama (Touvron et al.,
2023), Claude (Claude, 2024), Gemini (Gemini, 2024),
DeepSeek (DeepSeek-AI, 2025) etc., has marked a sig-
nificant evolution in human-level computational capabil-
ities. These models fundamentally reshape tasks across a
spectrum of applications, from natural language process-
ing to automated content generation. Trained on vast text
corpora, LLMs excel in generating responses that are con-
textually accurate and stylistically appropriate. However,

their applicability in safety-critical or knowledge-critical set-
tings remains limited due to their inherent reliability issues—
primarily, their propensity for generating outputs that, while
plausible, may be factually incorrect (Jacovi & Goldberg,
2020; Wiegreffe & Marasovic, 2020; Agarwal et al., 2024).
This limitation, known as “hallucination”, stems from the
probabilistic nature of learning-based AI, where the models
optimize for likelihood rather than truth or logical consis-
tency. Even worse, hallucination is mathematically proven
inevitable for LLMs (Xu et al., 2024).

In contrast, Formal Methods (FMs) have been established as
rigorous tools for verification and validation (V&V) of criti-
cal systems where failure is intolerable, such as aerospace
(relevant areas including avionics) (Dragomir et al., 2022;
Liu et al., 2019), autonomous driving (König et al., 2024;
Alves et al., 2021; Huang et al., 2022), and medical de-
vices (Freitas et al., 2020; Arcaini et al., 2018). These
methods are designed to ensure the correctness and safety
of hardware and software systems by performing rigorous
mathematical analysis. Despite the demonstrated benefits,
the adoption of FMs remains limited, primarily due to their
significant computational complexity and the specialized
expertise required for the implementation.

Although both computational paradigms encounter inherent
challenges of their own—namely, the unreliability stemming
from the statistical nature of LLMs and the high barrier and
complexity of formal methods—recent studies have high-
lighted their potential for mutual benefits (Wu et al., 2022;
Pan et al., 2023; He-Yueya et al., 2023; Zhou et al., 2024;
Yang & Deng, 2019; Yang et al., 2024; Song et al., 2024;
Cai et al., 2025). Efforts to bridge these two paradigms aim
to harness their respective strengths, with the ultimate objec-
tive of developing a neural-symbolic AI that seamlessly inte-
grates LLMs and FMs into a unified solution. For instance,
to enhance the reliability of LLMs, various approaches (Pan
et al., 2023; Ma et al., 2024b) have incorporated solvers to
facilitate reasoning tasks guided by specification rules or rea-
soning models derived from LLMs’ inputs/outputs. Specif-
ically, some efforts have been directed toward improving
LLMs’ understanding of Lisp, enabling better integration
with Lisp-based programming techniques (Stengel-Eskin
et al., 2024; Li et al., 2024b). Conversely, within the formal

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

methods community, there is a growing trend to leverage
LLMs to enhance the functionality and usability of auto-
mated verification (Wu et al., 2024; Wen et al., 2024).

This paper advocates for the fusion of LLMs and FMs
as a necessary approach for building the next gener-
ation of AI agents. By leveraging their complementary
strengths, we propose a framework that enhances reliabil-
ity, ensures provable correctness, and mitigates risks in
AI-driven decision-making processes. Through case studies
and conceptual explorations, we demonstrate how this inte-
gration can bridge neural learning and symbolic reasoning,
ultimately fostering more trustworthy AI systems.

2. Alternative Views: Why FM with LLM
Relying Solely on Natural Language Reasoning. Natural
language reasoning (Yao et al., 2023) enables LLMs to
process and generate information in an intuitive, human-like
manner. However, it lacks rigorous correctness guarantees,
making it unreliable for high-stakes decision-making. While
statistical reasoning—areas where LLMs excel—can be
more efficient than strict formalism in some domains, the
inherently learning-based nature lacking rigorous reasoning
can lead to hallucinations and logical errors.

Relying Solely on Expert Systems. Traditional expert
systems (Jackson, 1986) rely on fixed rule-based ontolo-
gies and usually operate under a closed-world assumption
(CWA)–anything not explicitly stated as true is assumed
false. This rigid constraint is insufficient for open-ended,
real-world reasoning, where knowledge is incomplete and
context-dependent. Furthermore, expert systems struggle
to adapt to new information or make inferences beyond
their predefined rules, making them inadequate for complex,
evolving problem domains.

Instead of the rigid CWA, integrating open-world assump-
tion techniques with formal constraints enables greater rea-
soning flexibility. This approach accommodates incomplete
or evolving knowledge with uncertainty, which enhances
contextual adaptability, statistical analysis, and uncertainty
management—key strengths of modern AIs like LLMs.

Relying Solely on LLMs. LLMs, in their current form,
are not inherently trustworthy for critical applications such
as law, healthcare, and other safety-critical systems (Arm-
strong, 2023; Bellware & Masih, 2024; Choudhury &
Chaudhry, 2024). They exhibit hallucinations, lack of trace-
ability, and non-deterministic behavior, making them un-
suitable for scenarios requiring explainability, correctness,
and security guarantees. While the integration of LLMs
with Retrieval-Augmented Generation (RAG) (Lewis et al.,
2020; Guu et al., 2020) aims to mitigate some of these limi-
tations by providing access to external knowledge sources,
this approach does not inherently improve reasoning capa-

bilities (Chen et al., 2024b). Indeed, RAG-enhanced models
primarily enhance factual accuracy by retrieving relevant
documents but do not ensure logical coherence, consistency,
or rigorous deductive reasoning. These models often face
challenges in executing deep reasoning, a capability that
cannot be easily and effectively achieved through mere fine-
tuning (Liu et al., 2024).

Instead of outright rejecting formal reasoning, a more ef-
fective approach involves controlled augmentation—where
LLMs are integrated with formal verification tools such as
proof-checkers and SMT solvers.

Relying Solely on FMs. Formal methods are mathemati-
cally rigorous methods that often rely on manually defined
specifications and inference rules for modeling, reasoning,
and verifying the systems. However, their application in
dynamic, real-world environments presents several chal-
lenges (Kneuper, 1997; Batra, 2013). FMs often struggle
with scalability due to the computational demands of exhaus-
tive state-space exploration, making them impractical for
large-scale systems. Additionally, not all system aspects can
be fully formalized, particularly in unpredictable environ-
ments, leading to gaps in formal analysis. The complexity
and resource intensity of developing formal specifications
and conducting proofs further limit their widespread adop-
tion in the industry (Kaleeswaran et al., 2023).

A hybrid approach integrating adaptability, learning ability,
and natural language-based heuristics can provide a prac-
tical middle ground. For instance, LLM-assisted formal
verification, where LLMs assist theorem provers by gen-
erating proofs or suggesting logical constraints, can help
bridge such gaps by retaining the flexibility of LLMs while
mitigating their weaknesses through formal guarantees.

3. LLM for FM: Verifying Intelligently
This section explores how LLMs can enhance formal meth-
ods by developing intelligent LLM agents for tasks such as
model checking and theorem proving. Formal methods face
significant barriers to industry adoption, primarily due to the
complexity of formalizing requirement specifications, the
limited scalability of algorithms for large systems, and the
substantial manual effort involved in proof generation and
validation. In contrast, LLM agents bring adaptability and
efficiency to traditional formal verification processes, paving
the way for more automated and effective formal methods.
With their ability to process and generate structured code
and symbolic representations, LLMs can be intelligent as-
sistants to automate tedious tasks in formal methods.

3.1. LLM for Autoformalization

Autoformalization is the process of automatically translating
natural language-based specifications or informal represen-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

tations into formal specifications or proofs. This complex
task demands a deep understanding of both informal and for-
mal languages, along with the ability to generate accurate,
machine-readable formal representations. Recent research
has demonstrated the effectiveness of LLMs in various aut-
oformalization scenarios, including neural theorem prov-
ing (Jiang et al., 2022b), temporal logic generation (Murphy
et al., 2024), and program specification generation based on
source code (Ma et al., 2024a). In this section, we show the
role of LLM agents in facilitating proof auto-formalization.

Informal proofs, commonly found in textbooks, research
papers, online forums, or even generated by LLMs, often
omit details that humans consider trivial or self-evident.
However, to ensure rigorous verification by theorem provers,
they need to be translated into formal proofs that adhere to a
specific syntax, where all the details are explicitly provided.
We give one motivating example in Appendix A.

To address this, we propose using auto-formalization agents
equipped with enhanced capabilities for symbolic reasoning.
More specifically, auto-formalization agents break down the
process into manageable steps: (i) generating proof outlines,
(ii) filling intermediate steps using external tools, and (iii)
integrating and refining proofs. To elaborate, the agent first
constructs a high-level proof outline, capturing the main
steps of the informal proof while leaving placeholders for
missing intermediate steps. This outline aligns with the
informal proof structure and serves as a blueprint for the
following formalization process. The agent delegates the
task to external tools like computer algebra systems for the
missing details, especially those involving symbolic reason-
ing or algebraic manipulations. These tools can perform
accurate transformations on the mathematical expressions,
ensuring the correctness of the derived intermediate steps.
Once the intermediate steps are derived, the agent integrates
them into the proof outline, filling in the placeholders and
completing the formalization. If the agent still encounters
gaps in specific steps, it iteratively refines the proof by re-
visiting the informal proof and consulting external tools. In
this way, the auto-formalization agents can leverage external
tools’ strong symbolic reasoning capabilities to fill in the
missing details in the informal proofs, thus bridging the gap
between informal and formal proofs and specifications.

3.2. LLM for Model Checking

Model checking is a formal verification technique that sys-
tematically explores a system’s state space to determine
whether it satisfies specified properties, such as safety and
liveness. It is particularly effective for finite-state systems,
providing automated detection of logical errors like dead-
locks or critical system property violations. However, tra-
ditional model checking faces great limitations, including
scalability challenges for large systems and the complexity

involved in system modeling and property formalization.

In this section, we illustrate how model checking agents can
address the aforementioned limitations by leveraging the
strengths of LLMs. By combining their respective advan-
tages, a model checking agent can take a system description
in natural language from the user, generate corresponding
formal models using an LLM, and iteratively refine them
based on feedback from the model checker. This integra-
tion of LLMs with formal methods not only streamlines the
model checking process but also makes it more accessible
to users without extensive expertise in formal verification.

In the following part, we demonstrate our model check-
ing agent framework utilizing the widely adopted model
checker, Process Analysis Toolkit (PAT) (Sun et al., 2008;
Liu et al., 2011).

Process Analysis Toolkit (PAT) is a formal verification tool
designed to model, simulate, and verify concurrent and
real-time systems. It supports the verification of key proper-
ties such as deadlock-freeness, reachability, and refinement,
addressing critical correctness and reliability concerns in
system design. With applications spanning domains such
as vehicle and aircraft safety, resource optimization, and
complex system analysis, PAT provides a robust foundation
for developing a model checking agent.

In the following motivating example, we illustrate how the
PAT Agent can be used to derive verified system constructs,
starting from natural language instructions.

Example. In car system development, preventing key lock-
in is crucial for user convenience, avoiding costly locksmith
services and severe delays. The system must maintain logi-
cal consistency across operations to prevent such incidents.

We first prompt an LLM (gpt-4o-2024-08-06) to generate
a formal model directly from a detailed description. While
it follows learned syntax rules and demonstrates planning
capabilities, the model contains a critical logic flaw: it al-
lows the key to be locked inside the car. This issue stems
from the hallucination of GPT-4o, incorrectly assuming that
placing the key in a locked car is valid (as shown below),
contradicting common sense reasoning.

[key == i && owner[i] == near]leavekey{key = incar;}

Consequently, the resulting system design deviates from the
intended behavior, compromising its reliability.

To address this issue, we use PAT to formally verify the
generated system. PAT detects an error trace, a sequence of
operations that lead to the key being locked inside, revealing
logical flaws in the key and door logic. By analyzing this
trace, the LLM identifies the flaw and corrects it by imposing
stricter restrictions on when the key can be left inside. It

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

also defines clear conditions for locking the door, ensuring
alignment with the intended system behavior.

[key == i && owner[i] == near && door == open]
leavekey{key = incar;}

[(owner[i] == near && key == i) || owner[i] == in]
lockdoor.i{door = lock;}

The refined model, incorporating PAT’s feedback, ensures
the key can never be locked inside the car and passes for-
mal verification. This example demonstrates the powerful
synergy between formal verification and LLM-driven de-
velopment: LLMs streamline system development, while
PAT ensures rigor by detecting and correcting logical in-
consistencies. Together, they enable a robust, user-friendly
approach to formal system development, ensuring critical
requirements are met with precision.

Prototype. To implement the PAT model-checking agent,
we build it on the LangChain pipeline, leveraging its stream-
lined implementation and modular memory system to effi-
ciently manage intermediate states and iterative refinements
during formal verification. This enables a seamless fusion
of LLM capabilities with formal verification tools. Figure 1
illustrates the prototype.

Figure 1. PAT Agent Prototype.

The PAT Agent prototype follows a structured workflow, be-
ginning with user-provided natural language descriptions of
a system, specifying desired behaviors and properties, such
as a mutual exclusion protocol and its expected behaviors.

An LLM with strong reasoning capabilities then processes
the input to generate a structured implementation plan. This
step defines an action space, employs a search model to
identify feasible actions, and the LLM organizes them into a
logical breakdown of the system. The plan includes precise
mappings of logical steps, such as variable definitions, state

transitions, and system properties, forming the foundation
for NL-to-code translation.

Following the structured plan, a specialized LLM trained in
syntax and logic generates the code and assertions needed
to implement the system. Rather than generating code from
scratch, the model treats this as an NL-to-code translation
task, filling in details based on the structured plan. This
approach enhances precision by breaking down code gen-
eration into distinct planning and translation steps, making
the process more manageable.

The generated code and assertions are submitted to an auto-
mated verification tool, specifically PAT, to identify issues
such as syntax errors and logical inconsistencies. If veri-
fication fails, a refined prompt is created by incorporating
PAT feedback and comparing the implementation with the
ideal automata outlined during planning. This iterative re-
finement continues until all properties are satisfied, enabling
an automated yet rigorous approach to system development
that enhances efficiency while ensuring correctness.

Generalization. The agent framework is generalizable
and adaptable to tools like Alloy Analyzer (Jackson,
2000), PRISM (Kwiatkowska et al., 2002), and UP-
PAAL (Behrmann et al., 2004). Its modular design enables
the Planning LLM to learn tool-specific logic and the Code
Translation LLM to generate corresponding formal code and
assertions. By tailoring feedback and refinement loops for
each tool, the framework seamlessly integrates LLM-driven
development with diverse formal verification processes.

3.3. LLM for Theorem Proving

Among all formal analysis techniques, theorem proving
stands out for its capability to handle complex state spaces,
abstract specifications, and highly intricate systems. Unlike
model checking (we will discuss subsequently), which is pri-
marily designed for finite models and faces challenges with
state space explosion, theorem proving excels in leveraging
mathematical reasoning to establish properties that hold uni-
versally. This capability has been successfully demonstrated
in critical systems, such as CompCert (Leroy, 2009), a for-
mally verified C compiler that guarantees the correctness
of compiled code, and seL4 (Klein et al., 2009), a micro-
kernel with rigorous proofs of memory safety, functional
correctness, and security properties. In this section, we ex-
plore how LLMs can enhance premise selection and proof
generation for theorem proving and then illustrate the agent
with one example in Appendix A.

3.3.1. PREMISE SELECTION

Retrieving relevant facts from a large collection of lemmas
is a critical task in theorem proving, and this process is
known as premise selection. This task is typically done

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

manually by explicitly specifying the used lemmas in the
proof scripts, which often requires trial and error and deep
domain knowledge, making it time-consuming and error-
prone. Some powerful automation techniques in interactive
theorem provers (ITPs) also need premise selection to first
filter out irrelevant lemmas from the large search space.
For example, Sledgehammer (Böhme & Nipkow, 2010), an
effective tool for Isabelle/HOL (Paulson, 1994), collects
relevant facts from the background theories and sends them
to external automatic theorem provers (ATPs) and SMT
solvers to find proofs. This process involves premise se-
lection to identify the most relevant lemmas that can help
in proving the current goal. For example, Sledgehammer
usually selects about 1,000 lemmas out of tens of thousands
of premises. Some heuristics (Meng & Paulson, 2009) and
machine learning techniques (Kühlwein et al., 2013) like
naive Bayes are used in Sledgehammer for relevant fact
selection. Recent works (Mikuła et al., 2024; Yang et al.,
2023) proposed using transformer models to learn the rele-
vance of lemmas for premise selection, which improved the
success rate of Sledgehammer.

Our insight is that LLM agents can further improve the
premise selection process by leveraging their code under-
standing capabilities. Premise selection fundamentally dif-
fers from other tasks like code retrieval. LLMs, with their
strong code comprehension capabilities, offer a way to ad-
dress this gap. They can infer the meaning of a lemma from
its name, definition, and contextual information, mimicking
the reasoning process of a human expert. For instance, a
human expert can intuitively assess whether a given lemma
is likely to be helpful for a particular proof goal. However,
the sheer number of lemmas in large proof libraries makes
it impossible for experts to evaluate and rank all possible
candidates manually. By contrast, LLM agents can effi-
ciently scale this process. We can first collect definitions
and contextual information of lemmas and ask LLM agents
to generate semantic descriptions in natural language for
each lemma, forming a knowledge base for premise selec-
tion. Then, given a proof goal, LLM agents comprehend the
goal and generate a semantic representation, which is used
to query the knowledge base for relevant lemmas.

3.3.2. PROOF GENERATION

Proof step generation is the central task in theorem proving,
where the objective is to predict one or more proof steps
to construct a valid proof for a given theorem. Many pi-
oneering works on LLM-based proof generation (Polu &
Sutskever, 2020; Polu et al., 2023; Han et al., 2022) ap-
proach this problem as a language modeling task and train
LLMs on large-scale proof corpora to predict the next proof
step. Various techniques have been developed to improve
the quality of generated proofs. For instance, learning to
invoke ATPs to discharge subgoals (Jiang et al., 2022a), re-

pairing failed proof steps by querying LLMs with the error
message (First et al., 2023), and predicting auxiliary con-
structions to simplify proofs (Trinh et al., 2024) have all
demonstrated significant potential.

However, real-world verification scenarios present chal-
lenges that go beyond these methods. Human experts, for
instance, do not solely rely on immediate proof context or
predefined strategies. Instead, they first have a high-level
proof plan in mind and frequently need to consult the defi-
nitions of important concepts or theorems during the proof
process. Additionally, experts often employ a trial-and-error
approach, iteratively refining their methods to construct a
valid proof. This highlights a limitation of current LLMs
when used as standalone tools: while they excel at pro-
ducing plausible proof steps, they lack broader strategic
reasoning and adaptability. This gap makes it difficult for
LLMs to consistently surpass human performance in proof
generation tasks.

To address these limitations, we propose a shift toward
LLM agents that more closely emulate human experts in
their proof strategies. In contrast to standalone LLMs, these
agents integrate multiple capabilities, allowing them to rea-
son, adapt, and interact during the proof process. This
distinction can be articulated through the following two key
features: Feature 1. Explicit Proof Intentions. A defin-
ing feature of LLM agents is their ability to generate both
proof steps and explicit proof intentions—statements that
explain the reasoning or goals underlying each step. This
additional layer of information is critical for improving both
automated and human-driven refinement. When a proof
step fails, the agent can use the intention, along with error
feedback, to attempt a proof repair. Even if the repair is
unsuccessful, the intention provides valuable insights for
human users, streamlining their efforts to identify and re-
solve the issue. Feature 2. Dynamic Retrieval of Relevant
Knowledge. LLM agents go beyond the immediate con-
text by incorporating mechanisms to retrieve definitions,
lemmas, or related theorems from knowledge bases. This
mimics how human experts consult reference materials dur-
ing the proof process but with significantly greater efficiency
and scale. By dynamically identifying and incorporating
relevant information, the agent can address gaps in its inter-
nal knowledge, enabling it to construct proofs that require
broad or specialized domain understanding.

4. FM for LLM: Towards Reliability
Now we illustrate how formal methods can enhance LLMs’
reliability. Specifically, we explore this integration direction
from three perspectives: (i) trustworthy LLMs with sym-
bolic solvers, (ii) LLM Testing based on logical reasoning,
and (iii) LLM behavior analysis. We argue that these FM-
based techniques makes AI systems reliably secure, paving

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

the way for developing trustworthy AI systems.

4.1. SMT Solvers for LLM

Satisfiability Modulo Theories (SMT) solvers are special-
ized tools designed to determine the satisfiability of logical
formulas defined over some theories, such as arithmetic,
bit-vectors, and arrays. They play a pivotal role in formal
verification, program analysis, and automated reasoning,
serving as essential components to ensure the correctness
and reliability of complex software systems.

Recent studies (Deng et al., 2024; Pan et al., 2023; Wang
et al., 2024; Ye et al., 2024) have explored the integration
of SMT solvers to enhance the accuracy and reliability of
LLMs in logic reasoning tasks. These solver-powered LLM
agents operate by translating task descriptions into formal
specifications, delegating reasoning tasks to specialized ex-
pert tools for precise analysis, and subsequently converting
the outputs back into natural language.

We have identified three main challenges within this re-
search line. Firstly, while LLMs are capable of generating
logical constraints or SMT formulas, they often produce
suboptimal or overly verbose constraints, which can place
an additional computational burden on the solver. Secondly,
the outputs of LLMs lack guarantees of correctness or logi-
cal consistency, potentially introducing subtle inaccuracies
or ambiguities in the generated SMT constraints. It can
lead to invalid results or solutions that are challenging to
interpret. Lastly, LLMs often lack domain-specific knowl-
edge and may struggle to generate outputs that conform to
the precise formal syntax required by SMT solvers. Conse-
quently, they may generate formulas that are semantically
sensible but syntactically invalid formulas, rendering them
unprocessable by the solvers.

We present our insights and proposed strategies to address
the three key challenges outlined above and provide an
example agent in Appendix A.

Strategy 1. Multiple LLMs Debating. To address the
challenge of LLMs generating suboptimal or overly ver-
bose constraints, a potential strategy involves leveraging
multiple LLMs in a collaborative or adversarial framework
to critique, validate, and refine each other’s outputs. In
this approach, the system employs one or more LLMs to
generate SMT code from natural language inputs, while
other LLMs function as “critics”, evaluating the generated
SMT code for logical consistency, syntactic correctness,
and alignment with the problem description. By incorpo-
rating feedback loops among these models, the system can
iteratively refine the outputs and reduce ambiguity inherent
in natural language inputs. Strategy 2. Test Generation.
Test cases will be automatically generated to validate the
correctness and consistency of the LLM-generated SMT

code against the expected behavior. Fuzzing techniques
may also be employed to generate adversarial inputs for
testing. Additionally, mutation-based approaches can be
applied to both the SMT code and the natural language
descriptions, with two LLMs comparing the resulting solu-
tions. The strategy helps check the consistency between the
natural language description and the SMT code produced
by the LLMs. Strategy 3. Self-Correction. Feedback from
tests, critics, or the solver itself can be leveraged to itera-
tively refine the SMT code. Errors identified via solvers can
be categorized into syntax issues (e.g., invalid SMT-LIB
syntax), semantic misalignments (e.g., logical inconsisten-
cies), or performance bottlenecks (e.g., slow or incomplete
solver responses). Based on this feedback, an LLM can
be employed to debug and regenerate problematic parts of
the constraints, ensuring that the refinements are both tar-
geted and context-aware. This iterative refinement process,
coupled with validation through re-testing, facilitates the
convergence of LLM-generated SMT codes toward correct-
ness and rigorousness.

4.2. Logical Reasoning for LLM Testing

LLM Testing (Zhong et al., 2024; Hendrycks et al., 2021;
Huang et al., 2023; Zhou et al., 2023) is primarily focused
on establishing a comprehensive benchmark to evaluate the
overall performance of the models, ensuring that they fulfill
specific assessment criteria, such as accuracy, coherence,
fairness, and safety, in alignment with their intended appli-
cations. An emerging research focus in this area is testing
hallucinations in LLMs, with recent studies proposing vari-
ous methods for their detection, evaluation, and mitigation.
A common and straightforward method is to create compre-
hensive benchmarks specifically designed to assess LLM
performance. However, these methods, which often rely
on simplistic or semi-automated techniques such as string
matching, manual validation, or cross-verification using
another LLM, have significant shortcomings in automati-
cally and effectively testing Fact-conflicting hallucinations
(FCH) (Li et al., 2024a). This is largely due to the lack of
dedicated ground truth datasets and specific testing frame-
works. We contend that unlike other types of hallucinations,
which can be identified through checks for semantic con-
sistency, FCH requires the verification of content’s factual
accuracy against external, authoritative knowledge sources
or databases. Hence, it is crucial to automatically construct
and update factual benchmarks, and automatically validate
the LLM outputs based on that.

To this end, we propose to apply logical reasoning to de-
sign a reasoning-based test case generation method aimed at
developing an extensive and extensible FCH testing frame-
work. Such a testing framework leverages factual knowl-
edge reasoning combined with metamorphic testing princi-
ples to ensure a robust FCH evaluation of LLM.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

4.2.1. FACTUAL KNOWLEDGE EXTRACTION

This process focuses on extracting essential factual informa-
tion from input knowledge data in the form of fact triples,
which are then suitable for logical reasoning. Existing
knowledge databases (Bollacker et al., 2007; Auer et al.,
2007; Suchanek et al., 2007; Miller, 1995) serve as valuable
resources due to their extensive repositories of structured
data derived from documents and web pages. This struc-
tured data forms the foundation for constructing and enrich-
ing factual knowledge, providing a robust basis for the test
case framework.

The extraction process typically involves structuring facts as
three-element predicates, nm (s, o), where “s” (stands for
subject) and “o” (stands for object) are entities, and “nm”
denotes the predicate. This divide-and-conquer strategy
extracts facts category by category, effectively organizing
information across various domains. The extraction process
iterates through predefined categories of entities and rela-
tions, employing a database querying function to retrieve all
relevant fact triples for a given entity and predicate combina-
tion. This ensures comprehensive and systematic extraction
of factual knowledge, creating a well-structured dataset for
reasoning and testing.

4.2.2. LOGICAL REASONING

This step focuses on deriving enriched information from
previously extracted factual knowledge by employing log-
ical reasoning techniques. The approach utilizes a logical
programming-based processor to automatically generate
new fact triples by applying predefined inference rules, tak-
ing one or more input triples and producing derived outputs.

In particular, to introduce variability in the generation of
test cases, reasoning rules, commonly utilized in existing
literature (Zhou et al., 2019; Liang et al., 2022; Abboud
et al., 2020) for knowledge reasoning, are typically adopted,
including negation, symmetric, inverse, transitive and com-
posite. These rules provide a systematic framework for
generating new factual knowledge, ensuring diverse and
comprehensive test case preparation. The system applies all
relevant reasoning rules exhaustively to the appropriate fact
triples, enabling the automated enrichment of the knowledge
base for further testing purposes.

4.2.3. BENCHMARK CONSTRUCTION

This process consists of two key steps: (i) generating
question-answer (Q&A) pairs and (ii) creating prompts
from derived triples, which together can significantly re-
duce manual effort in test oracle generation. Step 1. Ques-
tion Generation. This step uses entity-relation mappings
to populate predefined Q&A templates, aligning relation
types with corresponding question structures based on the

grammatical and semantic characteristics of predicates. For
predicates with unique characteristics, customized templates
are employed to generate valid Q&A pairs. To enhance nat-
ural language formulation, LLM can be used to refine the
Q&A structures. Answers are derived directly from factual
triples, with true/false judgments determined by the data.
Mutated templates, leveraging synonyms or antonyms, di-
versify questions with opposite semantics, yielding comple-
mentary answers. Step 2. Prompt Construction. Prompts
are designed to instruct LLMs to provide explicit judgments
(e.g., yes/no/I don’t know) and outline their reasoning in
standardized formats. LLM analysts can utilize predefined
instructions to ensure clarity and enable LLMs to deliver
assessable and logically consistent responses. This method
maximizes the model’s reasoning capabilities within the
structured framework of prompts and cues.

4.2.4. RESPONSE EVALUATION.

This step aims to enhance the factual evaluation in LLM out-
puts by identifying discrepancies between LLM responses
and the verified ground truth in Q&A pairs. The key in-
sight lies in constructing a similarity-based metamorphic
testing and oracles to evaluate consistency by comparing
the semantic structures of the response and ground truth,
focusing on node similarity (fact correctness) and edge sim-
ilarity (reasoning correctness). Responses are categorized
into four classes: correct responses (both nodes and edges
are similar), hallucinations from erroneous inference (nodes
are similar, edges are not), hallucinations from erroneous
knowledge (edges are similar, nodes are not), and overlaps
with both issues (both nodes and edges are dissimilar).

4.3. Rigorous LLM Behavior Analysis

While LLM Testing techniques can effectively provide
broad assessments and reveal edge cases that may provoke
unexpected responses, they are limited in their capability
to give rigorous guarantees on LLM behaviors. LLM Ver-
ification, on the other hand, serves as a complementary
mechanism. However, as LLMs grow more complex and
tasks become increasingly sophisticated, traditional neural
network verifiers lose relevance due to their limitations in
accommodating diverse model architectures and their focus
on single-application scenarios. Indeed, formal verifica-
tion of LLMs poses intrinsic challenges due to three key
factors: Factor 1. Non-Deterministic Responses. Re-
sponses from LLMs are non-deterministic, meaning their
outputs may vary even with the same input. This inher-
ent variability presents substantial challenges to providing
deterministic guarantees regarding their behavior. Factor
2. High Input Dimensions. The high dimensionality of
inputs in LLMs leads to exponential growth in the number
of input tokens, rendering exhaustive verification across an
infinite input space highly impractical. Factor 3. Lack

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

of Formal Specification. While formal specifications are
rigorous, they often lack the expressive capability of natural
language, which makes it extremely difficult to precisely
capture the nuanced and complex language behaviors ex-
pected from LLMs. Hence, we propose that a specialized
verification paradigm tailored specifically for LLMs should
be considered to ensure reliable and rigorous certification
for long-term applications.

Given these challenges, we argue that monitoring might
serve as a viable long-term solution for reliable LLM be-
havior analysis. Positioned between testing and verification,
monitoring of formalized properties at runtime enables rig-
orous certification of system behavior with minimal com-
putation overhead by examining execution traces against
predefined properties. This approach has already inspired
several efforts to monitor LLM responses at runtime (Cohen
et al., 2023; Manakul et al., 2023; Besta et al., 2024; Chen
et al., 2024a) (quite similar to another research line named
guardrails). However, the specifications used in these meth-
ods remain ambiguous and informal. For example, they
define the properties of low hallucination based on the sta-
bility of LLM outputs. More recently, an approach (Cheng
et al., 2024) has been introduced to monitor the conditional
fairness properties of LLM responses. The specifications
in (Cheng et al., 2024) are informed by linear temporal logic
and its bounded metric interval temporal logic variant, re-
flecting a shift toward formal methods for more precise and
dependable monitoring of LLM behavior.

Despite these advancements, challenges remain in extending
such formal monitoring techniques to a broader spectrum of
properties, including but not limited to robustness, factual
consistency, adherence to ethical guidelines, and sensitivity
to adversarial prompts. Real-world applications of LLMs
often involve nuanced, context-dependent interactions that
demand adaptive and scalable monitoring solutions. Future
research should focus on integrating diverse monitoring ap-
proaches, incorporating statistical and formal analysis tech-
niques with data-driven approaches to enhance adaptability,
and leveraging real-time anomaly detection to enhance the
comprehensiveness and practicality of LLM behavior moni-
toring in varied deployment scenarios, ultimately fostering
greater trustworthiness and accountability in AI systems.

5. Unifying Multiple FMs and LLMs
This section highlights the synergy among multiple LLM-
FM agents. By combining formal verification and reasoning,
and specialized LLM agents, a hybrid approach contains
both the adaptability of LLMs and the rigorous correctness
guarantees provided by FMs. The diagram in Figure 2
illustrates the pipeline for integrating multiple FMs and
LLMs to achieve verified actions.

Figure 2. The framework of multiple LLM-FM agents

The process begins with specifications or user requirements,
translated into actionable outputs through automated formal-
ization, reasoning, and iterative verification. The process
begins with user-defined specifications or requirements, of-
ten expressed in natural language. These specifications
are processed by an LLM trained to interpret natural lan-
guage and convert it into formal representations, a process
called auto-formalization. The model checker verifies that
the formalized requirements satisfy logical constraints and
system properties. The theorem prover provides rigorous
proof guarantees for critical properties, ensuring correctness.
The automatic theorem prover is powered by SMT Solvers,
which check for logical consistency in the code or action
generated. The testing module conducts systematic testing
to identify potential issues that may not be checked in formal
proofs. The behavior analysis module analyzes the system’s
runtime behavior to ensure compliance with expected out-
comes. LLMs act as intermediaries in the pipeline, integrat-
ing insights from multiple FMs, providing feedback, and
generating actions. The LLM Agent ensures adaptability by
refining outputs based on formal verification results. The
final output is a verified action that meets the original user
requirements and adheres to rigorous formal guarantees.

By unifying multiple FMs and LLMs, this framework lever-
ages their complementary strengths to create systems that
are not only adaptable and efficient but also trustworthy.

6. Conclusion
This paper advocates for the integration of Large Language
Models and Formal Methods as a necessary approach to
building trustworthy AI agents. Through case studies and
conceptual explorations, we illustrate how this integration
can address the inherent limitations of both paradigms, par-
ticularly in applications such as program synthesis. This
fusion lays the foundation for bridging neural learning and
symbolic reasoning, ensuring AI agents are both powerful
and verifiably trustworthy.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

References
Abboud, R., Ceylan, I., Lukasiewicz, T., and Salvatori, T.

Boxe: A box embedding model for knowledge base com-
pletion. Advances in Neural Information Processing Sys-
tems, 33:9649–9661, 2020.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agarwal, C., Tanneru, S. H., and Lakkaraju, H. Faith-
fulness vs. plausibility: On the (un) reliability of ex-
planations from large language models. arXiv preprint
arXiv:2402.04614, 2024.

Alves, G. V., Dennis, L., and Fisher, M. A double-level
model checking approach for an agent-based autonomous
vehicle and road junction regulations. Journal of Sensor
and Actuator Networks, 10(3):41, 2021.

Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., and
Riccobene, E. Integrating formal methods into medical
software development: The asm approach. Science of
Computer Programming, 158:148–167, 2018.

Armstrong, K. Chatgpt: Us lawyer admits using ai
for case research. https://www.bbc.com/news/
world-us-canada-65735769, 2023.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., and Ives, Z. Dbpedia: A nucleus for a web of open
data. In Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., and Cudré-Mauroux,
P. (eds.), The Semantic Web, pp. 722–735, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-
540-76298-0.

Batra, M. Formal methods: Benefits, challenges and fu-
ture direction. Journal of Global Research in Computer
Science, 4(5):21–25, 2013.

Behrmann, G., David, A., and Larsen, K. G. A tutorial
on uppaal. Formal methods for the design of real-time
systems, pp. 200–236, 2004.

Bellware, K. and Masih, N. Her teenage son killed himself
after talking to a chatbot. now she’s suing. https:
//www.washingtonpost.com/nation/2024/
10/24/character-ai-lawsuit-suicide/,
2024.

Besta, M., Paleari, L., Kubicek, A., Nyczyk, P., Gersten-
berger, R., Iff, P., Lehmann, T., Niewiadomski, H.,
and Hoefler, T. Checkembed: Effective verification
of llm solutions to open-ended tasks. arXiv preprint
arXiv:2406.02524, 2024.

Böhme, S. and Nipkow, T. Sledgehammer: Judgement day.
In Giesl, J. and Hähnle, R. (eds.), Automated Reasoning,
pp. 107–121, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-14203-1.

Bollacker, K., Cook, R., and Tufts, P. Freebase: A shared
database of structured general human knowledge. In
Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 2, AAAI’07, pp. 1962–1963. AAAI
Press, 2007. ISBN 9781577353232.

Cai, Y., Hou, Z., Sanan, D., Luan, X., Lin, Y., Sun, J.,
and Dong, J. S. Automated program refinement: Guide
and verify code large language model with refinement
calculus. Proc. ACM Program. Lang., 9(POPL), January
2025. doi: 10.1145/3704905. URL https://doi.
org/10.1145/3704905.

Chen, J., Kim, G., Sriram, A., Durrett, G., and Choi, E.
Complex claim verification with evidence retrieved in the
wild. In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3569–3587, 2024a.

Chen, J., Lin, H., Han, X., and Sun, L. Benchmarking large
language models in retrieval-augmented generation. In
Wooldridge, M. J., Dy, J. G., and Natarajan, S. (eds.),
Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pp. 17754–17762. AAAI Press, 2024b.

Cheng, C.-H., Wu, C., Ruess, H., Zhao, X., and Bensalem, S.
Formal specification, assessment, and enforcement of fair-
ness for generative ais. arXiv preprint arXiv:2404.16663,
2024.

Choudhury, A. and Chaudhry, Z. Large language models
and user trust: Consequence of self-referential learning
loop and the deskilling of health care professionals. J
Med Internet Res, 26, Apr 2024.

Claude, T. The claude 3 model family: Opus, sonnet, haiku.
2024. URL https://api.semanticscholar.
org/CorpusID:268232499.

Cohen, R., Hamri, M., Geva, M., and Globerson, A. LM vs
LM: Detecting factual errors via cross examination. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

de Moura, L. and Bjørner, N. Z3: An efficient smt solver.
In Ramakrishnan, C. R. and Rehof, J. (eds.), Tools and

9

https://www.bbc.com/news/world-us-canada-65735769
https://www.bbc.com/news/world-us-canada-65735769
https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/
https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/
https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/
https://doi.org/10.1145/3704905
https://doi.org/10.1145/3704905
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Algorithms for the Construction and Analysis of Systems,
pp. 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Deng, S., Dong, H., and Si, X. Enhancing and evaluat-
ing logical reasoning abilities of large language mod-
els. In ICLR 2024 Workshop on Secure and Trust-
worthy Large Language Models, 2024. URL https:
//openreview.net/forum?id=xw06d8NQAd.

Dragomir, I., Redondo, C., Jorge, T., Gouveia, L., Ober,
I., Kolesnikov, I., Bozga, M., and Perrotin, M. Model-
checking of space systems designed with taste/sdl. In Pro-
ceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion
Proceedings, pp. 237–246, 2022.

First, E., Rabe, M., Ringer, T., and Brun, Y. Baldur: Whole-
proof generation and repair with large language models.
In The 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pp. 1229–1241, 2023.

Freitas, L., Scott III, W. E., and Degenaar, P. Medicine-
by-wire: Practical considerations on formal techniques
for dependable medical systems. Science of Computer
Programming, 200:102545, 2020.

Gemini, T. Gemini: A family of highly capable multi-
modal models, 2024. URL https://arxiv.org/
abs/2312.11805.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International conference on machine learning, pp. 3929–
3938. PMLR, 2020.

Han, J. M., Rute, J., Wu, Y., Ayers, E., and Polu, S. Proof ar-
tifact co-training for theorem proving with language mod-
els. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=rpxJc9j04U.

He-Yueya, J., Poesia, G., Wang, R. E., and Goodman,
N. D. Solving math word problems by combining lan-
guage models with symbolic solvers. arXiv preprint
arXiv:2304.09102, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Huang, Y., Bai, Y., Zhu, Z., Zhang, J., Zhang, J., Su, T., Liu,
J., Lv, C., Zhang, Y., Lei, J., Fu, Y., Sun, M., and He,
J. C-eval: A multi-level multi-discipline chinese evalu-
ation suite for foundation models. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Huang, Z., Li, B., Du, D., and Li, Q. A model checking
based approach to detect safety-critical adversarial exam-
ples on autonomous driving systems. In International
Colloquium on Theoretical Aspects of Computing, pp.
238–254. Springer, 2022.

Huet, G., Kahn, G., and Paulin-Mohring, C. The coq proof
assistant a tutorial. Rapport Technique, 178, 1997.

Jackson, D. Automating first-order relational logic. In Pro-
ceedings of the 8th ACM SIGSOFT international sympo-
sium on Foundations of software engineering: twenty-first
century applications, pp. 130–139, 2000.

Jackson, P. Introduction to expert systems. 1986.

Jacovi, A. and Goldberg, Y. Towards faithfully interpretable
nlp systems: How should we define and evaluate faith-
fulness? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 4198–
4205, 2020.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K.,
Odrzygóźdź, T., Miłoś, P., Wu, Y., and Jamnik, M. Thor:
Wielding hammers to integrate language models and auto-
mated theorem provers. Advances in Neural Information
Processing Systems, 35:8360–8373, 2022a.

Jiang, A. Q., Welleck, S., Zhou, J. P., Li, W., Liu, J., Jamnik,
M., Lacroix, T., Wu, Y., and Lample, G. Draft, sketch,
and prove: Guiding formal theorem provers with informal
proofs. arXiv preprint arXiv:2210.12283, 2022b.

Kaleeswaran, A. P., Nordmann, A., Vogel, T., and Grunske,
L. A user study for evaluation of formal verification
results and their explanation at bosch. Empirical Software
Engineering, 28(5):125, 2023.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski,
R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S.
sel4: formal verification of an os kernel. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pp. 207–220, New York,
NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605587523. doi: 10.1145/1629575.1629596.

10

https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=xw06d8NQAd
https://openreview.net/forum?id=xw06d8NQAd
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://openreview.net/forum?id=rpxJc9j04U
https://openreview.net/forum?id=rpxJc9j04U

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Kneuper, R. Limits of formal methods. Formal Aspects of
Computing, 9(4):379–394, 1997.

König, L., Heinzemann, C., Griggio, A., Klauck, M.,
Cimatti, A., Henze, F., Tonetta, S., Küperkoch, S., Fass-
bender, D., and Hanselmann, M. Towards safe au-
tonomous driving: Model checking a behavior planner
during development. In International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pp. 44–65. Springer, 2024.

Kühlwein, D., Blanchette, J. C., Kaliszyk, C., and Urban, J.
Mash: Machine learning for sledgehammer. In Blazy, S.,
Paulin-Mohring, C., and Pichardie, D. (eds.), Interactive
Theorem Proving, pp. 35–50, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-39634-2.

Kwiatkowska, M., Norman, G., and Parker, D. Prism: Prob-
abilistic symbolic model checker. In International Con-
ference on Modelling Techniques and Tools for Computer
Performance Evaluation, pp. 200–204. Springer, 2002.

Leroy, X. Formal verification of a realistic compiler. Com-
mun. ACM, 52(7):107–115, July 2009. ISSN 0001-0782.
doi: 10.1145/1538788.1538814.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Li, N., Li, Y., Liu, Y., Shi, L., Wang, K., and Wang, H.
Drowzee: Metamorphic testing for fact-conflicting hal-
lucination detection in large language models. Proc.
ACM Program. Lang., 8(OOPSLA2), October 2024a.
doi: 10.1145/3689776. URL https://doi.org/10.
1145/3689776.

Li, Y., Parsert, J., and Polgreen, E. Guiding enumerative
program synthesis with large language models. In Inter-
national Conference on Computer Aided Verification, pp.
280–301. Springer, 2024b.

Liang, K., Meng, L., Liu, M., Liu, Y., Tu, W., Wang, S.,
Zhou, S., Liu, X., and Sun, F. Reasoning over different
types of knowledge graphs: Static, temporal and multi-
modal. arXiv preprint arXiv:2212.05767, 2022.

Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H., and He, J. Aadl+:
a simulation-based methodology for cyber-physical sys-
tems. Frontiers of Computer Science, 13:516–538, 2019.

Liu, J., Lin, J., and Liu, Y. How much can rag help the
reasoning of llm? arXiv preprint arXiv:2410.02338,
2024.

Liu, Y., Sun, J., and Dong, J. S. PAT 3: An extensible
architecture for building multi-domain model checkers.
In Dohi, T. and Cukic, B. (eds.), IEEE 22nd International
Symposium on Software Reliability Engineering, ISSRE
2011, Hiroshima, Japan, November 29 - December 2,
2011, pp. 190–199. IEEE Computer Society, 2011. doi:
10.1109/ISSRE.2011.19. URL https://doi.org/
10.1109/ISSRE.2011.19.

Ma, L., Liu, S., Li, Y., Xie, X., and Bu, L. Specgen: Au-
tomated generation of formal program specifications via
large language models, 2024a. URL https://arxiv.
org/abs/2401.08807.

Ma, Y., Gou, Z., Hao, J., Xu, R., Wang, S., Pan, L., Yang,
Y., Cao, Y., Sun, A., Awadalla, H., et al. Sciagent:
Tool-augmented language models for scientific reasoning.
arXiv preprint arXiv:2402.11451, 2024b.

Manakul, P., Liusie, A., and Gales, M. Selfcheckgpt: Zero-
resource black-box hallucination detection for genera-
tive large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pp. 9004–9017, 2023.

Meng, J. and Paulson, L. C. Lightweight relevance filtering
for machine-generated resolution problems. Journal of
Applied Logic, 7(1):41–57, 2009. ISSN 1570-8683. doi:
10.1016/j.jal.2007.07.004. Special Issue: Empirically
Successful Computerized Reasoning.

Mikuła, M., Tworkowski, S., Antoniak, S., Piotrowski, B.,
Jiang, A. Q., Zhou, J. P., Szegedy, C., Kuciński, Ł.,
Miłoś, P., and Wu, Y. Magnushammer: A transformer-
based approach to premise selection. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=oYjPk8mqAV.

Miller, G. A. Wordnet: A lexical database for english.
Commun. ACM, 38(11):39–41, nov 1995. ISSN 0001-
0782. doi: 10.1145/219717.219748. URL https://
doi.org/10.1145/219717.219748.

Murphy, W., Holzer, N., Koenig, N., Cui, L., Rothkopf,
R., Qiao, F., and Santolucito, M. Guiding llm temporal
logic generation with explicit separation of data and con-
trol, 2024. URL https://arxiv.org/abs/2406.
07400.

Pan, L., Albalak, A., Wang, X., and Wang, W. Logic-
lm: Empowering large language models with symbolic
solvers for faithful logical reasoning. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 3806–3824, 2023.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

11

https://doi.org/10.1145/3689776
https://doi.org/10.1145/3689776
https://doi.org/10.1109/ISSRE.2011.19
https://doi.org/10.1109/ISSRE.2011.19
https://arxiv.org/abs/2401.08807
https://arxiv.org/abs/2401.08807
https://openreview.net/forum?id=oYjPk8mqAV
https://openreview.net/forum?id=oYjPk8mqAV
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/2406.07400
https://arxiv.org/abs/2406.07400

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Polu, S. and Sutskever, I. Generative language modeling for
automated theorem proving. CoRR, 2020. URL https:
//arxiv.org/abs/2009.03393.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=-P7G-8dmSh4.

Song, P., Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in lean.
arXiv preprint arXiv:2404.12534, 2024.

Stengel-Eskin, E., Prasad, A., and Bansal, M. Re-
gal: Refactoring programs to discover generalizable ab-
stractions, 2024. URL https://arxiv.org/abs/
2401.16467.

Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: A
core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pp. 697–706, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595936547. doi: 10.
1145/1242572.1242667. URL https://doi.org/
10.1145/1242572.1242667.

Sun, J., Liu, Y., and Dong, J. S. Model checking csp re-
visited: Introducing a process analysis toolkit. In Inter-
national symposium on leveraging applications of for-
mal methods, verification and validation, pp. 307–322.
Springer, 2008.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models, 2023. URL https://arxiv.org/
abs/2302.13971.

Trinh, T., Wu, Y. T., Le, Q., He, H., and Luong,
T. Solving Olympiad geometry without human
demonstrations. Nature, 625:476–482, 2024.
URL https://www.nature.com/articles/
s41586-023-06747-5.

Wang, C., Zhang, W., Su, Z., Xu, X., Xie, X., and Zhang,
X. When dataflow analysis meets large language models.
arXiv preprint arXiv:2402.10754, 2024.

Wen, C., Cao, J., Su, J., Xu, Z., Qin, S., He, M., Li, H.,
Cheung, S.-C., and Tian, C. Enchanting program speci-
fication synthesis by large language models using static
analysis and program verification. In International Con-
ference on Computer Aided Verification, pp. 302–328.
Springer, 2024.

Wiegreffe, S. and Marasovic, A. Teach me to explain: A
review of datasets for explainable natural language pro-
cessing. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track
(Round 1), 2020.

Wu, H., Barrett, C. W., and Narodytska, N. Lemur: In-
tegrating large language models in automated program
verification. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, 2024.

Wu, Y., Jiang, A. Q., Li, W., Rabe, M., Staats, C., Jam-
nik, M., and Szegedy, C. Autoformalization with large
language models. Advances in Neural Information Pro-
cessing Systems, 35:32353–32368, 2022.

Xu, Z., Jain, S., and Kankanhalli, M. Hallucination is
inevitable: An innate limitation of large language mod-
els, 2024. URL https://arxiv.org/abs/2401.
11817.

Yang, K. and Deng, J. Learning to prove theorems via inter-
acting with proof assistants. In International Conference
on Machine Learning, pp. 6984–6994. PMLR, 2019.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R., and Anandkumar, A. Le-
anDojo: Theorem proving with retrieval-augmented lan-
guage models. arXiv preprint arXiv:2306.15626, 2023.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2023. ISSN 1049-
5258. Publisher Copyright: © 2023 Neural information
processing systems foundation. All rights reserved.; 37th
Conference on Neural Information Processing Systems,
NeurIPS 2023 ; Conference date: 10-12-2023 Through
16-12-2023.

Ye, X., Chen, Q., Dillig, I., and Durrett, G. Satlm:
Satisfiability-aided language models using declarative
prompting. Advances in Neural Information Processing
Systems, 36, 2024.

Zheng, K., Han, J. M., and Polu, S. minif2f: a cross-system
benchmark for formal olympiad-level mathematics. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=9ZPegFuFTFv.

12

https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=-P7G-8dmSh4
https://openreview.net/forum?id=-P7G-8dmSh4
https://arxiv.org/abs/2401.16467
https://arxiv.org/abs/2401.16467
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Zhong, W., Cui, R., Guo, Y., Liang, Y., Lu, S., Wang, Y.,
Saied, A., Chen, W., and Duan, N. Agieval: A human-
centric benchmark for evaluating foundation models. In
Findings of the Association for Computational Linguis-
tics: NAACL 2024, pp. 2299–2314, 2024.

Zhou, J. P., Staats, C., Li, W., Szegedy, C., Weinberger,
K. Q., and Wu, Y. Don’t trust: Verify - grounding LLM
quantitative reasoning with autoformalization. In The
Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024,
2024.

Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W. X., Chen,
X., Lin, Y., Wen, J.-R., and Han, J. Don’t make your
llm an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964, 2023.

Zhou, Z., Liu, S., Xu, G., and Zhang, W. On completing
sparse knowledge base with transitive relation embedding.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pp. 3125–3132, 2019.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

A. Appendix
A.1. Theorem Prover Agent

In this subsection, we describe the integration of a large language model (LLM) agent with the Coq proof assistant. Coq is
an interactive theorem prover that allows for the expression of mathematical assertions, their formal verification, and the
construction of proofs within a rigorous framework. By integrating Coq with an LLM agent, we aim to enhance the agent’s
ability to assist in formal proofs, reason about mathematical statements, and verify the correctness of solutions within the
realm of formal logic.

Overview of Coq Theorem Prover Coq is a proof assistant based on constructive type theory, which supports both
functional programming and formal specification. Coq provides a framework for defining mathematical structures, functions,
and proofs, leveraging a powerful type system to ensure correctness. It allows users to interactively develop proofs, and
once a proof is verified, Coq guarantees its correctness by construction. Coq is widely used in formal verification, certified
software development, and mathematical proof exploration. Integrating Coq with an LLM agent enhances the accessibility
of formal proof construction and verification, allowing users to interact with formal methods in a more intuitive manner.
This integration enables non-experts to explore and validate mathematical proofs without needing extensive familiarity
with formal languages. Furthermore, the LLM agent can assist in automating proof steps, suggesting possible tactics, and
generating human-readable explanations.

In the future, more advanced natural language translation mechanisms can be developed to handle increasingly complex
theorems and mathematical domains. Additionally, the integration of other theorem provers with complementary strengths,
such as Isabelle/HOL or Lean, can further broaden the agent’s capabilities in formal reasoning and proof verification.

A.1.1. CASE STUDY ON LLMS WITH COQ

To illustrate our perspective, we illustrate our recent exploration of the interaction between LLMs and Coq. Coq (Huet
et al., 1997) is a classic proof assistant based on constructive type theory, supporting functional programming and formal
specification. The integration of Coq with an LLM agent involves several key steps:

Step 1. Natural Language Understanding. The LLM agent receives natural language input from the user, typically in the
form of a mathematical theorem, conjecture, or problem.

Step 2. Formalization of the Problem. The LLM agent translates the natural language problem into Coq’s formal language.
This includes defining types, propositions, and functions necessary for the formulation of the theorem.

Step 3. Proof Construction. The LLM agent collaborates with Coq to construct proofs, utilizing Coq’s interactive features
to propose proof steps that are subsequently verified or refined.

Step 4. Proof Verification and Feedback. Once the proof is constructed, Coq verifies its correctness. The LLM agent
translates the verified proof back into natural language, providing a comprehensible explanation of the result to the user.

Example Consider the following natural language query posed to the LLM agent:

“Prove that the sum of two even numbers is even.”

The LLM agent first translates this into a formal Coq language:

Theorem sum_of_even_numbers : forall n m : nat,
even n -> even m -> even (n + m).

The user needs to check the correctness of the coq code to guarantee consistency between the natural language and coq code.
Then, the LLM agent will search the related theorems and lemmas, and construct the proof as follows:

Proof.
intros n m Hn Hm.
unfold even in *.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Problem: Let un a sequence defined by u0 = 0 and ∀n ≥ 0, un+1 = 2un + (n+ 1). Show that ∀n ≥ 0, un = 2n+1 − (n+ 2).

Informal Proof: The property is true for n = 0, since 20+1 − (0 + 2) = 0. By induction, assuming the property holds for n ≥ 0,
we have: un+1 = 2un + (n+ 1) = 2

(
2n+1 − (n+ 2)

)
+ n+ 1 = 2n+2 − (n+ 3), which shows the property holds for n+ 1.

Figure 3. An informal proof example that needs to be formalized.

destruct Hn as [k Hk].
destruct Hm as [l Hl].
exists (k + l).
rewrite Hk, Hl.
ring.

Qed.

Coq verifies this proof, and the LLM agent explains and responds in natural language:

“The proof shows that if two numbers are even, their sum is also even by using basic properties of addition and the
definition of even numbers.”

A.2. An Motivating Example for Autoformalization

Specifically, Figure 3 gives a motivating example from the miniF2F benchmark (Zheng et al., 2022). The problem and
its human-written informal proof are given, and it demonstrates a concise and correct inductive proof. However, some
intermediate steps, particularly the algebraic manipulations, are omitted in the informal proof. Although the equation can be
easily verified by human experts, it is challenging for LLMs to infer the missing details and generate a correct formal proof
due to their limited symbolic reasoning capabilities. The following Isabelle/HOL proof snippet illustrates an attempt by
ChatGPT-3.5-turbo to formalize the given informal proof. While the model correctly identifies the required transformations,
it fails during the simplification of the term 2 ∗ (n+ 2)− (n+ 1), mistakenly reducing it to 2n+ 3 instead of n+ 3. This
example highlights the limitations of LLMs in handling detailed algebraic reasoning without explicit guidance.

lemma induction_seq_mul2pnp1_forn:
fixes n :: nat and u :: "nat ⇒ nat"
assumes h0 : "u 0 = 0"
and h1 : "

∧
(n::nat). u (n+1) = 2 * u n + (n+1)"

and h2 : "u n = 2 ^ (n+1) - (n+2)"
shows "u (n+1) = 2 ^ (n+2) - (n+3)"

proof -
have "u (n+1) = 2 * u n + (n+1)" using h1 by simp
also have "... = 2 * (2 ^ (n+1) - (n+2)) + (n+1)" using h2 by simp
also have "... = 2 * 2 ^ (n+1) - (2 * (n+2)) + (n+1)"
by (simp add: right_diff_distrib')

also have "... = 2 ^ (n+2) - (2 * (n+2) - (n+1))"
sledgehammer

(* an error in simplification *)
also have "... = 2 ˆ (n+2) - (2*n + 3)" by auto
also have "... = 2 ^ (n+2) - (n+3)" by auto
finally show ?thesis by blast

qed

A.3. Z3 Agent

To illustrate our perspective, we give our recent exploration of the interaction between LLMs and Z3 in Python.

Z3 (de Moura & Bjørner, 2008), a widely used SMT solver, accepts inputs in the form of simple-sorted formulas expressed
in first-order logic (FOL). These formulas can include symbols with predefined meanings, defined by the underlying theories
supported by the solver, and these theories encompass domains such as arithmetic, bit-vectors, arrays, etc., making Z3
particularly well-suited for reasoning about a wide range of logical constraints.

Example Consider a scenario where a user requests the LLM agent to solve a scheduling problem:

“Can you help plan a meeting for a team of three people—David, Emma, and Alex? David is free on Monday or

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Tuesday, Emma is free on Tuesday or Wednesday, and Alex is free only on Tuesday or Thursday. Find a common
day when all three are available.”

We now provide a detailed, step-by-step solution for this task:

Formalization of Constraints Given the above problem, the initial Z3 constraints in Python generated by the LLM are
given as follows:

Define days of the week
days = ["Monday", "Tuesday", "Wednesday", "Thursday"]
David_free = [Bool(f"David_free_{day}") for day in days]
Emma_free = [Bool(f"Emma_free_{day}") for day in days]
Alex_free = [Bool(f"Alex_free_{day}") for day in days]
Create a solver
solver = Solver()
Define constraints for each person's availability
solver.add(Or(David_free[0], David_free[1]))
solver.add(Or(Emma_free[1], Emma_free[2]))
solver.add(Or(Alex_free[1], Alex_free[3]))
Add constraints that ensure a common day for all three
common_day_constraints = [And(David_free[i],
Emma_free[i], Alex_free[i]) for i in range(len(days))]
solver.add(Or(common_day_constraints))

Self correction If the Z3 code has issues (e.g., missing constraints or syntax errors) or generates inconsistent results with
the natural language description, the self-correction procedure will identify and correct them. In this example, the previous
Z3 code ignores the following constraints:

Constraints for David
solver.add(And(Not(David_free[2]), Not(David_free[3])))
Constraints for Emma
solver.add(And(Not(Emma_free[0]), Not(Emma_free[3])))
Constraints for Alex
solver.add(And(Not(Alex_free[0]), Not(Alex_free[2])))

Test Generation The agent mutates the constraints and tweaks the availability of each individual to create new conditions.
For example, the new mutated constraints are David will be free on Monday and Wednesday. Emma will be free on Tuesday
and Thursday. Alex will be free on Monday and Thursday. The updated Z3 code generated by the LLM is as follows:

Mutated constraints for David
solver.add(And(David_free[0], David_free[2]))
solver.add(And(Not(David_free[1]), Not(David_free[3])))
Mutated constraints for Emma
solver.add(And(Emma_free[1], Emma_free[3]))
solver.add(And(Not(Emma_free[0]), Not(Emma_free[2])))
Mutated constraints for Alex
solver.add(And(Alex_free[0], Alex_free[3]))
solver.add(And(Not(Alex_free[1]), Not(Alex_free[2])))

The agent systems will check the consistency between the results produced by Z3 and the reasoning derived from natural
language descriptions to further ensure the correctness of the Z3 codes.

Multiple LLM Debating Whenever it comes to a collision between the Z3 reasoning results and the natural language
reasoning results, the LLM debating will be activated to debate which part is correct. For example, after LLM-A generates
the initial constraints and gets the results of Z3 code. LLM-B will critique the constraints, identifying potential issues such
as missing exclusivity rules or improperly translated logic. LLM-C can suggest refinements, such as introducing mutual
exclusivity or expanding constraints to handle edge cases. The consensus will be the output with the highest confidence
score (e.g., most accurate or simplest) is selected for testing and execution.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Problem Solving The translated constraints are fed into the Z3 solver, which checks the satisfiability of the formula and
computes a solution if possible.

Check for a solution
if solver.check() == sat:

model = solver.model()
common_days = [days[i] for i in range(len(days))
if model.evaluate(David_free[i])

and model.evaluate(Emma_free[i])
and model.evaluate(Alex_free[i])]

print(f"Common day(s) when everyone is free:
{common_days}")

else:
print("No common day when everyone is free.")

Solution Interpretation The LLM agent receives the solution from the Z3 solver and translates it back into natural
language for the user. The only day when all three are free is Tuesday. The output will be: Common day(s) when everyone
is free: [‘Tuesday’].

A.4. Program Verification Example

Program verification is the process of ensuring that a program conforms to a formally defined specification. It involves the
use of formal methods such as model checking, static analysis, and theorem proving to verify that the program behaves as
intended. This process often requires specifying preconditions, postconditions, invariants, and loop variants to formally
define the program’s behavior. Tools such as Dafny, Why3, Frama-C, and SPARK provide automated and semi-automated
support for verifying program properties.

The integration of program verification tools with an LLM agent has significant potential to make formal methods more
accessible to a wider audience. The LLM agent can bridge the gap between natural language descriptions of program
behavior and the formal specifications required for verification, thus enabling non-expert users to verify the correctness of
their code. Additionally, the LLM agent can assist in identifying and correcting verification failures by providing meaningful
explanations and suggesting potential fixes.

Future work may focus on enhancing the LLM agent’s ability to handle more complex verification tasks, such as concurrent
or distributed systems. Additionally, integrating multiple verification tools could provide more comprehensive verification
capabilities, covering a broader range of programming languages and paradigms.

A.4.1. LLM AGENT INTEGRATION

The integration of an LLM agent with program verification tools can be broken down into several stages:

1. Natural Language Specification: The LLM agent allows the user to describe program specifications in natural
language. This includes stating what the program is supposed to do (e.g., sorting a list, finding the maximum value)
and any specific requirements (e.g., ensuring the list is sorted in ascending order).

2. Translation to Formal Specifications: The LLM agent interprets the natural language specification and translates
it into formal specifications, such as preconditions, postconditions, and loop invariants, using a formal specification
language supported by the verification tool (e.g., ACSL for Frama-C, Boogie for Dafny).

3. Program Analysis and Verification: The program code and its formal specification are passed to a verification tool,
which attempts to prove that the code adheres to the specification. The verification tool may automatically generate
proofs, use SMT solvers, or require human-guided proof tactics.

4. Feedback and Explanation: Once verification is complete, the LLM agent presents the results to the user in natural
language, explaining whether the program meets the specification and highlighting any verification failures or issues
that need attention.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

A.4.2. MOTIVATING EXAMPLE

Consider a scenario where the user provides a natural language specification for a program that computes the factorial of a
number:

"Verify that the program computes the factorial of a number, ensuring that the input is a non-negative integer and the result
is correct for all non-negative integers."

The LLM agent translates this specification into a formal precondition and postcondition for a simple factorial function in
Dafny:

method Factorial(n: nat) returns (res: nat)
requires n >= 0
ensures res == if n == 0 then 1 else n * Factorial(n - 1)

{
if n == 0 then return 1;
return n * Factorial(n - 1);

}

The verification tool checks that the implementation satisfies the specification for all possible non-negative inputs. The LLM
agent then provides the following natural language feedback: "The program correctly computes the factorial of non-negative
integers as required. The precondition ensures that the input is non-negative, and the postcondition verifies that the output is
the correct factorial value."

18

