
RL: a Language for Formal Engineering
(Short Paper)

Hadrien Bride
IIIS

Griffith University
Brisbane, Australia

h.bride@griffith.edu.au

Jin Song Dong
School of Computing

Nantional University of
Singapore

dcsdjs@nus.edu.sg

Zhé Hóu
School of ICT

Griffith University
Brisbane, Australia

z.hou@griffith.edu.au

Brendan Mahony,
Jim McCarthy

Defence Science and Technology
Department of Defence
Edinburgh, Australia

{Brendan.Mahony, Jim.McCarthy}
@dst.defence.gov.au

Abstract—Reflection is a notion that naturally emerges from
philosophy, mathematics, and sciences. In short, reflection is
the ability of an entity to alter its own behaviour. This paper
suggests that reflection is crucial to the development of complex
and trustworthy software systems. We present RL, a reflective
computational model that aims to support the development of a
large-scale framework for modelling and manipulating structured
data. We give the formal semantics for this computational
model. We also share preliminary work on a proof-of-concept
implementation of RL and discuss future work.

Index Terms—computational model, programming language

I. INTRODUCTION

There are two discernible trends in the development of
cyber-physical systems. On the one hand, the complexity
of their software and hardware infrastructure is (rapidly)
increasing. But, on the other hand, society imposes on them
an increasing requirement for verified trustworthiness and such
derivative properties as privacy. A primary example of where
these trends are creating tension is Defence.

Defence is a large socio-technical system with a critical
need for trustworthy information infrastructure that supports
all aspects of the Defence enterprise. To date, this need has
largely remained unmet; instead, significant applications for
Defence enterprise utilise an untrustworthy software stack
running on untrustworthy hardware. In this paradigm, despite
heroic efforts, it is indeed difficult to assure any practical
system security properties that are not simplistic abstractions
that fail upon deployment in the ‘real world’. This is generally
justified by the view that such assurance is impossible, that
exploitable functionality is unavoidable and that the infrastruc-
ture itself is inherently a contested environment. Much effort
has been expended on engaging in the corresponding ‘battle-
space’. Such attitudes have left Defence networks exposed to
attack at the most fundamental level.

One approach to mitigating the hostilities of the network
environment is to set up ‘islands of trust’ with interfaces that
offer little or no exploitable functionality: the most successful
of which are probably hardware devices that apply information
flow control at the boundaries to security zones [1], [5], [19].
The level of simplicity of these devices, and the extent to
which they can be transparently implemented in hardware,

are the two main factors driving their success in deployment.
We feel that the time is right for this thinking to be pushed
further into the contested environment, and that key to this will
be the introduction of a formal engineering environment tied
carefully to a computation model well-suited to being realised
in trustworthy hardware – thereby avoiding the complex and
untrustworthy system stack.

It is also a good time to take seriously the consequences
of a related issue: a large part of the Defence enterprise
is devoted to the capability acquisition cycle itself. Defence
is therefore fundamentally engaged with the tools and tech-
niques that support capability design, production and through-
life maintenance. Of particular interest is the complex body
of documentation generated by the Capability Development
process [28], including the generation and analysis of the
evaluation deliverables – such as Safety and Security Cases
– required for accreditation into service. This requires data
from a wide variety of activities – system modelling, simu-
lation, active testing to name but a few – to be consistently
channeled through a large suite of documents and presented
for comprehension by a wide audience of stakeholders.

Early work in this area [8] prototyped a highly-structured
language that could be specialised to be domain specific,
the elements of which were stored in database tables. This
structuring allowed tool support for multi-document con-
sistency through mutually reinforcing mechanisms: syntax-
directed editing, with language elements only entered through
database references; and, crucially, through calculation on the
language structures.

An important aspect highlighted in the above work is
reflection, which is the ability of an entity to alter its own
behaviour. This ability presupposes the ability to examine its
own structure and behaviour. In computer science, computa-
tional reflection is the ability of a computational model to
examine and modify its own structure and to alter its behaviour
at run-time [11], [26], [31].

We assert that reflection is essential for coping with the
adaptation and evolution of cyber-physical systems alluded
to earlier. Software engineers traditionally perform software
evolution through a slow and costly development cycle. In
stark contrast with this tradition, modern software programs

are expected to evolve and adapt automatically at run-time.
Machine learning and other self-modifying approaches to
software development are slowly but surely taking over. An
illustrative embodiment of this trend is the fact that even
hardware, which is now becoming software thanks to Cloud
API, is now expected to adapt dynamically to handle failure
and dynamic scaling.

There is also ample evidence that reflective computation
may offer significant performance advantages. For instance,
there are performance benefits in doing run-time code gen-
eration because there is more information available at run-
time [22], [27]. It is also beneficial to integrate the consequent
interception mechanism with the virtual machine and the just-
in-time compiler [16].

Further, arguments for reflection are surprisingly often used
in mathematical and common reasoning [3]. Reflection is an
important technique in mathematical theorem proving [31] and
other formal method approaches [2], [7], [20], [21]. Indeed,
fundamentally intuitionstic proof tools such as Coq [4] and
Lean [13] derive great utility from extensive use of reflection.
It has also been argued that some form of reflection is essential
to the development of advanced theorem provers in general [3],
[21]. For instance, in [2], it was shown that, in a reflective
framework, theorem prover tactics of different forms can be
defined, reasoned about (e.g. proved correct) in a formal
meta-theory, used to prove theorems interactively and possibly
compiled into system code to improve performances.

While reflective code has existed since the earliest days of
computing and despite the the previously mentioned benefits,
there is ample evidence that it poses clear challenges. We
are most concerned that reflective code is generally difficult
or impossible to analyse using current tools. The existing
literature in the domain of software validation and verification
is overwhelmingly focused on the analysis of static programs.

Our work supports the development of a trustworthy and
efficient information infrastructure for Defence application. It
partcularly focusses on developing a highly-structured and re-
flective computational environment for the formal engineering
of complex hardware and software. In this paper, we present
RL – a computational model that is hardware-friendly, highly-
structured and reflective. We also present early work based on
this computational model: a formal modelling of RL as well
as a virtual machine for RL.

II. RL – A REFLECTIVE COMPUTATIONAL MODEL

RL (short for ReaL) is a formal computational model de-
signed to be the basis of a large-scale framework for modelling
and manipulating structured data. The language is fully re-
flective: instructions can be manipulated as data and executed
at run-time. Its mathematically sound data model makes it an
ideal candidate for the modelling of mathematics and scientific
knowledge. Its formal semantics enables the construction of
well-founded high-level abstractions. Finally, its simplicity and
elegance allow it to be effectively implemented both at the

software and hardware level depending on the desired use
cases.

A. The RL data model

1) Datum: In RL, a datum is the most basic piece of
data manipulated. An RL datum is a word constructed as a
sequence of symbols from a finite and totally ordered alphabet.
The fundamental binary operation on words is concatenation,
defined in the usual manner. A datum encodes a natural
number and arithmetic operations are also well-defined.

Formally, the alphabet of RL is a finite set of symbols
denoted Σ together with ≤Σ a total order on Σ. The set of RL
words is defined as Σ∗ – the Kleene star of Σ (also known as
the free monoid on Σ). Further, let Σ = σ1, ..., σk such that
σi ≤Σ σi+1 for 1 ≤ i < k. We define ν : Σ → N, such that
ν(σi) = i for 1 ≤ i ≤ k, the function that maps symbols of
Σ to the k first non-zero natural numbers. This numeration of
the symbols extends naturally to a numeration of words ν∗,
known as the bijective base-k numeration system [15], [29].

ν∗(ω) =

{
0 for ω = ϵ

ν(ω0)k
0 + ...+ ν(ωn)k

n for ω = ⟨ω0, . . . , ωn⟩

The numeration ν∗ can straightforwardly be used to lift any
desired numeric operators onto Σ∗. For instance, the well-
ordering on words – known as the shortlex order – can be
defined as follows.

ω ≤Σ∗ ω′ ⇔ ν∗(ω) ≤Σ∗ ν∗(ω′) for ω, ω′ ∈ Σ∗

Similarly, +Σ∗ the addition over Σ∗ such that (Σ∗,+Σ∗) is
isomorphic to (N,+) can be defined as follows.

ν∗(ω +Σ∗ ω′) = ν∗(ω) + ν∗(ω′) for ω, ω′ ∈ Σ∗

2) Table: In RL, a collection of labelled datum is called
a table. A table is an associative map from datum to datum.
Formally, a table is a total function of the form Σ∗ → Σ∗.

Tables, as defined in this section, are pervasive throughout
computer science. For instance, content-addressable memory
(e.g., random access memory) is a form of direct hardware-
level support for tables. Tables are commonly referred to
as e.g., dictionaries, structures, objects, records or key-value
stores. Elements in the domain of a table are commonly re-
ferred to as, e.g., keys, names, identifiers, addresses, attributes
or properties, whereas elements in the co-domain of a table
are commonly referred to as values.

Tables are also the basis for one of the most fundamental
concepts in computer science: indirection. In computer sci-
ence, indirection (also called dereferencing) is the ability to
indirectly refer to some data by its name, identifier or key.
Values of a table can themselves be used as keys.

Note that in practice, although tables are infinite objects,
implementation of tables only need to consider a finite number
of key-value pairs. By convention, unspecified keys’ values are
default initialised to zero.

3) Multi-dimensional Table: Multi-dimensional tables are a
generalisation of ‘tables of tables’. For n ∈ N, we denote by
Ψn the set of n-tables – i.e., the set of n-dimensional tables
defined as follows.

Ψn =

{
Σ∗ for n = 0

Σ∗ → Ψn−1 for n > 0

Note that, for i > 1, an i-table can be converted to an equiva-
lent 1-table via a given bijection1 π : (Σ∗)i → Σ∗. Let ψ ∈ Ψi

be an i-table; we construct a new function ψ× : (Σ∗)i → Σ∗

such that ∀x1, ..., xn ∈ Σ∗, ψ×(⟨x1, ..., xn⟩) = ψ(x1)...(xn)
by uncurrying ψ. Then the required 1-table conversion of ψ
is ψ : Ψ1 such that for all x1, ..., xn ∈ Σ∗,

ψ(π(⟨x1, ..., xn⟩)) = ψ×(⟨x1, ..., xn⟩) = ψ(x1)...(xn)

It follows that in theory, multi-dimensional tables may be
ignored without loss of generality. Nonetheless, in practice,
multi-dimensional tables are a conceptually relevant paradigm
well-adapted to user comprehension.

Many programmers are accustomed to working with 2-
tables (i.e. contexts) as most programming languages operate
on a collection of structures often called variables. This is
because 2-tables easily leverage indirections to model arbitrary
nested data structures, including recursive ones.

Readers may also recognise the traditional relational
database data model [9]. Further, note that 2-tables, often
viewed as graphs, are used in the domain of knowledge
representation [25]. They are commonly referred to as entity–
attribute–value models or subject–predicate–object models
(e.g., semantic triples [24], N-Triples [24]). 3-tables have also
been employed in the domain of knowledge representation
and are referred to as context–subject–predicate–object models
(e.g., N-Quads [12]). Note also that the RL data model is
closely related to the nested table data model – a data-
model proposed as a canonical model for data definition and
manipulation of forms and form-based documents [23] – as
well as other nested relational data models [17].

4) Identifier: An identifier is used to designate a particular
datum or sub-table of a given multi-dimensional table.

For 0 < j ∈ N, a j-identifier is a j-tuple of datum. We
denote by ∆j the set of j-identifiers (i.e., ∆j = (Σ∗)j). Then,
given an i-table ψ ∈ Ψi with i ≥ j, δ = ⟨x1, ..., xj⟩ is the
j-identifier that selects the (i− j)-table ψ(x1)...(xj).
Notation: in what follows we use the shorthand ψ[δ] for the
table identified by δ in this way.

B. The RL Computational Model

In the previous section we described the data model of
RL. In this section we describe a computational model that
operates on this data model. The RL computational model is
largely inspired from the random-access machine computa-
tional model [10]. Conceptually, it generalises the random-
access stored-program machine computational model [14]. As

1Such a function is often called a pairing function and well-known examples
include, e.g., the Cantor pairing function and the Hopcroft-Ullman pairing
function.

such it is especially well suited for execution on von Neumann
architectures [30].

A model in RL is a multi-dimensional table. It evolves in a
step-wise process called execution. The steps of an execution
are discrete operations encoded within the model by particular
sub-tables called instructions. This specialisation to ‘model
incorporating the operations performed on it’ is called an
environment. The execution of an environment is initiated by
the instruction selected by a given identifier called the entry
point. It may not terminate. In the case of a definitely non-
terminating computation there is no computational endpoint.

Fundamental to the computational model is assignment, the
operation binding a value to a particular identifier in a given
environment. For 0 < i ∈ N, the set of i-assignments is
A i = ∆i×Σ∗. Executing an i-assignment a = ⟨δa, ωa⟩ in the
environment ψ ∈ Ψi results in a new environment ψ′ ∈ Ψi

such that for all δ ∈ ∆i:

ψ′[δ] =

{
ωa if δ = δa

ψ[δ] otherwise

Notation: ψ a−→ ψ′ denotes that performing the assignment a
in the environment ψ results in the environment ψ′.

The remainder of this section introduces the specific in-
struction set for the RL language, stating the role of each
instruction and providing its operational semantics. Without
loss of generality, we fix 0 < i ∈ N to be the dimension of
environment tables, within which an instruction is encoded by
a 1-table (the record identified by a given (i− 1)-identifier).
Notation: For the operational semantics, let κ be the (i −
1)-identifier of a given instruction and ψ,ψ′ ∈ Ψi be two
environment states. Then ψ κ

=⇒ ψ′ denotes that executing κ in
the environment ψ leads to a new environment ψ′.

There are two families of instructions in RL: Data in-
structions, “immediate” and “indirect”, use the assignment
operation to modify the environment in which they are ex-
ecuted; Control-flow instructions orchestrate the execution of
other instructions. Every instruction 1-table record has a non-
empty attribute datum, op, the value of which we call the
corresponding op-code, to distinguish the different members of
these families. The remaining attributes of a given instruction
record depends on its op-code. The op-codes of the RL
instruction set are:

• imMov, imAdd, imConcat (immediate data instruc-
tions);

• mov, add, concat (indirect data instructions); and
• skip, exec, seq, unseq, imBranch,
branch (control-flow instructions).

We now describe each in turn, with the dimension (i), the
(i − 1)-identifier of the instruction (κ), the initial and final
environments (ψ and ψ′) always related as introduced above.

1) Data Instructions: Data instructions modify a target
datum within their environment. The i-identifier to this target
datum, δT , is encoded by record attributes T1, ...,Ti; i.e.,
δT = ⟨ψ[κ][T1], ..., ψ[κ][Ti]⟩.

An immediate data instruction modifies the target datum
using a value encoded within the instruction itself. Thus, its
record has one more attribute, value; and,

ψ
κ
=⇒ ψ′ ≡ ψ

⟨δT ,ω⟩−−−−→ ψ′ where

ω =

ψ[κ][value] for ψ[κ][op] = imMov

ψ[δT] +Σ∗ ψ[κ][value] for ψ[κ][op] = imAdd

ψ[δT] · ψ[κ][value] for ψ[κ][op] = imConcat

In contrast, an indirect data instruction modifies the target
datum based on a source datum in the environment at large. It
has additional attributes S1, ...,Si that encode the i-identifier
to the source datum δS = ⟨ψ[κ][S1], ..., ψ[κ][Si]⟩; and,

ψ
κ
=⇒ ψ′ ≡ ψ

⟨δT ,ω⟩−−−−→ ψ′ where

ω =

ψ[δS] for ψ[κ][op] = mov

ψ[δT] +Σ∗ ψ[δS] for ψ[κ][op] = add

ψ[δT] · ψ[δS] for ψ[κ][op] = concat

2) Control-flow Instructions: Control-flow instructions are
primarily used to orchestrate data instructions. While data
instructions correspond to atomic operational steps (i.e. as-
signments), control-flow instructions correspond to composite
operational steps (i.e. sequences of assignments). The seman-
tics of a control-flow instruction is given with respect to the
semantics of the instructions it orchestrates. The latter may
never terminate and their computational endpoints may not
exist. We abuse notation and use hypothetical computational
endpoints when adequate.

3) Skip and Execute: The skip instruction (op-code: skip)
has no additional record attributes and does nothing; i.e.,

ψ
κ
=⇒ ψ′ ≡ ψ′ = ψ

The execute instruction (op-code: exec) transfers control
to a specified instruction within the environment and executes
it. The (i− 1)-identifier of the instruction to be executed, κI ,
is encoded as before by the attributes I1, ...,Ii−1; and,

ψ
κ
=⇒ ψ′ ≡ ψ

κI=⇒ ψ′

4) Ordered and unordered sequence: The ordered sequence
instruction and the unordered sequence instruction (op-codes
seq, unseq respectively) execute two instructions; the or-
dered sequence instruction executes one after the other, whilst
the unordered sequence instruction executes them concur-
rently. The (i−1)-identifiers to these two instructions, κI1 and
κI2 , are encoded as before in the corresponding instruction
record by the attributes I1,1, ...,I1,i−1 and I2,1, ...,I2,i−1,
respectively; and,
ψ

κ
=⇒ ψ′ ≡{

ψ
κI1==⇒ ψ

κI2==⇒ ψ′ where ψ ∈ Ψi for ψ[κ][op] = seq

ψ
κI1

⊗κI2=====⇒ ψ′ for ψ[κ][op] = unseq

Here ⊗ is the shuffle operator of shuffle algebra [18], used to
denote the arbitrary interleaving of sequences. To understand

its role, note that the instructions identified by κI1 and κI2 can
themselves be sequences of instructions (i.e. the definition of
instructions is recursive). Any instruction can be unrolled and
viewed as a set of (possibly infinite) sequences of assignments,
and it is these sequences that are fed to the shuffle operator.
Since assignment is a non-commutative operation, unordered
sequence instructions can introduce non-determinism.

5) Branching: The branching instructions perform a com-
parison and, based on the result, execute one of two alternative
instructions. Branching instructions introduce the concept of
decision – a fundamental concept of computation. We consider
two kinds of branching instructions: immediate and indirect.
The distinction is precisely as for data instructions: immediate
branching instructions compare a target datum with a value
encoded in the instruction itself; indirect branching instruc-
tions compare a target datum with a source datum. The data
of branching instructions – the target datum, the comparison
value or source datum, and the two alternative instructions –
are encoded in additional record attributes exactly as described
above; for ψ[κ][op] = imBranch,

ψ
κ
=⇒ ψ′ ≡

{
ψ

κI1==⇒ ψ′ if ψ[δT] ≤Σ∗ ψ[κ][value]

ψ
κI2==⇒ ψ′ otherwise

and for ψ[κ][op] = branch,

ψ
κ
=⇒ ψ′ ≡

{
ψ

κI1==⇒ ψ′ if ψ[δT] ≤Σ∗ ψ[δS]

ψ
κI2==⇒ ψ′ otherwise.

III. FORMAL MODELLING AND IMPLEMENTATION

In this section, we briefly introduce some early work based
on the RL computational model. We present an Isabelle/HOL
model of RL used to mathematically reason about RL models.
We also describe a C++ implementation that we use for
practical experimentation. The Isabelle/HOL code and the C++
code with examples are available online2.

A. Isabelle/HOL Modelling

We have modelled a fully expressive subset of the RL in-
structions (imMov, imAdd, mov,add, exec, seq, branch)
and their semantics in Isabelle/HOL. The other instructions
can be modelled using the same technique or simply assem-
bled from existing ones. The Isabelle/HOL code features the
modelling of a RL model of dimension 2 (2-table). Tables are
modelled using the (HOL) map construct. More generally, we
make use of tables with mixed rank sub-tables, namely the
HOL type: Ψ∗ ≡ Σ∗ | Σ∗ → Ψ∗

⊥.
The primary goal of this modelling is to check the

mathematical consistency of the proposed model in a well-
recognised theorem proving framework. The secondary goal
is to illustrate how formal models can support engineering. To
illustrate the latter, we developed a sorting inference system
for RL’s data structures in Isabelle/HOL.

In analogy to a typing system, which ensures that functions
are applied to arguments in a consistent way, the aim of

2https://formal-analysis.com/research/data/iceccs-rl-2020.zip

introducing sortings is to make sure that names, which in RL
may refer to tables or fields of tables, are used correctly in a
set-theoretic view. We define the following sorts:

sort ≡ D “Σ∗ set” | T “Σ∗ → Σ∗” | S “Σ∗ set”

where D is for datum sort which can be seen as a sort for
atomic values and is defined by the set of permitted values.
T is for table sort, which defines the sort for tables as a map
from a key to the sort of the data which the key refers to. S
is for sum sort, which is defined as a set of sub-sorts. Finally,
we define an environment sort as a map from a sort name to
a sort: “Σ∗ → sort”.

A sorting sequent takes the form Θ, ψ ⊢ t.k : s where Θ is
an environment sort, ψ is an environment, t is a table, k is a
key in t, and s is the sort of the data referred to by k.

Θ s = D dms ψ[t][k] ∈ dms
datum

Θ, ψ ⊢ t.k : s

Θ s = T ts

∀k′.ts k′ ̸= ϵ⇒ S, ψ ⊢ (ψ t k).k′ : (ts k′)
table

Θ, ψ ⊢ t.k : s

Θ s = S ss ∃s′.s′ ∈ ss ∧Θ, ψ ⊢ t.k : s′
sum

Θ, ψ ⊢ t.k : s

Figure 1: Sorting inference rules for RL.

The sorting system for RL, given in Figure 1, consists
of only three rules, for datum sort, table sort and sum sort
respectively. The rule datum states that if the sort s is a datum
sort represented by the set dms of permitted values, then the
value ψ[t][k] must be in the set dms. The rule table states that
if the sort s is a table sort represented by a map ts, then for
each key k′ such that ts k′ does not map to ϵ, the sub-table
(t k) has a key k′, which refers to a piece of data of sort
ts k′. Lastly, the rule sum requires that the sort s is a sum
sort represented by the set ss of sub-sorts, and there exists a
sub-sort s′ ∈ ss such that the key k of table t refers to a piece
of data of sort s′.

Notice that the sorting system is independent of the instruc-
tions in RL, because instructions are also data in the language.
Example: We define an example environment sort Θ that
includes the following mappings:
sVal 7→ D {0,1}
sKey 7→ D {Val}
sTab 7→ T {Val 7→ sVal}
sInst 7→ S {exec,imMov, · · · }
exec 7→ T {I 7→ sInst}
imMov 7→ T {T 7→ sTab,T1 7→ sKey,Val 7→ sVal}

In this environment sort, we define a datum sort sVal
for atomic Boolean values, a datum sort sKey for a single
string value Val, a table sort sTab for simple 1-tables with
a single key named Val, a sum sort sInst for instructions,
and two table sorts for the two instructions exec and imMov
respectively.

We then define an environment ψ where there is a table
simpTable1 of sort sTab that has value 0 at the key Val;
an instruction instance i1 of imMov that moves the value 1
to the key Val of the target simpTable1; and an instruction
instance i2 of exec that executes i1.

Using the rules in Figure 1, it is straightforward to prove in
Isabelle/HOL that the two instruction instances and the data
structures involved are well-sorted.

B. RLC – Virtual Machine for RL

We have also developed RLC – a C++ implementation
of RL which features a efficient virtual machine for an RL
model of dimension 2. RLC can load, execute, store and
display RL models of dimension 2. The input format is
JSON – a language-independent data interchange format that
uses human-readable text to store and transmit data objects
consisting of attribute-value pairs. In general, any structured
data format may be used (e.g., XML, S-expression). As first
steps towards a high-level input format we introduce the
following basic structural constructs:

• Anonymous indirection enable users to use arbitrarily
nested JSON objects when describing RLC models. Dur-
ing loading, nested JSON objects are flattened using
indirections.

• Namespaces enable users to hierachically structure their
code and use the same identifier to represent different
tables in different scopes.

• Sequences enable users to use JSON array to model a
sequence of ordered instructions.

By convention, RLC restricts attributes’ keys to words of
the form [a− zA−Z][a− zA−Z0− 9 :]∗ in UTF-8 so that
RLC models formatted in JSON can be readable using existing
text editors. Further, the character : is used as the namespace
delimiter that structures the space of keys.

A Datum is implemented as a standard string (i.e.
std::string) and the environment is implemented using
standard maps (i.e. std::map). For efficiency and to match
the standard string implementation, symbols of the alphabet
are encoded on a single byte. It follows that, in RLC,
there are 28 symbols. For demonstration purposes, we use
the standard C++ map implementation – a well-tested and
robust associative array implemented as red-black trees. Note
that, it is straightforward to replace it by other key-value store
implementations (e.g., hashmap, graph database).

The execution of the RL instruction set (i.e., imMov,
imAdd, inConcat, mov, add, concat, skip,
exec, seq, unseq, imBranch, branch) is
implemented using a recursive C++ function. This implies
that, during execution, instructions left to be executed are
stored in the call stack, which is hardware-specific nowadays.
In addition to basic instructions, RLC introduces a new
instruction called the clear instruction (op-code: clear)
which encodes an identifier and when executed clears it. This
instruction is introduced for convenience purposes and helps
to manage memory.

The purpose of RLC is to bootstrap the development of
high-level computations in RL, especially to develop high-
level language constructs in RL. These include well-known
control-flow structures, allocator, and stacks. To illustrate how
a type system may be implemented in RLC, we defined and
implemented handy type system that constrains the structure
of RLC tables. Additionally, to demonstrate RL’s ability to
manipulate structured data, we notably implemented a propo-
sitional logic framework in which propositional expressions
can be represented and manipulated.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented our line of research which
aims to develop transparent and trustworthy information in-
frastructure for Defence applications. This work is focused on
the hardware/software transition layer. Specifically, we pro-
posed RL – a computational model that is hardware-friendly,
highly-structured and reflective. We formally described its data
model and operational semantics. As practical contributions,
RL structure and semantics have been formally modelled in
Isabelle/HOL to ensure they are both mathematically sound.
Further, we also developed a proof-of-concept implementation
with which we demonstrated high-level computation features
such as a type-system and a propositional logic reduction
system. These contributions are made public and, we hope,
will foster the development of a comprehensive framework for
formal engineering of high-level and large-scale information
infrastructure.

In the future, we seek to build upon RL and develop a
full-fledged interactive development environment to provide
high-level support for large-scale knowledge management and
capability development tasks. RL is well suited for mod-
elling mathematics and scientific knowledge. Its semantics
is formally defined and its mathematical foundations well-
established. It also supports reflection, a notion that appears
surprisingly often used in mathematical and common reason-
ing. We also plan to implement, within RL, formal analysis
tools that support RL developments.

Finally, we will explore the design of dedicated hardware
that directly supports our reflective computational model.
Indeed, in contrast with other reflective languages which
follow a functional approch to computation, RL adopts a
structural approch to computation [6] which is well suited for
implementations on von Neumann architectures [30].

REFERENCES

[1] M Anderson, C North, J Griffin, R Milner, J Yesberg, and K Yiu.
Starlight: Interactive link. In Computer Security Applications Confer-
ence, Annual, pages 55–55, 1996.

[2] Alessandro Armando, Alessandro Cimatti, and Luca Viganò. Building
and executing proof strategies in a formal metatheory. In Congress of
the Italian Association for Artificial Intelligence, pages 11–22. Springer,
1993.

[3] Sergei N Artëmov. On explicit reflection in theorem proving and formal
verification. In International Conference on Automated Deduction, pages
267–281. Springer, 1999.

[4] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant,
Yann Coscoy, David Delahaye, Daniel de Rauglaudre, Jean-Christophe
Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The coq proof
assistant reference manual. INRIA, version, 6(11), 1999.

[5] Mark Beaumont, Jim McCarthy, and Toby Murray. The cross domain
desktop compositor: Using hardware-based video compositing for a
multi-level secure user interface. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 533–545, 2016.

[6] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, turing machines
and languages with only two formation rules. Communications of the
ACM, 9(5):366–371, 1966.

[7] Samuel Boutin. Using reflection to build efficient and certified decision
procedures. In International Symposium on Theoretical Aspects of
Computer Software, pages 515–529. Springer, 1997.

[8] Tony Cant, Ben Long, Jim McCarthy, Brendan Mahony, and Kylie
Williams. The HiVe writer. Electronic Notes in Theoretical Computer
Science, 217:221–234, 2008.

[9] Edgar Frank Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, 1970.

[10] Stephen A Cook and Robert A Reckhow. Time bounded random access
machines. Journal of Computer and System Sciences, 7(4):354–375,
1973.

[11] Stefania Costantini. Meta-reasoning: a survey. In Computational Logic:
Logic Programming and Beyond, pages 253–288. Springer, 2002.

[12] Richard Cyganiak, Andreas Harth, and Aidan Hogan. N-quads: Extend-
ing n-triples with context. W3C Recommendation, page 41, 2008.

[13] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn,
and Jakob von Raumer. The lean theorem prover (system description).
In International Conference on Automated Deduction, pages 378–388.
Springer, 2015.

[14] Calvin C Elgot and Abraham Robinson. Random-access stored-program
machines, an approach to programming languages. In Selected Papers,
pages 17–51. Springer, 1982.

[15] James E Foster. A number system without a zero-symbol. Mathematics
Magazine, 21(1):39–41, 1947.

[16] Michael Golm and Jürgen Kleinöder. Jumping to the meta level. In
International Conference on Metalevel Architectures and Reflection,
pages 22–39. Springer, 1999.

[17] Alexander Gorelik, Sachinder Chawla, Awez Syed, Leon Burda, Mon
Yee, and Sridhar Grantimahapatruni. Nested relational data model,
November 29 2001. US Patent App. 09/782,186.

[18] J.A. Green. Shuffle algebras, lie algebras and quantum groups. Textos
de matemática // Departamento de Matemática, Faculdade de Ciências
e Tecnologia, Universidade de Coimbra. Departamento de Matemática
da Universidade de Coimbra, 1995.

[19] Duncan A Grove, Toby C Murray, Chris A Owen, Chris J North,
JA Jones, Mark R Beaumont, and Bradley D Hopkins. An overview
of the annex system. In Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007), pages 341–352. IEEE, 2007.

[20] Jin Song Dong Rajeev Gore Zhe Hou Brendan Mahony Hadrien Bride,
Cheng-Hao Cai and Jim McCarthy. N-pat: A nested model-checker
(system description). In International Joint Conference on Automated
Reasoning, 2020, 2020.

[21] John Harrison. Metatheory and reflection in theorem proving: A survey
and critique. Technical report, Citeseer, 1995.

[22] David Keppel, Susan J Eggers, and Robert R Henry. A case for runtime
code generation. Department of Computer Science and Engineering,
University of Washington, 1991.

[23] Hiroyuki Kitagawa and Tosiyasu L Kunii. Nested table data model (ntd).
In The Unnormalized Relational Data Model, pages 17–68. Springer,
1989.

[24] Ora Lassila, Ralph R Swick, et al. Resource description framework (rdf)
model and syntax specification. 1998.

[25] Hector J Levesque. Knowledge representation and reasoning. Annual
review of computer science, 1(1):255–287, 1986.

[26] Pattie Maes and Daniele Nardi. Meta-level architectures and reflection.
1988.

[27] Henry Massalin. Synthesis: An efficient implementation of fundamental
operating system services. 1993.

[28] Commonwealth of Australia. Defence capability development handbook.
2012.

[29] Raymond M Smullyan et al. Theory of formal systems. Princeton
University Press, 1961.

[30] John Von Neumann. First draft of a report on the edvac. IEEE Annals
of the History of Computing, 15(4):27–75, 1993.

[31] Ming-Yuan Zhu. Computational reflection in powerepsilon. SIGPLAN
Notices, 29(1):13–19, 1994.

