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Abstract
Large Language Models (LLMs) have emerged
as a transformative AI paradigm, profoundly in-
fluencing broad aspects of daily life. However,
despite their remarkable performance, LLMs ex-
hibit a fundamental limitation: hallucination—the
tendency to produce misleading outputs that ap-
pear plausible. This unreliability poses signifi-
cant risks, particularly in high-stakes applications
where trustworthiness is paramount.

On the other hand, Formal Methods (FMs), which
share foundations with symbolic AI, provide
mathematically rigorous techniques for model-
ing, specifying, reasoning and verifying the cor-
rectness of systems. They have been extensively
employed in mission-critical domains such as
aerospace, defense, blockchain, and cybersecurity.
However, FMs remain limited due to steep learn-
ing curves and challenges related to efficiency and
adaptability in daily applications.

To build trustworthy AI agents, we argue that the
integration of LLMs and FMs is necessary to over-
come the limitations of both paradigms. While
LLMs offer adaptability, creativity and human-
like reasoning, they need formal guarantees to en-
sure correctness and reliability. Conversely, FMs
provide rigor but need enhanced accessibility and
automation to support broader adoption.

1. Introduction
The rapid advancement of modern AI techniques, partic-
ularly in the realm of Large Language Models (LLMs)
like GPT (Achiam et al., 2023), Llama (Touvron et al.,
2023), Claude (Claude, 2024), Gemini (Gemini, 2024),
DeepSeek (DeepSeek-AI, 2025) etc., has marked a sig-
nificant evolution in human-level computational capabil-
ities. These models fundamentally reshape tasks across a
spectrum of applications, from natural language process-
ing to automated content generation. Trained on vast text
corpora, LLMs excel in generating responses that are con-
textually accurate and stylistically appropriate. However,

their applicability in safety-critical or knowledge-critical set-
tings remains limited due to their inherent reliability issues—
primarily, their propensity for generating outputs that, while
plausible, may be factually incorrect (Jacovi & Goldberg,
2020; Wiegreffe & Marasovic, 2020; Agarwal et al., 2024).
This limitation, known as “hallucination”, stems from the
probabilistic nature of learning-based AI, where the models
optimize for likelihood rather than truth or logical consis-
tency. Even worse, hallucination is mathematically proven
inevitable for LLMs (Xu et al., 2024).

In contrast, Formal Methods (FMs) have been established as
rigorous tools for verification and validation (V&V) of criti-
cal systems where failure is intolerable, such as aerospace
(relevant areas including avionics) (Dragomir et al., 2022;
Liu et al., 2019), autonomous driving (König et al., 2024;
Alves et al., 2021; Huang et al., 2022), and medical de-
vices (Freitas et al., 2020; Arcaini et al., 2018). These
methods are designed to ensure the correctness and safety
of hardware and software systems by performing rigorous
mathematical analysis. Despite the demonstrated benefits,
the adoption of FMs remains limited, primarily due to their
significant computational complexity and the specialized
expertise required for the implementation.

Although both computational paradigms encounter inherent
challenges of their own—namely, the unreliability stemming
from the statistical nature of LLMs and the high barrier and
complexity of formal methods—recent studies have high-
lighted their potential for mutual benefits (Wu et al., 2022;
Pan et al., 2023; He-Yueya et al., 2023; Zhou et al., 2024;
Yang & Deng, 2019; Yang et al., 2024; Song et al., 2024;
Cai et al., 2025). Efforts to bridge these two paradigms aim
to harness their respective strengths, with the ultimate objec-
tive of developing a neural-symbolic AI that seamlessly inte-
grates LLMs and FMs into a unified solution. For instance,
to enhance the reliability of LLMs, various approaches (Pan
et al., 2023; Ma et al., 2024b) have incorporated solvers to
facilitate reasoning tasks guided by specification rules or rea-
soning models derived from LLMs’ inputs/outputs. Specif-
ically, some efforts have been directed toward improving
LLMs’ understanding of Lisp, enabling better integration
with Lisp-based programming techniques (Stengel-Eskin
et al., 2024; Li et al., 2024b). Conversely, within the formal
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methods community, there is a growing trend to leverage
LLMs to enhance the functionality and usability of auto-
mated verification (Wu et al., 2024; Wen et al., 2024).

This paper advocates for the fusion of LLMs and FMs
as a necessary approach for building the next gener-
ation of AI agents. By leveraging their complementary
strengths, we propose a framework that enhances reliabil-
ity, ensures provable correctness, and mitigates risks in
AI-driven decision-making processes. Through case studies
and conceptual explorations, we demonstrate how this inte-
gration can bridge neural learning and symbolic reasoning,
ultimately fostering more trustworthy AI systems.

2. Alternative Views: Why FM with LLM
Relying Solely on Natural Language Reasoning. Natural
language reasoning (Yao et al., 2023) enables LLMs to
process and generate information in an intuitive, human-like
manner. However, it lacks rigorous correctness guarantees,
making it unreliable for high-stakes decision-making. While
statistical reasoning—areas where LLMs excel—can be
more efficient than strict formalism in some domains, the
inherently learning-based nature lacking rigorous reasoning
can lead to hallucinations and logical errors.

Relying Solely on Expert Systems. Traditional expert
systems (Jackson, 1986) rely on fixed rule-based ontolo-
gies and usually operate under a closed-world assumption
(CWA)–anything not explicitly stated as true is assumed
false. This rigid constraint is insufficient for open-ended,
real-world reasoning, where knowledge is incomplete and
context-dependent. Furthermore, expert systems struggle
to adapt to new information or make inferences beyond
their predefined rules, making them inadequate for complex,
evolving problem domains.

Instead of the rigid CWA, integrating open-world assump-
tion techniques with formal constraints enables greater rea-
soning flexibility. This approach accommodates incomplete
or evolving knowledge with uncertainty, which enhances
contextual adaptability, statistical analysis, and uncertainty
management—key strengths of modern AIs like LLMs.

Relying Solely on LLMs. LLMs, in their current form,
are not inherently trustworthy for critical applications such
as law, healthcare, and other safety-critical systems (Arm-
strong, 2023; Bellware & Masih, 2024; Choudhury &
Chaudhry, 2024). They exhibit hallucinations, lack of trace-
ability, and non-deterministic behavior, making them un-
suitable for scenarios requiring explainability, correctness,
and security guarantees. While the integration of LLMs
with Retrieval-Augmented Generation (RAG) (Lewis et al.,
2020; Guu et al., 2020) aims to mitigate some of these limi-
tations by providing access to external knowledge sources,
this approach does not inherently improve reasoning capa-

bilities (Chen et al., 2024b). Indeed, RAG-enhanced models
primarily enhance factual accuracy by retrieving relevant
documents but do not ensure logical coherence, consistency,
or rigorous deductive reasoning. These models often face
challenges in executing deep reasoning, a capability that
cannot be easily and effectively achieved through mere fine-
tuning (Liu et al., 2024).

Instead of outright rejecting formal reasoning, a more ef-
fective approach involves controlled augmentation—where
LLMs are integrated with formal verification tools such as
proof-checkers and SMT solvers.

Relying Solely on FMs. Formal methods are mathemati-
cally rigorous methods that often rely on manually defined
specifications and inference rules for modeling, reasoning,
and verifying the systems. However, their application in
dynamic, real-world environments presents several chal-
lenges (Kneuper, 1997; Batra, 2013). FMs often struggle
with scalability due to the computational demands of exhaus-
tive state-space exploration, making them impractical for
large-scale systems. Additionally, not all system aspects can
be fully formalized, particularly in unpredictable environ-
ments, leading to gaps in formal analysis. The complexity
and resource intensity of developing formal specifications
and conducting proofs further limit their widespread adop-
tion in the industry (Kaleeswaran et al., 2023).

A hybrid approach integrating adaptability, learning ability,
and natural language-based heuristics can provide a prac-
tical middle ground. For instance, LLM-assisted formal
verification, where LLMs assist theorem provers by gen-
erating proofs or suggesting logical constraints, can help
bridge such gaps by retaining the flexibility of LLMs while
mitigating their weaknesses through formal guarantees.

3. LLM for FM: Verifying Intelligently
This section explores how LLMs can enhance formal meth-
ods by developing intelligent LLM agents for tasks such as
model checking and theorem proving. Formal methods face
significant barriers to industry adoption, primarily due to the
complexity of formalizing requirement specifications, the
limited scalability of algorithms for large systems, and the
substantial manual effort involved in proof generation and
validation. In contrast, LLM agents bring adaptability and
efficiency to traditional formal verification processes, paving
the way for more automated and effective formal methods.
With their ability to process and generate structured code
and symbolic representations, LLMs can be intelligent as-
sistants to automate tedious tasks in formal methods.

3.1. LLM for Autoformalization

Autoformalization is the process of automatically translating
natural language-based specifications or informal represen-
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tations into formal specifications or proofs. This complex
task demands a deep understanding of both informal and for-
mal languages, along with the ability to generate accurate,
machine-readable formal representations. Recent research
has demonstrated the effectiveness of LLMs in various aut-
oformalization scenarios, including neural theorem prov-
ing (Jiang et al., 2022b), temporal logic generation (Murphy
et al., 2024), and program specification generation based on
source code (Ma et al., 2024a). In this section, we show the
role of LLM agents in facilitating proof auto-formalization.

Informal proofs, commonly found in textbooks, research
papers, online forums, or even generated by LLMs, often
omit details that humans consider trivial or self-evident.
However, to ensure rigorous verification by theorem provers,
they need to be translated into formal proofs that adhere to a
specific syntax, where all the details are explicitly provided.
We give one motivating example in Appendix A.

To address this, we propose using auto-formalization agents
equipped with enhanced capabilities for symbolic reasoning.
More specifically, auto-formalization agents break down the
process into manageable steps: (i) generating proof outlines,
(ii) filling intermediate steps using external tools, and (iii)
integrating and refining proofs. To elaborate, the agent first
constructs a high-level proof outline, capturing the main
steps of the informal proof while leaving placeholders for
missing intermediate steps. This outline aligns with the
informal proof structure and serves as a blueprint for the
following formalization process. The agent delegates the
task to external tools like computer algebra systems for the
missing details, especially those involving symbolic reason-
ing or algebraic manipulations. These tools can perform
accurate transformations on the mathematical expressions,
ensuring the correctness of the derived intermediate steps.
Once the intermediate steps are derived, the agent integrates
them into the proof outline, filling in the placeholders and
completing the formalization. If the agent still encounters
gaps in specific steps, it iteratively refines the proof by re-
visiting the informal proof and consulting external tools. In
this way, the auto-formalization agents can leverage external
tools’ strong symbolic reasoning capabilities to fill in the
missing details in the informal proofs, thus bridging the gap
between informal and formal proofs and specifications.

3.2. LLM for Model Checking

Model checking is a formal verification technique that sys-
tematically explores a system’s state space to determine
whether it satisfies specified properties, such as safety and
liveness. It is particularly effective for finite-state systems,
providing automated detection of logical errors like dead-
locks or critical system property violations. However, tra-
ditional model checking faces great limitations, including
scalability challenges for large systems and the complexity

involved in system modeling and property formalization.

In this section, we illustrate how model checking agents can
address the aforementioned limitations by leveraging the
strengths of LLMs. By combining their respective advan-
tages, a model checking agent can take a system description
in natural language from the user, generate corresponding
formal models using an LLM, and iteratively refine them
based on feedback from the model checker. This integra-
tion of LLMs with formal methods not only streamlines the
model checking process but also makes it more accessible
to users without extensive expertise in formal verification.

In the following part, we demonstrate our model check-
ing agent framework utilizing the widely adopted model
checker, Process Analysis Toolkit (PAT) (Sun et al., 2008;
Liu et al., 2011).

Process Analysis Toolkit (PAT) is a formal verification tool
designed to model, simulate, and verify concurrent and
real-time systems. It supports the verification of key proper-
ties such as deadlock-freeness, reachability, and refinement,
addressing critical correctness and reliability concerns in
system design. With applications spanning domains such
as vehicle and aircraft safety, resource optimization, and
complex system analysis, PAT provides a robust foundation
for developing a model checking agent.

In the following motivating example, we illustrate how the
PAT Agent can be used to derive verified system constructs,
starting from natural language instructions.

Example. In car system development, preventing key lock-
in is crucial for user convenience, avoiding costly locksmith
services and severe delays. The system must maintain logi-
cal consistency across operations to prevent such incidents.

We first prompt an LLM (gpt-4o-2024-08-06) to generate
a formal model directly from a detailed description. While
it follows learned syntax rules and demonstrates planning
capabilities, the model contains a critical logic flaw: it al-
lows the key to be locked inside the car. This issue stems
from the hallucination of GPT-4o, incorrectly assuming that
placing the key in a locked car is valid (as shown below),
contradicting common sense reasoning.

[key == i && owner[i] == near]leavekey{key = incar;}

Consequently, the resulting system design deviates from the
intended behavior, compromising its reliability.

To address this issue, we use PAT to formally verify the
generated system. PAT detects an error trace, a sequence of
operations that lead to the key being locked inside, revealing
logical flaws in the key and door logic. By analyzing this
trace, the LLM identifies the flaw and corrects it by imposing
stricter restrictions on when the key can be left inside. It
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also defines clear conditions for locking the door, ensuring
alignment with the intended system behavior.

[key == i && owner[i] == near && door == open]
leavekey{key = incar;}

[(owner[i] == near && key == i) || owner[i] == in]
lockdoor.i{door = lock;}

The refined model, incorporating PAT’s feedback, ensures
the key can never be locked inside the car and passes for-
mal verification. This example demonstrates the powerful
synergy between formal verification and LLM-driven de-
velopment: LLMs streamline system development, while
PAT ensures rigor by detecting and correcting logical in-
consistencies. Together, they enable a robust, user-friendly
approach to formal system development, ensuring critical
requirements are met with precision.

Prototype. To implement the PAT model-checking agent,
we build it on the LangChain pipeline, leveraging its stream-
lined implementation and modular memory system to effi-
ciently manage intermediate states and iterative refinements
during formal verification. This enables a seamless fusion
of LLM capabilities with formal verification tools. Figure 1
illustrates the prototype.

Figure 1. PAT Agent Prototype.

The PAT Agent prototype follows a structured workflow, be-
ginning with user-provided natural language descriptions of
a system, specifying desired behaviors and properties, such
as a mutual exclusion protocol and its expected behaviors.

An LLM with strong reasoning capabilities then processes
the input to generate a structured implementation plan. This
step defines an action space, employs a search model to
identify feasible actions, and the LLM organizes them into a
logical breakdown of the system. The plan includes precise
mappings of logical steps, such as variable definitions, state

transitions, and system properties, forming the foundation
for NL-to-code translation.

Following the structured plan, a specialized LLM trained in
syntax and logic generates the code and assertions needed
to implement the system. Rather than generating code from
scratch, the model treats this as an NL-to-code translation
task, filling in details based on the structured plan. This
approach enhances precision by breaking down code gen-
eration into distinct planning and translation steps, making
the process more manageable.

The generated code and assertions are submitted to an auto-
mated verification tool, specifically PAT, to identify issues
such as syntax errors and logical inconsistencies. If veri-
fication fails, a refined prompt is created by incorporating
PAT feedback and comparing the implementation with the
ideal automata outlined during planning. This iterative re-
finement continues until all properties are satisfied, enabling
an automated yet rigorous approach to system development
that enhances efficiency while ensuring correctness.

Generalization. The agent framework is generalizable
and adaptable to tools like Alloy Analyzer (Jackson,
2000), PRISM (Kwiatkowska et al., 2002), and UP-
PAAL (Behrmann et al., 2004). Its modular design enables
the Planning LLM to learn tool-specific logic and the Code
Translation LLM to generate corresponding formal code and
assertions. By tailoring feedback and refinement loops for
each tool, the framework seamlessly integrates LLM-driven
development with diverse formal verification processes.

3.3. LLM for Theorem Proving

Among all formal analysis techniques, theorem proving
stands out for its capability to handle complex state spaces,
abstract specifications, and highly intricate systems. Unlike
model checking (we will discuss subsequently), which is pri-
marily designed for finite models and faces challenges with
state space explosion, theorem proving excels in leveraging
mathematical reasoning to establish properties that hold uni-
versally. This capability has been successfully demonstrated
in critical systems, such as CompCert (Leroy, 2009), a for-
mally verified C compiler that guarantees the correctness
of compiled code, and seL4 (Klein et al., 2009), a micro-
kernel with rigorous proofs of memory safety, functional
correctness, and security properties. In this section, we ex-
plore how LLMs can enhance premise selection and proof
generation for theorem proving and then illustrate the agent
with one example in Appendix A.

3.3.1. PREMISE SELECTION

Retrieving relevant facts from a large collection of lemmas
is a critical task in theorem proving, and this process is
known as premise selection. This task is typically done
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manually by explicitly specifying the used lemmas in the
proof scripts, which often requires trial and error and deep
domain knowledge, making it time-consuming and error-
prone. Some powerful automation techniques in interactive
theorem provers (ITPs) also need premise selection to first
filter out irrelevant lemmas from the large search space.
For example, Sledgehammer (Böhme & Nipkow, 2010), an
effective tool for Isabelle/HOL (Paulson, 1994), collects
relevant facts from the background theories and sends them
to external automatic theorem provers (ATPs) and SMT
solvers to find proofs. This process involves premise se-
lection to identify the most relevant lemmas that can help
in proving the current goal. For example, Sledgehammer
usually selects about 1,000 lemmas out of tens of thousands
of premises. Some heuristics (Meng & Paulson, 2009) and
machine learning techniques (Kühlwein et al., 2013) like
naive Bayes are used in Sledgehammer for relevant fact
selection. Recent works (Mikuła et al., 2024; Yang et al.,
2023) proposed using transformer models to learn the rele-
vance of lemmas for premise selection, which improved the
success rate of Sledgehammer.

Our insight is that LLM agents can further improve the
premise selection process by leveraging their code under-
standing capabilities. Premise selection fundamentally dif-
fers from other tasks like code retrieval. LLMs, with their
strong code comprehension capabilities, offer a way to ad-
dress this gap. They can infer the meaning of a lemma from
its name, definition, and contextual information, mimicking
the reasoning process of a human expert. For instance, a
human expert can intuitively assess whether a given lemma
is likely to be helpful for a particular proof goal. However,
the sheer number of lemmas in large proof libraries makes
it impossible for experts to evaluate and rank all possible
candidates manually. By contrast, LLM agents can effi-
ciently scale this process. We can first collect definitions
and contextual information of lemmas and ask LLM agents
to generate semantic descriptions in natural language for
each lemma, forming a knowledge base for premise selec-
tion. Then, given a proof goal, LLM agents comprehend the
goal and generate a semantic representation, which is used
to query the knowledge base for relevant lemmas.

3.3.2. PROOF GENERATION

Proof step generation is the central task in theorem proving,
where the objective is to predict one or more proof steps
to construct a valid proof for a given theorem. Many pi-
oneering works on LLM-based proof generation (Polu &
Sutskever, 2020; Polu et al., 2023; Han et al., 2022) ap-
proach this problem as a language modeling task and train
LLMs on large-scale proof corpora to predict the next proof
step. Various techniques have been developed to improve
the quality of generated proofs. For instance, learning to
invoke ATPs to discharge subgoals (Jiang et al., 2022a), re-

pairing failed proof steps by querying LLMs with the error
message (First et al., 2023), and predicting auxiliary con-
structions to simplify proofs (Trinh et al., 2024) have all
demonstrated significant potential.

However, real-world verification scenarios present chal-
lenges that go beyond these methods. Human experts, for
instance, do not solely rely on immediate proof context or
predefined strategies. Instead, they first have a high-level
proof plan in mind and frequently need to consult the defi-
nitions of important concepts or theorems during the proof
process. Additionally, experts often employ a trial-and-error
approach, iteratively refining their methods to construct a
valid proof. This highlights a limitation of current LLMs
when used as standalone tools: while they excel at pro-
ducing plausible proof steps, they lack broader strategic
reasoning and adaptability. This gap makes it difficult for
LLMs to consistently surpass human performance in proof
generation tasks.

To address these limitations, we propose a shift toward
LLM agents that more closely emulate human experts in
their proof strategies. In contrast to standalone LLMs, these
agents integrate multiple capabilities, allowing them to rea-
son, adapt, and interact during the proof process. This
distinction can be articulated through the following two key
features: Feature 1. Explicit Proof Intentions. A defin-
ing feature of LLM agents is their ability to generate both
proof steps and explicit proof intentions—statements that
explain the reasoning or goals underlying each step. This
additional layer of information is critical for improving both
automated and human-driven refinement. When a proof
step fails, the agent can use the intention, along with error
feedback, to attempt a proof repair. Even if the repair is
unsuccessful, the intention provides valuable insights for
human users, streamlining their efforts to identify and re-
solve the issue. Feature 2. Dynamic Retrieval of Relevant
Knowledge. LLM agents go beyond the immediate con-
text by incorporating mechanisms to retrieve definitions,
lemmas, or related theorems from knowledge bases. This
mimics how human experts consult reference materials dur-
ing the proof process but with significantly greater efficiency
and scale. By dynamically identifying and incorporating
relevant information, the agent can address gaps in its inter-
nal knowledge, enabling it to construct proofs that require
broad or specialized domain understanding.

4. FM for LLM: Towards Reliability
Now we illustrate how formal methods can enhance LLMs’
reliability. Specifically, we explore this integration direction
from three perspectives: (i) trustworthy LLMs with sym-
bolic solvers, (ii) LLM Testing based on logical reasoning,
and (iii) LLM behavior analysis. We argue that these FM-
based techniques makes AI systems reliably secure, paving
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the way for developing trustworthy AI systems.

4.1. SMT Solvers for LLM

Satisfiability Modulo Theories (SMT) solvers are special-
ized tools designed to determine the satisfiability of logical
formulas defined over some theories, such as arithmetic,
bit-vectors, and arrays. They play a pivotal role in formal
verification, program analysis, and automated reasoning,
serving as essential components to ensure the correctness
and reliability of complex software systems.

Recent studies (Deng et al., 2024; Pan et al., 2023; Wang
et al., 2024; Ye et al., 2024) have explored the integration
of SMT solvers to enhance the accuracy and reliability of
LLMs in logic reasoning tasks. These solver-powered LLM
agents operate by translating task descriptions into formal
specifications, delegating reasoning tasks to specialized ex-
pert tools for precise analysis, and subsequently converting
the outputs back into natural language.

We have identified three main challenges within this re-
search line. Firstly, while LLMs are capable of generating
logical constraints or SMT formulas, they often produce
suboptimal or overly verbose constraints, which can place
an additional computational burden on the solver. Secondly,
the outputs of LLMs lack guarantees of correctness or logi-
cal consistency, potentially introducing subtle inaccuracies
or ambiguities in the generated SMT constraints. It can
lead to invalid results or solutions that are challenging to
interpret. Lastly, LLMs often lack domain-specific knowl-
edge and may struggle to generate outputs that conform to
the precise formal syntax required by SMT solvers. Conse-
quently, they may generate formulas that are semantically
sensible but syntactically invalid formulas, rendering them
unprocessable by the solvers.

We present our insights and proposed strategies to address
the three key challenges outlined above and provide an
example agent in Appendix A.

Strategy 1. Multiple LLMs Debating. To address the
challenge of LLMs generating suboptimal or overly ver-
bose constraints, a potential strategy involves leveraging
multiple LLMs in a collaborative or adversarial framework
to critique, validate, and refine each other’s outputs. In
this approach, the system employs one or more LLMs to
generate SMT code from natural language inputs, while
other LLMs function as “critics”, evaluating the generated
SMT code for logical consistency, syntactic correctness,
and alignment with the problem description. By incorpo-
rating feedback loops among these models, the system can
iteratively refine the outputs and reduce ambiguity inherent
in natural language inputs. Strategy 2. Test Generation.
Test cases will be automatically generated to validate the
correctness and consistency of the LLM-generated SMT

code against the expected behavior. Fuzzing techniques
may also be employed to generate adversarial inputs for
testing. Additionally, mutation-based approaches can be
applied to both the SMT code and the natural language
descriptions, with two LLMs comparing the resulting solu-
tions. The strategy helps check the consistency between the
natural language description and the SMT code produced
by the LLMs. Strategy 3. Self-Correction. Feedback from
tests, critics, or the solver itself can be leveraged to itera-
tively refine the SMT code. Errors identified via solvers can
be categorized into syntax issues (e.g., invalid SMT-LIB
syntax), semantic misalignments (e.g., logical inconsisten-
cies), or performance bottlenecks (e.g., slow or incomplete
solver responses). Based on this feedback, an LLM can
be employed to debug and regenerate problematic parts of
the constraints, ensuring that the refinements are both tar-
geted and context-aware. This iterative refinement process,
coupled with validation through re-testing, facilitates the
convergence of LLM-generated SMT codes toward correct-
ness and rigorousness.

4.2. Logical Reasoning for LLM Testing

LLM Testing (Zhong et al., 2024; Hendrycks et al., 2021;
Huang et al., 2023; Zhou et al., 2023) is primarily focused
on establishing a comprehensive benchmark to evaluate the
overall performance of the models, ensuring that they fulfill
specific assessment criteria, such as accuracy, coherence,
fairness, and safety, in alignment with their intended appli-
cations. An emerging research focus in this area is testing
hallucinations in LLMs, with recent studies proposing vari-
ous methods for their detection, evaluation, and mitigation.
A common and straightforward method is to create compre-
hensive benchmarks specifically designed to assess LLM
performance. However, these methods, which often rely
on simplistic or semi-automated techniques such as string
matching, manual validation, or cross-verification using
another LLM, have significant shortcomings in automati-
cally and effectively testing Fact-conflicting hallucinations
(FCH) (Li et al., 2024a). This is largely due to the lack of
dedicated ground truth datasets and specific testing frame-
works. We contend that unlike other types of hallucinations,
which can be identified through checks for semantic con-
sistency, FCH requires the verification of content’s factual
accuracy against external, authoritative knowledge sources
or databases. Hence, it is crucial to automatically construct
and update factual benchmarks, and automatically validate
the LLM outputs based on that.

To this end, we propose to apply logical reasoning to de-
sign a reasoning-based test case generation method aimed at
developing an extensive and extensible FCH testing frame-
work. Such a testing framework leverages factual knowl-
edge reasoning combined with metamorphic testing princi-
ples to ensure a robust FCH evaluation of LLM.
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4.2.1. FACTUAL KNOWLEDGE EXTRACTION

This process focuses on extracting essential factual informa-
tion from input knowledge data in the form of fact triples,
which are then suitable for logical reasoning. Existing
knowledge databases (Bollacker et al., 2007; Auer et al.,
2007; Suchanek et al., 2007; Miller, 1995) serve as valuable
resources due to their extensive repositories of structured
data derived from documents and web pages. This struc-
tured data forms the foundation for constructing and enrich-
ing factual knowledge, providing a robust basis for the test
case framework.

The extraction process typically involves structuring facts as
three-element predicates, nm (s, o), where “s” (stands for
subject) and “o” (stands for object) are entities, and “nm”
denotes the predicate. This divide-and-conquer strategy
extracts facts category by category, effectively organizing
information across various domains. The extraction process
iterates through predefined categories of entities and rela-
tions, employing a database querying function to retrieve all
relevant fact triples for a given entity and predicate combina-
tion. This ensures comprehensive and systematic extraction
of factual knowledge, creating a well-structured dataset for
reasoning and testing.

4.2.2. LOGICAL REASONING

This step focuses on deriving enriched information from
previously extracted factual knowledge by employing log-
ical reasoning techniques. The approach utilizes a logical
programming-based processor to automatically generate
new fact triples by applying predefined inference rules, tak-
ing one or more input triples and producing derived outputs.

In particular, to introduce variability in the generation of
test cases, reasoning rules, commonly utilized in existing
literature (Zhou et al., 2019; Liang et al., 2022; Abboud
et al., 2020) for knowledge reasoning, are typically adopted,
including negation, symmetric, inverse, transitive and com-
posite. These rules provide a systematic framework for
generating new factual knowledge, ensuring diverse and
comprehensive test case preparation. The system applies all
relevant reasoning rules exhaustively to the appropriate fact
triples, enabling the automated enrichment of the knowledge
base for further testing purposes.

4.2.3. BENCHMARK CONSTRUCTION

This process consists of two key steps: (i) generating
question-answer (Q&A) pairs and (ii) creating prompts
from derived triples, which together can significantly re-
duce manual effort in test oracle generation. Step 1. Ques-
tion Generation. This step uses entity-relation mappings
to populate predefined Q&A templates, aligning relation
types with corresponding question structures based on the

grammatical and semantic characteristics of predicates. For
predicates with unique characteristics, customized templates
are employed to generate valid Q&A pairs. To enhance nat-
ural language formulation, LLM can be used to refine the
Q&A structures. Answers are derived directly from factual
triples, with true/false judgments determined by the data.
Mutated templates, leveraging synonyms or antonyms, di-
versify questions with opposite semantics, yielding comple-
mentary answers. Step 2. Prompt Construction. Prompts
are designed to instruct LLMs to provide explicit judgments
(e.g., yes/no/I don’t know) and outline their reasoning in
standardized formats. LLM analysts can utilize predefined
instructions to ensure clarity and enable LLMs to deliver
assessable and logically consistent responses. This method
maximizes the model’s reasoning capabilities within the
structured framework of prompts and cues.

4.2.4. RESPONSE EVALUATION.

This step aims to enhance the factual evaluation in LLM out-
puts by identifying discrepancies between LLM responses
and the verified ground truth in Q&A pairs. The key in-
sight lies in constructing a similarity-based metamorphic
testing and oracles to evaluate consistency by comparing
the semantic structures of the response and ground truth,
focusing on node similarity (fact correctness) and edge sim-
ilarity (reasoning correctness). Responses are categorized
into four classes: correct responses (both nodes and edges
are similar), hallucinations from erroneous inference (nodes
are similar, edges are not), hallucinations from erroneous
knowledge (edges are similar, nodes are not), and overlaps
with both issues (both nodes and edges are dissimilar).

4.3. Rigorous LLM Behavior Analysis

While LLM Testing techniques can effectively provide
broad assessments and reveal edge cases that may provoke
unexpected responses, they are limited in their capability
to give rigorous guarantees on LLM behaviors. LLM Ver-
ification, on the other hand, serves as a complementary
mechanism. However, as LLMs grow more complex and
tasks become increasingly sophisticated, traditional neural
network verifiers lose relevance due to their limitations in
accommodating diverse model architectures and their focus
on single-application scenarios. Indeed, formal verifica-
tion of LLMs poses intrinsic challenges due to three key
factors: Factor 1. Non-Deterministic Responses. Re-
sponses from LLMs are non-deterministic, meaning their
outputs may vary even with the same input. This inher-
ent variability presents substantial challenges to providing
deterministic guarantees regarding their behavior. Factor
2. High Input Dimensions. The high dimensionality of
inputs in LLMs leads to exponential growth in the number
of input tokens, rendering exhaustive verification across an
infinite input space highly impractical. Factor 3. Lack
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of Formal Specification. While formal specifications are
rigorous, they often lack the expressive capability of natural
language, which makes it extremely difficult to precisely
capture the nuanced and complex language behaviors ex-
pected from LLMs. Hence, we propose that a specialized
verification paradigm tailored specifically for LLMs should
be considered to ensure reliable and rigorous certification
for long-term applications.

Given these challenges, we argue that monitoring might
serve as a viable long-term solution for reliable LLM be-
havior analysis. Positioned between testing and verification,
monitoring of formalized properties at runtime enables rig-
orous certification of system behavior with minimal com-
putation overhead by examining execution traces against
predefined properties. This approach has already inspired
several efforts to monitor LLM responses at runtime (Cohen
et al., 2023; Manakul et al., 2023; Besta et al., 2024; Chen
et al., 2024a) (quite similar to another research line named
guardrails). However, the specifications used in these meth-
ods remain ambiguous and informal. For example, they
define the properties of low hallucination based on the sta-
bility of LLM outputs. More recently, an approach (Cheng
et al., 2024) has been introduced to monitor the conditional
fairness properties of LLM responses. The specifications
in (Cheng et al., 2024) are informed by linear temporal logic
and its bounded metric interval temporal logic variant, re-
flecting a shift toward formal methods for more precise and
dependable monitoring of LLM behavior.

Despite these advancements, challenges remain in extending
such formal monitoring techniques to a broader spectrum of
properties, including but not limited to robustness, factual
consistency, adherence to ethical guidelines, and sensitivity
to adversarial prompts. Real-world applications of LLMs
often involve nuanced, context-dependent interactions that
demand adaptive and scalable monitoring solutions. Future
research should focus on integrating diverse monitoring ap-
proaches, incorporating statistical and formal analysis tech-
niques with data-driven approaches to enhance adaptability,
and leveraging real-time anomaly detection to enhance the
comprehensiveness and practicality of LLM behavior moni-
toring in varied deployment scenarios, ultimately fostering
greater trustworthiness and accountability in AI systems.

5. Unifying Multiple FMs and LLMs
This section highlights the synergy among multiple LLM-
FM agents. By combining formal verification and reasoning,
and specialized LLM agents, a hybrid approach contains
both the adaptability of LLMs and the rigorous correctness
guarantees provided by FMs. The diagram in Figure 2
illustrates the pipeline for integrating multiple FMs and
LLMs to achieve verified actions.

Figure 2. The framework of multiple LLM-FM agents

The process begins with specifications or user requirements,
translated into actionable outputs through automated formal-
ization, reasoning, and iterative verification. The process
begins with user-defined specifications or requirements, of-
ten expressed in natural language. These specifications
are processed by an LLM trained to interpret natural lan-
guage and convert it into formal representations, a process
called auto-formalization. The model checker verifies that
the formalized requirements satisfy logical constraints and
system properties. The theorem prover provides rigorous
proof guarantees for critical properties, ensuring correctness.
The automatic theorem prover is powered by SMT Solvers,
which check for logical consistency in the code or action
generated. The testing module conducts systematic testing
to identify potential issues that may not be checked in formal
proofs. The behavior analysis module analyzes the system’s
runtime behavior to ensure compliance with expected out-
comes. LLMs act as intermediaries in the pipeline, integrat-
ing insights from multiple FMs, providing feedback, and
generating actions. The LLM Agent ensures adaptability by
refining outputs based on formal verification results. The
final output is a verified action that meets the original user
requirements and adheres to rigorous formal guarantees.

By unifying multiple FMs and LLMs, this framework lever-
ages their complementary strengths to create systems that
are not only adaptable and efficient but also trustworthy.

6. Conclusion
This paper advocates for the integration of Large Language
Models and Formal Methods as a necessary approach to
building trustworthy AI agents. Through case studies and
conceptual explorations, we illustrate how this integration
can address the inherent limitations of both paradigms, par-
ticularly in applications such as program synthesis. This
fusion lays the foundation for bridging neural learning and
symbolic reasoning, ensuring AI agents are both powerful
and verifiably trustworthy.
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A. Appendix
A.1. Theorem Prover Agent

In this subsection, we describe the integration of a large language model (LLM) agent with the Coq proof assistant. Coq is
an interactive theorem prover that allows for the expression of mathematical assertions, their formal verification, and the
construction of proofs within a rigorous framework. By integrating Coq with an LLM agent, we aim to enhance the agent’s
ability to assist in formal proofs, reason about mathematical statements, and verify the correctness of solutions within the
realm of formal logic.

Overview of Coq Theorem Prover Coq is a proof assistant based on constructive type theory, which supports both
functional programming and formal specification. Coq provides a framework for defining mathematical structures, functions,
and proofs, leveraging a powerful type system to ensure correctness. It allows users to interactively develop proofs, and
once a proof is verified, Coq guarantees its correctness by construction. Coq is widely used in formal verification, certified
software development, and mathematical proof exploration. Integrating Coq with an LLM agent enhances the accessibility
of formal proof construction and verification, allowing users to interact with formal methods in a more intuitive manner.
This integration enables non-experts to explore and validate mathematical proofs without needing extensive familiarity
with formal languages. Furthermore, the LLM agent can assist in automating proof steps, suggesting possible tactics, and
generating human-readable explanations.

In the future, more advanced natural language translation mechanisms can be developed to handle increasingly complex
theorems and mathematical domains. Additionally, the integration of other theorem provers with complementary strengths,
such as Isabelle/HOL or Lean, can further broaden the agent’s capabilities in formal reasoning and proof verification.

A.1.1. CASE STUDY ON LLMS WITH COQ

To illustrate our perspective, we illustrate our recent exploration of the interaction between LLMs and Coq. Coq (Huet
et al., 1997) is a classic proof assistant based on constructive type theory, supporting functional programming and formal
specification. The integration of Coq with an LLM agent involves several key steps:

Step 1. Natural Language Understanding. The LLM agent receives natural language input from the user, typically in the
form of a mathematical theorem, conjecture, or problem.

Step 2. Formalization of the Problem. The LLM agent translates the natural language problem into Coq’s formal language.
This includes defining types, propositions, and functions necessary for the formulation of the theorem.

Step 3. Proof Construction. The LLM agent collaborates with Coq to construct proofs, utilizing Coq’s interactive features
to propose proof steps that are subsequently verified or refined.

Step 4. Proof Verification and Feedback. Once the proof is constructed, Coq verifies its correctness. The LLM agent
translates the verified proof back into natural language, providing a comprehensible explanation of the result to the user.

Example Consider the following natural language query posed to the LLM agent:

“Prove that the sum of two even numbers is even.”

The LLM agent first translates this into a formal Coq language:

Theorem sum_of_even_numbers : forall n m : nat,
even n -> even m -> even (n + m).

The user needs to check the correctness of the coq code to guarantee consistency between the natural language and coq code.
Then, the LLM agent will search the related theorems and lemmas, and construct the proof as follows:

Proof.
intros n m Hn Hm.
unfold even in *.
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Problem: Let un a sequence defined by u0 = 0 and ∀n ≥ 0, un+1 = 2un + (n+ 1). Show that ∀n ≥ 0, un = 2n+1 − (n+ 2).

Informal Proof: The property is true for n = 0, since 20+1 − (0 + 2) = 0. By induction, assuming the property holds for n ≥ 0,
we have: un+1 = 2un + (n+ 1) = 2

(
2n+1 − (n+ 2)

)
+ n+ 1 = 2n+2 − (n+ 3), which shows the property holds for n+ 1.

Figure 3. An informal proof example that needs to be formalized.

destruct Hn as [k Hk].
destruct Hm as [l Hl].
exists (k + l).
rewrite Hk, Hl.
ring.

Qed.

Coq verifies this proof, and the LLM agent explains and responds in natural language:

“The proof shows that if two numbers are even, their sum is also even by using basic properties of addition and the
definition of even numbers.”

A.2. An Motivating Example for Autoformalization

Specifically, Figure 3 gives a motivating example from the miniF2F benchmark (Zheng et al., 2022). The problem and
its human-written informal proof are given, and it demonstrates a concise and correct inductive proof. However, some
intermediate steps, particularly the algebraic manipulations, are omitted in the informal proof. Although the equation can be
easily verified by human experts, it is challenging for LLMs to infer the missing details and generate a correct formal proof
due to their limited symbolic reasoning capabilities. The following Isabelle/HOL proof snippet illustrates an attempt by
ChatGPT-3.5-turbo to formalize the given informal proof. While the model correctly identifies the required transformations,
it fails during the simplification of the term 2 ∗ (n+ 2)− (n+ 1), mistakenly reducing it to 2n+ 3 instead of n+ 3. This
example highlights the limitations of LLMs in handling detailed algebraic reasoning without explicit guidance.

lemma induction_seq_mul2pnp1_forn:
fixes n :: nat and u :: "nat ⇒ nat"
assumes h0 : "u 0 = 0"
and h1 : "

∧
(n::nat). u (n+1) = 2 * u n + (n+1)"

and h2 : "u n = 2 ^ (n+1) - (n+2)"
shows "u (n+1) = 2 ^ (n+2) - (n+3)"

proof -
have "u (n+1) = 2 * u n + (n+1)" using h1 by simp
also have "... = 2 * (2 ^ (n+1) - (n+2)) + (n+1)" using h2 by simp
also have "... = 2 * 2 ^ (n+1) - (2 * (n+2)) + (n+1)"
by (simp add: right_diff_distrib')

also have "... = 2 ^ (n+2) - (2 * (n+2) - (n+1))"
sledgehammer

(* an error in simplification *)
also have "... = 2 ˆ (n+2) - (2*n + 3)" by auto
also have "... = 2 ^ (n+2) - (n+3)" by auto
finally show ?thesis by blast

qed

A.3. Z3 Agent

To illustrate our perspective, we give our recent exploration of the interaction between LLMs and Z3 in Python.

Z3 (de Moura & Bjørner, 2008), a widely used SMT solver, accepts inputs in the form of simple-sorted formulas expressed
in first-order logic (FOL). These formulas can include symbols with predefined meanings, defined by the underlying theories
supported by the solver, and these theories encompass domains such as arithmetic, bit-vectors, arrays, etc., making Z3
particularly well-suited for reasoning about a wide range of logical constraints.

Example Consider a scenario where a user requests the LLM agent to solve a scheduling problem:

“Can you help plan a meeting for a team of three people—David, Emma, and Alex? David is free on Monday or
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Tuesday, Emma is free on Tuesday or Wednesday, and Alex is free only on Tuesday or Thursday. Find a common
day when all three are available.”

We now provide a detailed, step-by-step solution for this task:

Formalization of Constraints Given the above problem, the initial Z3 constraints in Python generated by the LLM are
given as follows:

# Define days of the week
days = ["Monday", "Tuesday", "Wednesday", "Thursday"]
David_free = [Bool(f"David_free_{day}") for day in days]
Emma_free = [Bool(f"Emma_free_{day}") for day in days]
Alex_free = [Bool(f"Alex_free_{day}") for day in days]
# Create a solver
solver = Solver()
# Define constraints for each person's availability
solver.add(Or(David_free[0], David_free[1]))
solver.add(Or(Emma_free[1], Emma_free[2]))
solver.add(Or(Alex_free[1], Alex_free[3]))
# Add constraints that ensure a common day for all three
common_day_constraints = [And(David_free[i],
Emma_free[i], Alex_free[i]) for i in range(len(days))]
solver.add(Or(common_day_constraints))

Self correction If the Z3 code has issues (e.g., missing constraints or syntax errors) or generates inconsistent results with
the natural language description, the self-correction procedure will identify and correct them. In this example, the previous
Z3 code ignores the following constraints:

# Constraints for David
solver.add(And(Not(David_free[2]), Not(David_free[3])))
# Constraints for Emma
solver.add(And(Not(Emma_free[0]), Not(Emma_free[3])))
# Constraints for Alex
solver.add(And(Not(Alex_free[0]), Not(Alex_free[2])))

Test Generation The agent mutates the constraints and tweaks the availability of each individual to create new conditions.
For example, the new mutated constraints are David will be free on Monday and Wednesday. Emma will be free on Tuesday
and Thursday. Alex will be free on Monday and Thursday. The updated Z3 code generated by the LLM is as follows:

# Mutated constraints for David
solver.add(And(David_free[0], David_free[2]))
solver.add(And(Not(David_free[1]), Not(David_free[3])))
# Mutated constraints for Emma
solver.add(And(Emma_free[1], Emma_free[3]))
solver.add(And(Not(Emma_free[0]), Not(Emma_free[2])))
# Mutated constraints for Alex
solver.add(And(Alex_free[0], Alex_free[3]))
solver.add(And(Not(Alex_free[1]), Not(Alex_free[2])))

The agent systems will check the consistency between the results produced by Z3 and the reasoning derived from natural
language descriptions to further ensure the correctness of the Z3 codes.

Multiple LLM Debating Whenever it comes to a collision between the Z3 reasoning results and the natural language
reasoning results, the LLM debating will be activated to debate which part is correct. For example, after LLM-A generates
the initial constraints and gets the results of Z3 code. LLM-B will critique the constraints, identifying potential issues such
as missing exclusivity rules or improperly translated logic. LLM-C can suggest refinements, such as introducing mutual
exclusivity or expanding constraints to handle edge cases. The consensus will be the output with the highest confidence
score (e.g., most accurate or simplest) is selected for testing and execution.
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Problem Solving The translated constraints are fed into the Z3 solver, which checks the satisfiability of the formula and
computes a solution if possible.

# Check for a solution
if solver.check() == sat:

model = solver.model()
common_days = [days[i] for i in range(len(days))
if model.evaluate(David_free[i])

and model.evaluate(Emma_free[i])
and model.evaluate(Alex_free[i])]

print(f"Common day(s) when everyone is free:
{common_days}")

else:
print("No common day when everyone is free.")

Solution Interpretation The LLM agent receives the solution from the Z3 solver and translates it back into natural
language for the user. The only day when all three are free is Tuesday. The output will be: Common day(s) when everyone
is free: [‘Tuesday’].

A.4. Program Verification Example

Program verification is the process of ensuring that a program conforms to a formally defined specification. It involves the
use of formal methods such as model checking, static analysis, and theorem proving to verify that the program behaves as
intended. This process often requires specifying preconditions, postconditions, invariants, and loop variants to formally
define the program’s behavior. Tools such as Dafny, Why3, Frama-C, and SPARK provide automated and semi-automated
support for verifying program properties.

The integration of program verification tools with an LLM agent has significant potential to make formal methods more
accessible to a wider audience. The LLM agent can bridge the gap between natural language descriptions of program
behavior and the formal specifications required for verification, thus enabling non-expert users to verify the correctness of
their code. Additionally, the LLM agent can assist in identifying and correcting verification failures by providing meaningful
explanations and suggesting potential fixes.

Future work may focus on enhancing the LLM agent’s ability to handle more complex verification tasks, such as concurrent
or distributed systems. Additionally, integrating multiple verification tools could provide more comprehensive verification
capabilities, covering a broader range of programming languages and paradigms.

A.4.1. LLM AGENT INTEGRATION

The integration of an LLM agent with program verification tools can be broken down into several stages:

1. Natural Language Specification: The LLM agent allows the user to describe program specifications in natural
language. This includes stating what the program is supposed to do (e.g., sorting a list, finding the maximum value)
and any specific requirements (e.g., ensuring the list is sorted in ascending order).

2. Translation to Formal Specifications: The LLM agent interprets the natural language specification and translates
it into formal specifications, such as preconditions, postconditions, and loop invariants, using a formal specification
language supported by the verification tool (e.g., ACSL for Frama-C, Boogie for Dafny).

3. Program Analysis and Verification: The program code and its formal specification are passed to a verification tool,
which attempts to prove that the code adheres to the specification. The verification tool may automatically generate
proofs, use SMT solvers, or require human-guided proof tactics.

4. Feedback and Explanation: Once verification is complete, the LLM agent presents the results to the user in natural
language, explaining whether the program meets the specification and highlighting any verification failures or issues
that need attention.
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A.4.2. MOTIVATING EXAMPLE

Consider a scenario where the user provides a natural language specification for a program that computes the factorial of a
number:

"Verify that the program computes the factorial of a number, ensuring that the input is a non-negative integer and the result
is correct for all non-negative integers."

The LLM agent translates this specification into a formal precondition and postcondition for a simple factorial function in
Dafny:

method Factorial(n: nat) returns (res: nat)
requires n >= 0
ensures res == if n == 0 then 1 else n * Factorial(n - 1)

{
if n == 0 then return 1;
return n * Factorial(n - 1);

}

The verification tool checks that the implementation satisfies the specification for all possible non-negative inputs. The LLM
agent then provides the following natural language feedback: "The program correctly computes the factorial of non-negative
integers as required. The precondition ensures that the input is non-negative, and the postcondition verifies that the output is
the correct factorial value."
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