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A B S T R A C T
This article examines the integration of blockchain, eXplainable Artificial Intelligence (XAI), es-
pecially in the context of federated learning, for credit scoring in financial sectors to improve the
credit assessment process. Research shows that integration of these cutting-edge technologies is
in its infancy, specifically in the areas of embracing broader data, model verification, behavioural
reliability and model explainability for intelligent credit assessment. The conventional credit risk
assessment process utilises historical application data. However, reliable and dynamic transactional
customer data are necessary for robust credit risk evaluation in practice. Therefore, this research
proposes a framework for integrating blockchain and XAI to enable automated credit decisions.
The main focus is on effectively integrating multi-party, privacy-preserving decentralised learning
models with blockchain technology to provide reliability, transparency, and explainability. The
proposed framework can be a foundation for integrating technological solutions while ensuring model
verification, behavioural reliability, and model explainability for intelligent credit assessment.

1. Introduction
Credit Assessment (CA) is the process that assures the

development of credit scorecards to assess the creditworthi-
ness of the customers and loan applications following the
policy of the lending institution. Mature banks are looking
at making the process efficient, transparent and sustainable
to reduce the model risk and provide adequate governance.
Increasing competition and growing pressure for revenue
generation are setting the requirements for the banks to
explore further effective integration and technologies that
will result in quicker turnaround time while managing the
authenticity of the data source, transparency and privacy
protection. It is necessary to employ an efficient, transparent,
traceable, secure, and interpretable modelling process to
ensure accurate credit risk assessment. This approach aims
to minimize model risk, mitigate bias and imperfections, and
deliver reliable and sufficient results.
Problem statement: Traditional financial institutions as-
sess credit applications based on data available to them at
the time of the credit application, such as customers’ credit
scores, existing debt and income. The risk associated with
the customer’s creditworthiness may not be appropriately
identified as the customer data comes from a single source
of information provided at the time of the application, such
as historical spending patterns. Thus, it does not consider
the broader dynamic transactional customer data associated
with the customer’s financial behaviour, such as dynamic
payment behaviour, spending patterns, and financial health.
To mitigate the data scarcity in small and medium-sized
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financial institutions and reduce information asymmetry be-
tween lenders and borrowers, a proposed solution in Zhang
et al. (2020a) involves leveraging blockchain technology to
establish a credit data-sharing alliance.

The risk in the existing process is that the customer
may be deemed creditworthy based on the limited dataset.
In Óskarsdóttir et al. (2019) presented that combining call-
detail records with traditional data in credit scoring models
significantly increases their performance. At the same time,
they may have a high likelihood of defaulting on their credit
obligations. Additionally, some customers may be unfairly
denied due to limited credit history Hurley and Adebayo
(2016). Ensuring the absence of model bias and discrim-
ination is crucial throughout the scoring process Dastile
et al. (2022). Therefore, there is a risk to the existing credit
assessment system’s trustworthiness, efficiency and fairness
Hurlin et al. (2022).

The credit assessment process encounters several chal-
lenges that need to be addressed. Firstly, recognising the in-
creasing challenges arising from liability concerns, sharing
or broadcasting data across various organizations. Various
data-sharing regulations, such as the General Data Protec-
tion Regulation (GDPR), limit data sharing opportunities
across different organizations. Hence, increasingly complex
regulatory compliance and governance requirements must
be met Bücker et al. (2022a). Additionally, verifying and
validating the accuracy of customer-provided information
is crucial, ensuring that it reflects their actual financial
behaviour, including income, expenses, assets, and liabili-
ties. Investigating the customer’s history of late payments
or inconsistent employment records is also important. Tra-
ditionally, credit risk assessment has relied on historical
application data, but acquiring reliable and dynamic transac-
tional data for model development has proven challenging.
Another essential aspect is the need for secure, transparent,
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traceable, explainable, and robust modelling techniques to
ensure an ethical credit assessment decision process. Evalu-
ating the strength and adaptability of the scorecard model
is another area of concern. Assessing its robustness and
enabling dynamic updates is crucial to ensure its effective-
ness over time. Finally, leveraging emerging technologies
becomes necessary to construct an intelligent and reliable
scorecard engine that upholds data privacy, security, and im-
mutability while enhancing the overall customer experience.

Blockchain can facilitate providing a decentralized credit
scoring solution, as it trains a single credit scoring model
without sharing customer data, as Hassija et al. (2020)
suggested. Additionally, Federated Learning (FL) may serve
as part of a privacy-preserving machine learning framework,
allowing multiple parties to collaboratively train a single
credit scoring model without sharing their customer data.
However, the authors in Hassija et al. (2020) consider single-
model training.

The researchers in Yang et al. (2023) presented a credit
scoring system that combines explainable federated learning
and blockchain to tackle challenges related to credit model
sharing and safeguarding data privacy. Their method elu-
cidates the FL process, suggesting a decentralized Byzan-
tine fault-tolerant stochastic gradient descent algorithm (D-
SGD). From a mathematical perspective, the study integrates
the Shapley value with DPOS (Delegated Proof of Stake)
as a consensus protocol, enabling the algorithm to compute
the contribution values of the involved parties during the
execution of the federated algorithm.

Imteaj and Amini (2022) introduced a model based on
FL to anticipate financial distress among borrowers. This
approach involves constructing a global machine-learning
model that evolves from the local models of distributed
agents. The model achieved prediction accuracy almost in-
distinguishable from that of a centralized model. However,
there is no interpretability of the model and local model
generation applying Stochastic Gradient Descent (SGD).

Cheng et al. (2021) proposed SecureBoost, an FL boost-
ing model, providing theoretical evidence that the model
achieves accuracy on par with the non-federated boosting
model. However, the model is not interpretable.

Our motivation is to thoroughly understand customers’
creditworthiness and trustworthiness in model prediction
and to address the needs for well-informed decision-making
in the financial sector while protecting customer privacy. We
emphasize collaborative modelling, privacy-preserving pro-
tection, and adherence to regulatory requirements to ensure
the accuracy and reliability of credit assessments while re-
specting all involved parties’ privacy settings. This approach
provides various benefits, including enhanced collabora-
tion among multiple entities, improved privacy protection
through multiparty privacy-preserving measures, and the
development of more accurate credit assessment models. In-
tegrating advanced technologies such as blockchain, FL, and
XAI also fosters technological innovation and creates trust-
worthiness and unbiased credit assessment models. Overall,

these advancements aim to optimize credit risk management,
reduce defaults, and strengthen trust in the financial system.

The significance of this research is as follows:
• A novel credit assessment process is required that

leverages comprehensive data sources and applies
them to advanced Artificial Intelligence (AI) algo-
rithms to provide a more holistic view of the cus-
tomer’s creditworthiness. The real-world financial
sectors require a broader range of data sources and
models to ensure well-informed decision-making in
the credit assessment process.

• Enabling multi-source data support in credit mod-
elling promotes collaborative modelling among multi-
ple parties while upholding privacy. Moreover, incor-
porating multiparty privacy-preserving protection in
credit modelling carries significant business benefits
by facilitating accurate credit assessment while ensur-
ing the privacy of all involved parties.

• Trustworthiness and unbiased evaluation are essential
for reliable credit assessment processes. However, the
complex algorithms utilised in FL and blockchain-
based consensus mechanisms can obscure the ratio-
nale behind credit assessments, posing challenges in
meeting evolving regulatory requirements around ex-
plainability. While the use of blockchain can enable
trustworthiness and transparency, XAI contributes to
fairness in credit scoring.

• Enabling the reliability and impartiality of the credit
assessment models by incorporating adherence to reg-
ulatory requirements. Therefore, its significance en-
ables financial institutions to employ trustworthy, un-
biased credit assessment models.

We propose an automated credit decision framework fo-
cusing on the robust integration of blockchain and XAI to
achieve these goals. The primary contributions of this paper
can be summarised as follows:

• Our research explores the fundamental features of
XAI and blockchain for credit scoring. We have con-
ducted an in-depth credit scoring analysis and pre-
sented a taxonomy of the blockchain and XAI, which
has not been done before. Our comprehensive taxon-
omy of blockchain and XAI features highlights their
importance and insights for use within credit assess-
ment. This can assist researchers and practitioners in
navigating and applying these evolving technologies
effectively within the domain of credit scoring.

• Performed a comparative analysis of proposed archi-
tectures that combine blockchain, FL, and XAI tech-
nologies to construct credit scoring systems. We ex-
amine the difficulties of integrating these technologies
into credit assessment, addressing fundamental chal-
lenges and examining the integration mechanisms im-
plemented across diverse industrial applications. Our
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findings highlight that current solutions primarily fo-
cus on data storage security and privacy, with limited
impact on model verification, behavioural reliability
and explainability in intelligent credit assessment.

• We present a conceptual framework that combines
blockchain, FL, and XAI technologies to establish
an automated decision-making credit assessment pro-
cess. By utilising the optimal features of these tech-
nologies, this framework aims to fulfil the require-
ments of the banking industry and regulatory stan-
dards. The result is a credit scoring system that is both
effective and explainable, thereby enhancing reliabil-
ity and transparency in the decision-making process.

After thoroughly examining the qualitative features re-
quired for designing an efficient credit scoring framework,
we performed an initial complexity analysis of the proposed
framework.

The rest of this paper is organised as follows: Section
2 presents the key blockchain concepts. Section 3 reviews
XAI techniques, including the surveyed work on the XAI
and CA. Furthermore, we analysed the integration of FL,
blockchain and XAI. In Section 4, we present the credit
assessment’s principal functionalities, including the existing
process’s limitations. Section 5, we propose the conceptual
framework that will address identified limitations and pro-
vide an outlook on future research. Section 6 presents the
analysis of the key characteristics required to build a robust
credit assessment. Finally, Section 7 concludes the paper.
Figure 1 presents an overview of related work integrating
blockchain and XAI for credit assessment.

Figure 1: Overview of the integration of technologies and credit
assessment.

2. Blockchain Features for Credit Assessment
This section describes the background of blockchain fea-

tures and the possible contributions to the credit assessment.

2.1. Blockchain Technology
Blockchain as a distributed ledger technology was intro-

duced with Bitcoin (Nakamoto and Bitcoin (2008)) to solve
the double-spending problem using a peer-to-peer network.
The proposed peer-to-peer distributed timestamp server uses
the Proof-of-work (PoW) system to record a chronological
order of transactions into timestamp blocks. The author
defined an electronic coin as a chain of digital signatures.
The hash of the previous transaction and the owner’s pri-
vate key are required to sign their transactions digitally.
The public key is used to verify the sender’s identity. A
proposed timestamp server consists of the hash of a block
of timestamped items and the previous timestamp in its
hash, constructing a chain. The Proof-of-work system was
implemented by incrementing a nonce in the block until a
value is found that gives the block’s hash the required zero
bits, consistent with the SHA-256 algorithm. The Proof-
of-work requires CPU computation for mining the network
nodes and finding a Proof-of-work for its block. Once the
node considers the Proof-of-work, it broadcasts the block to
all nodes. The nodes accept the block only if all transactions
are validated and not spent. A hash of the accepted block is
created to be used as a previous hash for the new block in the
network. The block header contains the hash of the previous
block validated and a hash of all transactions contained in
the block (Merkle tree) as presented in Figure 2. Privacy is
preserved by keeping the public key anonymous.

Block Header

Previous Hash Nonce

Hash01

Hash2 M

Tx3
Merkle Branch for Tx3

Merkle Root

Hash23

Hash3 M

Block Header

Previous Hash Nonce

Merkle Root

Hash0 D Hash1 D

Figure 2: Merkle tree of hash data in blockchain.

The history of the blockchain, starting from Blockchain
1.0 to Blockchain 4.0, has been discussed by Tanwar (2022).
Blockchain 5.0 is the latest generation of blockchain that
has been applied together with AI, hyper-converged infras-
tructure, and industry 4.0 technologies for high security,
efficiency, reliability, and scalability Tanwar (2022). Verma
et al. (2022) evaluated the integration of blockchain with
Industry 5.0 focusing on how the technology can enhance
the security challenges of cyber-physical systems, such as
security, trust and transparency.

A systematic literature review of the blockchain-based
application across multiple domains such as supply chain,
business process enactment (Stiehle and Weber (2022),)
financial, healthcare, IoT, privacy and data management has
been analyzed (Casino et al. (2019); Uddin et al. (2021);
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Alam et al. (2021); Chowdhury et al. (2020); Wamba and
Queiroz (2020)). Investigating trends in blockchain tech-
nology by applying text mining and clustering for register
patents provides insights for researchers and inventors (Ba-
makan et al. (2021)).

The taxonomy of the blockchain for business process
enactment presented in Stiehle and Weber (2022) is based
on the two characteristics of capabilities and enforced guar-
antees. The analysis categorized capabilities based on the
different factors of model support, resource allocation and
process flexibility. Model support is a notation for the busi-
ness process. The authors used resource allocation to differ-
entiate various source allocations and examined how differ-
ent approaches impacted process flexibility. Regarding en-
forcement, the authors determine that control flow, resource
allocation, and data-integrity aspects are enforced on-chain.

The benefits of using blockchain technology to im-
prove security, transparency, and trust in different appli-
cations such as Multi-Agent Systems (MAS) (Calvaresi
et al. (2019)), energy market (Karandikar et al. (2021)),
identity management (Stockburger et al. (2021); Moinet
et al. (2017)), multi-organisation collaboration system (Lo
et al. (2021)) and data store (Radha et al. (2021)).

A detailed survey on blockchain applications for AI
shows that adopting blockchain for AI applications is still
in its infancy, Salah et al. (2019) . There are many research
challenges to be addressed in areas related to privacy, smart
contract security, trusted oracles, scalability, consensus pro-
tocols, standardisation, interoperability, quantum computing
resiliency, and governance (Salah et al. (2019), Sachan et al.
(2020), El Azzaoui et al. (2020)).

The integration of FL with blockchain to address ma-
chine learning models’ privacy, security and scalability
challenges in distributed environments has been analysed.
Aledhari et al. (2020) and Qu et al. (2022) provided an
overview of the enabling technologies, protocols and ap-
plications of FL and blockchain-enabled FL, respectively.
The comprehensive overview of research in blockchain-
based FL with different consensus mechanisms and privacy-
preserving techniques is presented in Wang and Hu (2021).
The blockchain approach to enhance security and privacy FL
for IoT is proposed in Li et al. (2020) and Issa et al. (2023).
Issa et al. (2023) discussed the challenges and risks of using
centralised storage and deep learning for IoT applications.
While FL is a promising solution for preserving data privacy,
it still has a challenge of the model vulnerability. Issa et al.
(2023) proposed utilizing the blockchain smart contract
to safeguard FL and reviewed the blockchain-based FL
techniques securing IoT systems.
2.2. Blockchain Technology and Credit

Assessment
The prospect of integrating blockchain within the bank-

ing and financial sector has been presented in Guo and Liang
(2016) and Polyviou et al. (2019). Nowadays, blockchain’s
breakthrough is in data storage and information transmis-
sion. Regulation, efficiency, and security are the challenges

to be resolved for the anticipated integration of blockchain
technology in the banking industry.

Blockchain integrates computer technologies, distributed
data storage, information transmission, consensus mecha-
nisms, and encryption algorithms. Figure 3 presents the
blockchain’s taxonomy for the credit assessment application.
The taxonomy is organised into four dimensions: type,
storage, blockchain features and applications in credit as-
sessment. A public blockchain is open and permissionless,
and decentralised. A private blockchain is permissioned,
and access to a network is restricted to authorised partici-
pants. A blockchain consortium is semi-decentralised and
permissioned, meaning nodes from multiple organisations
collectively own and manage the network. Storage on the
blockchain can be "on-chain" or "off-chain". On-chain refers
to the data stored on the blockchain, which means the
network nodes verify it. Off-chain refers to storing data
outside of the blockchain in a separate system. The features
of blockchains are Immutability, Decentralised, Security and
Cryptography, Distributed Ledgers, Consensus and Smart
Contracts. The immutability features of the blockchain
ensure data integrity and transparency. Blockchains are
decentralised networks without a central authority and are
thus more resilient against attack. Blockchains use various
cryptographic algorithms, such as asymmetric-key algo-
rithms (digital signatures), hashing, public-key cryptog-
raphy, elliptic curve cryptography, and the Merkel tree.
Asymmetric-key algorithms (digital signatures) are used to
authenticate transitions and ensure the parties approve them.
Hashing uses mathematical algorithms to generate one-way
functions while ensuring the immutability and integrity of
the data stored on the network. Public-key cryptography is
used to authenticate transactions and verify identity in the
network. Elliptic curve cryptography ensures private keys’
security and authenticates transactions. The Merkle Tree
verifies the integrity of the transaction data. Consensus in
blockchain refers to the process whereby nodes in distributed
networks work together to validate and process transactions,
which is essential for the integrity and immutability of the
blockchain. There are several blockchain consensus algo-
rithms, such as Proof of work (PoW), proof of stake (PoS),
delegated Proof of stake (DPoS), Proof-of-Authority (PoA),
Proof of elapsed time (PoET), and Practical Byzantine Fault
Tolerance (PBFT).

The blockchain-based credit assessment modelling (Zhang
et al. (2019); Hassija et al. (2020); Qiao et al. (2022))
considers data privacy protection issues. The blockchain is
introduced for storing credit data, which ensures full data
traceability of the credit scoring process Yang et al. (2022b),
while the consensus mechanism is used to assess whether the
credit data is stored according to a predefined set of rules.

Walambe et al. (2020) proposed a system that leverages
blockchain’s secure and immutable nature to store machine
learning model explanations for credit scoring. The pro-
posed system aims to enable local interpretations of the
global model to be publicly available to customers to access
securely. The authors demonstrated the trustworthiness of an
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Figure 3: Taxonomy of blockchain technology for credit assessment.

explained model prediction, with the security, reproducibil-
ity, traceability and transparency of blockchain, providing
the end-user with a way to securely request an explanation
for the credit-scoring decision. Blockchain tamper-proof
characteristics ensure the authenticity of the data and min-
imise the impact of false data for credit evaluation mod-
elling (Zhang et al. (2019)). The blockchain-based frame-
work that assists the gathering of information about the cus-
tomers from the various financial institutions and calculates
their score based on the consensus of multiple institutions
improves the credit decision process (Chakraborty et al.
(2019)). For example, blockchain for the credit evaluation
system of traders in the food supply chain has been analysed
Mao et al. (2018).

A blockchain-based credit score evaluation is proposed
to ensure transparency in the lending process (Patel et al.
(2020); Hassija et al. (2020)). Blockchain and Decentralized
Credit Scoring Model presents a theory to model the optimal
investment strategy for different risk vs. return scenarios
Hassija et al. (2020). In Patel et al. (2020) KiRTi, a deep
learning-based credit recommender, is proposed to automate
loan disbursements and repayments. This work is a step
forward in eliminating the requirement of third-party credit
rating agencies for credit score generation.

Cho et al. (2021) designed a Verifiable Credential (VC)
model for VC generation and revocation verification for
credit scoring data. Blockchain-authorized data (Zhang
et al. (2020a); Zhu (2020)) and model sharing (Yang et al.
(2022a)) enhances the security of credit reporting.

Nassar et al. (2020) proposed a framework based on
the principle that critical decisions in complex AI systems
must be subject to consensus among distributed AI and XAI
agents hosted in trusted oracles. Blockchain can fulfil trust-
worthy AI requirements for resilience to biases and adversar-
ial attacks. Blockchain provides key features for XAI agents:
Transparency and Visibility, Immutability, Tractability and
Nonrepudiation and Smart Contracts.

3. Use of Explainable AI in Credit Assessment
In this section, we first describe the overall XAI tech-

niques. Following this, we present an overview of XAI meth-
ods and describe their characteristics for the explainable
credit assessment. Finally, we describe the integration of the
blockchain and XAI.
3.1. Background of XAI

Machine learning (ML) models are predominantly black
boxes. The model-agnostic techniques have been developed
to explain the predictions of any classifier in an interpretable
form. Among this area’s best known contributions is the
Locally Interpretable Model-Agnostic Explanations (LIME)
(Ribeiro et al. (2016)). LIME constructs locally linear mod-
els around the predictions of a model to explain it by ap-
proximating it locally with an interpretable model. These
contributions fall under model agnostic (MA) and local (L)
explanations. Notably, the authors propose algorithms for
individual predictions to solve the "trusting a prediction"
problem known as the LIME algorithm by approximating it
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locally with an interpretable mode. Furthermore, the authors
proposed a Submodular Pick SP-LIME algorithm to select a
set of predictions (and explanations) to solve the "trusting
the model" problem via submodule optimisation.

The LIME explanation is obtained by minimising the
following objective function:

𝜉(𝑥) = argmin
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑧) + Ω(𝑔) (1)
where𝐿(𝑓, 𝑔, 𝜋𝑧)measures faithfulness of explanation model
𝑔, in approximating original model 𝑓 in the locality defined
by 𝜋𝑧. 𝐺 represents the class of the of potentially inter-
pretable models, while 𝜋𝑧(𝑥) is proximity measure between
an instance 𝑧 to 𝑥, knows as locality around 𝑥.Ω(𝑔) penalizes
the complexity of the explanation 𝑔.

SHAP (Shapley Additive exPlanations) value is pro-
posed by Lundberg and Lee (2017) for interpreting and
understanding the predictions made by the machine learning
models. The proposed SHAP values measure the contri-
bution of each feature to a model prediction. The feature
importance explanation technique is a form of ranking the
importance of each feature in the prediction output by the
model to be explained. The SHAP method calculates an
additive feature attribution measures that satisfies the set of
required properties (local accuracy, missingness and con-
sistency). The first property local accuracy requires expla-
nation model 𝑔 to at least match the original model 𝑓 output
for a simplified input. The second property missingness
requires features missing in the original input to have no
attributed impact. The third property consistency requires
that if a model changes such that some simplified input’s
contribution increases or stays the same regardless of the
other inputs, the input’s attribution should be consistent. The
Shapley value for each feature can be calculated using the
following formula:

𝜙𝑖(𝑓, 𝑥) =
∑

𝑧′⊆𝑥′

|𝑧′ |!(𝑀 − |𝑧′ | − 1)!
𝑀!

[𝑓𝑥(𝑧
′
)−𝑓𝑥(𝑧

′
∖𝑖)] (2)

where 𝑀 denotes a number of all features, 𝑓 is a model.
|𝑧′ | is the number of non-zero entries in 𝑧′ , and 𝑧′ ⊆ 𝑥′

represents all 𝑧′ vectors where the non-zero entries are a
subset of non-zero entries of 𝑥′ , while 𝑧′∖𝑖 denotes 𝑧′ = 0.

A comprehensive taxonomy of the XAI method is pre-
sented in Arrieta et al. (2020),Schwalbe and Finzel (2021),
Islam et al. (2022), Sahakyan et al. (2021), Vilone and Longo
(2020), and Lampathaki et al. (2021). The XAI is a subsec-
tion of AI that focuses on the transparency of the AI sys-
tems’ decision-making. Integrating XAI into cybersecurity
intends to improve the AI security system’s trustworthiness,
interpretability and resilience. The XAI methods to tackle
cybersecurity issues have been presented in different areas,
such as industrial IoT (Khan et al. (2021)), advanced persis-
tent threats (Li et al. (2021)), intrusion detection (Oseni et al.
(2022)) and autonomous driving (Rjoub et al. (2022)).

The survey of resampling techniques on feature impor-
tance in imbalanced blockchain data is presented in Alarab

and Prakoonwit (2022). Rajbahadur et al. (2022) explored
the impact of feature importance measures on the inter-
pretability and stability of the classifiers. The Neural-Backed
Decision Trees (NBDT) model Wan et al. (2020) trains a
decision tree to represent a (deep) neural network and main-
tains a high level of model interpretability. The authors Hara
and Hayashi (2018) proposed a Bayesian model selection to
improve the model interpretability of tree ensembles.
3.2. XAI and Credit Assessment

The surveyed work on XAI and CA is presented in
Figure 4 and Table 1. Figure 4 presents the different aspects
of classifying XAI methods based on their characteristics.
As a result, according to the proposed taxonomy, three
main categories for the XAI are identified: form, scope
and applicability. Another important aspect is the form of
the XAI method: numeric or rule-based. Numerical expan-
sion in the form of the importance of a specific feature
to the overall performance of a model is called feature
importance (Altmann et al. (2010)). The explainability pro-
duced by rule-based explanations by exploiting several rule-
extraction techniques, such as automated reasoning-based
models (Bride et al. (2018, 2021); Zhang et al. (2021b)),
is known as approximate model. Based on the scope of
interpretation, if the method explains a specific instance, it is
known as local, and if the method explains the whole model,
then it is global. An important aspect of separating XAI
methods is the type of algorithms that could be applied. If
the technique has restricted application to a specific family
of algorithms, it is called model-specific. The method used
for any possible algorithms is model agnostic. The recent
work by Wan et al. (2020) presents a Neural backed Decision
Tree (NBDT), which explores the combination of neural nets
and decision trees. Such an intersection would preserve high-
level interpretability while neural networks provide high
accuracy. Recent work by de Lange et al. (2022) presents
the combination of the LightGBM model with SHAP, which
enables the interpretation of explanatory variables affecting
credit predictions.

Table 1 presents the XAI characteristics and broader
applications. XAI in credit risk applications is presented
in Moscato et al. (2021), Walambe et al. (2020), de Lange
et al. (2022), Bücker et al. (2022b), Sachan et al. (2020), and
Srinivasan et al. (2019).
3.3. Blockchain, Federated Learning and XAI

Federated Learning trains machine learning models on
multiple datasets distributed across different clients without
data sharing Yang et al. (2022a). FL enables multiple clients
to solve machine learning problems under the coordination
of the central aggregator, which ensures data privacy (Zhang
et al. (2021a)).

Regarding communication delays, the global model in
FL involves multiple iterative rounds of model updates from
users, engendering significant communication overhead and
incurring additional storage costs during network transmis-
sion, Konečnỳ et al. (2016). The FL is contingent upon the
seamless communication between clients and servers. This
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Table 1
Related work on XAI and credit assessment and their characteristics. Yes (✓), No (×), Partial details on explainability (*).
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Credit Application
Moscato et al. (2021), Walambe et al.
(2020), Bücker et al. (2022b)

LIME ✓ ✓ ✓ * ✓ × XAI for Credit score

Moscato et al. (2021) Anchors ✓ ✓ ✓ * ✓ × XAI for Credit score
Moscato et al. (2021), de Lange et al.
(2022)

SHAP ✓ × ✓ ✓ ✓ × XAI for Credit score

Moscato et al. (2021) BEEF ✓ × × ✓ ✓ × XAI for Credit score
Moscato et al. (2021) LORE ✓ * ✓ * ✓ × XAI for Credit score
Ma et al. (2022) MUC ✓ ✓ ✓ ✓ × ✓ Loan application improv-

ments
Srinivasan et al. (2019) ARAEGAN+GM × × ✓ × × ✓ Credit loan denials
Sachan et al. (2020) MAKER × × × × ✓ × Loan underwriting
Fahner (2018) TGAMT × × × ✓ × ✓ Explainability by design

Credit score
Bride et al. (2021) Silas ✓ ✓ × ✓ × ✓ XAI via logical reasoning

on credit data
Zhang et al. (2021b) OptExplain × ✓ × ✓ × ✓ XAI via logical reasoning

on credit data

XAI

Applicability

Feature
Importance

Approximate
Model

Local

Model
Specific

Model
Agnostic

Global

Form

Scope

Figure 4: Overall taxonomy of XAI.

communication involves the transmission of local learning
models and multiple training iterations for model updates,
making communication and training efficiency critical for
FL performance Wu et al. (2023). To manage upstream
communication delay, a Sparse Ternary Compression (STC)
framework is proposed by Sattler et al. (2019) extends gradi-
ent sparsification with downstream compression, surpassing
federated averaging in various scenarios and advocating for a
transformative shift toward high-frequency, low-bandwidth

communication in bandwidth-constrained learning environ-
ments. Hieu et al. (2020) introduced the application of deep
reinforcement learning in optimizing system parameters for
minimizing delay, energy consumption and maximizing total
rewards.

A comprehensive and systematic Privacy-Preserving
FL (PPFL) review is presented in Yin et al. (2021). The
overview of the main characteristics of the Blockchain-
Based Federated Learning (BCFL) framework, architectural
design, deployed platforms and feasible applications for
BCFL is presented in Li et al. (2022a). Li et al. (2022b)
proposed a systematic study on privacy and security in
blockchain-based FL methodologies and discussed the in-
tegration of blockchain with FL in various human-centric
applications in IoT and intelligent environments.

Blockchain design that enables recording and secure
incentives for distributed FL model training via Smart Con-
tracts with Class-Sampled Validation ErrorScheme (CSVES)
to validate the quality of gradients to determine reward
is proposed in Martinez et al. (2019). The advantages of
this approach encompass increased trust in the FL process
and enhanced incentives for participants during gradient
validation. However, potential limitations may arise from
centralised model aggregation, lack of explainability of the
trained models, and the impact of new data on the training
process.

The overview of FL and blockchain integration, called
FLchain, can potentially transform intelligent mobile edge
computing (MEC) networks into a decentralised, secure,
and privacy-enhancing system Nguyen et al. (2021). The
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article presents four use cases that demonstrate the potential
applications of FLchain in edge networks, including edge
data sharing, edge content caching, and edge crowdsensing.
However, research lacks a comprehensive evaluation of ex-
periments to assess their effectiveness and limitations in a
practical setting fully.

The proposed serverless function for training FL Fed-
Less is detailed in Grafberger et al. (2021), which utilised
serverless technologies, AWS Lambda, Azure functions and
Openwhisk to enable FL while providing authentification,
authorisation and differential privacy. FedLess supports Lo-
cal Differential Privacy, a technique that adds noise to the
data before sharing it. The paper introduces a novel approach
that leverages serverless computing to address the challenges
of scalability, infrastructure management, and inactive client
computing resources in FL. However, it is important to
consider the limitations of FedLess in the specific context
of the target domain and requirements. Further research and
evaluation are needed to fully understand the effectiveness
and limitations of FedLess in other areas, such as credit score
modelling.

The behaviour attestation method is used to verify the
consistency of the behaviour of each participating client
during the training process for detecting poisoning attacks
in FL (Mallah et al. (2021)). The authors presented the
AttestedFL algorithm for defence against untargeted model
poisoning attacks in FL with contributions to reducing attack
effectiveness, increasing accuracy, pattern-based detection,
and flexibility in deployment. However, further research
and optimisations are required to explore its efficacy under
different scenarios.

Al Mallah and López (2022) proposed techniques to
address the latency challenges by decoupling the monitor-
ing phase from the detection phase in decentralised FL
approaches defences that protect against poisoning attacks
in FL. The blockchain replaced the centralized aggregation
of the traditional FL. It divided the blockchain network
into two types of miners: minersFL responsible for FL, and
minersMON, responsible for monitoring. Workers perform
the FL and send their local model updates to minersMON,
responsible for monitoring. The blockchain minersFL nodes
randomly select a set of reliable workers to continue the FL
process and calculate the average model using the updated
model from the workers and minersMON. The proposed
design does not store the model updates on the blockchain.
Instead, the hash value is written on the blockchain and
points towards the model updates. The blockchain stores
the commitments of all workers on the model updates they
worked on. A Merkle tree is used to authenticate the model
updates submitted by the workers. The proposed approach is
designed for resource-contained nodes like mobiles and the
Internet of Things (IoT).

Walambe et al. (2020) proposed a system that leverages
blockchain’s secure and immutable nature to store machine
learning model explanations for credit scoring. The pro-
posed system aims to enable local interpretations of the
global model to be publicly available for customers to access

securely. The authors demonstrated the trustworthiness of an
explained model prediction, with the security, reproducibil-
ity, traceability and transparency of blockchain, providing
the end-user with a way to securely request an explanation
for the credit-scoring decision. However, the proposed so-
lution considers only a single AI and XAI method: Ran-
dom Forest (RF) and Locally Interpretable Model-Agnostic
(LIME). FL may be regarded as preserving privacy in credit
assessments. FL trains machine learning models on multi-
ple datasets distributed across different institutions without
data sharing. However, the system’s efficiency proposed in
Walambe et al. (2020) depends on the quality of the machine
learning model used for credit scoring. Hence, if the model is
unreliable, the explanation stored on the blockchain may be
inaccurate, leading to incorrect credit scoring decisions. The
limitation of the proposed system in Walambe et al. (2020)
is that it does not ensure that the model is reliable and the
performance of the model is validated.

Recent research has presented uses of blockchain as a
distributed data structure with major features summarised as
immutability, transparency and encryption. The integration
of blockchain and XAI is presented in Table 2. Integra-
tion of the blockchain and XAI can be achieved through
decentralised data storage, smart contracts and decentralised
model learning (Li et al. (2020); Aledhari et al. (2020);
Qu et al. (2022)). The primary use of blockchain for AI is
for secure data storage (Salah et al. (2019); Walambe et al.
(2020); Patel et al. (2020); Zhang et al. (2019)) and audit
trailing of XAI decisions (Malhotra et al. (2021)).

4. Technologies for Integrated Credit
Assessment
In this section, we first describe the overall concepts of

credit assessment. Following this, we present an overview
of the related work on using XAI and blockchain for credit
assessment.
4.1. Credit assessment fundamentals

Credit evaluation assesses a borrower’s capacity to be-
come eligible for a loan and the ability to repay. Credit
evaluation is the process that assures the development of
credit scorecards to assess the creditworthiness of the cus-
tomers and loan applications following the policy of the
lending institution. The banks are looking at making the
process efficient, transparent and sustainable to reduce the
model risk and provide adequate governance. The increasing
competition and growing pressure for revenue generation are
requiring banks to explore further effective integration that
will result in quicker turnaround time while managing the
authenticity of the data and privacy protection.

The book by Thomas et al. (2017) has been recognised
as a bible of credit scoring and reviews statistical and op-
erational research methods used in building the scorecard.
One of the first credit scoring approaches was developed to
predict companies’ bankruptcy risk (Altman (1968)).

Credit scoring is one of the earliest financial risk man-
agement tools (Thomas et al. (2017)) and is a method that is
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Table 2
A comparison of properties of blockchain, AI and integration mechanisms, Yes (✓), No (×), Insufficient details (*).
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Salah et al. (2019) ✓ × × × × × * ✓ * ✓ ✓ ✓ ×
Hossain et al. (2020) × ✓ ✓ × × ✓ DL ✓ LIMA ✓ ✓ × ✓

Walambe et al. (2020) × ✓ × ✓ × ✓ RF ✓ LIME ✓ × ✓ ✓

Patel et al. (2020) ✓ × ✓ ✓ × ✓ LSTM × * ✓ × ✓ ✓

Nassar et al. (2020) ✓ ✓ ✓ ✓ × ✓ * ✓ * ✓ ✓ × ×
Zhang et al. (2019) ✓ × × × × ✓ Logit × * ✓ ✓ ✓ ✓

Polyviou et al. (2019) ✓ × × ✓ × × * × * × ✓ ✓ ×
Calvaresi et al. (2019) × × ✓ × × × * ✓ * × ✓ × ×
Hassija et al. (2020) ✓ × × × × × * × * PoV ✓ ✓ ✓

Malhotra et al. (2021) ✓ ✓ ✓ ✓ × ✓ SVM ✓ LIME ✓ ✓ ✓ ✓

Verma et al. (2022) ✓ * ✓ ✓ * * * * * * ✓ ✓ ×
Bellagarda and Abu-
Mahfouz (2022)

* * * ✓ ✓ ✓ * ✓ * * * ✓ ×

Yin et al. (2021) × × × × × ✓ * × * × ✓ ✓ ×
Chen et al. (2022) × × × × × ✓ ESB-FL × * PoS ✓ ✓

Zhang et al. (2021a) × × × × × ✓ * × * × ✓ ✓ ×
Cheng et al. (2021) × × × × × ✓ RL-

SecureBost
× * × × ✓ ✓

Srinivasan et al. (2019) × × × × × ✓ SVM, Naive
Bayes

✓ ARAEGAN
+GM

× × × ✓

Bride et al. (2021) × × × × × ✓ Silas ✓ Logical Rea-
soning

× × × ✓

Sachan et al. (2020) × × × × × ✓ BRB ✓ MAKER × × × ✓

Davis et al. (2022) × × × × × ✓ Optimal Tree,
NN, RF

✓ LIME,
SHAP, DiCE

× × × ✓

used to predict the probability that a borrower will default
or become delinquent and to measure the profitability of
granting loans. Traditional credit evaluation methods consist
of judgmental models, statistical methods, regression anal-
ysis (Turkson et al. (2016)), discriminant analysis (Altman
(1968); Turkson et al. (2016)), logistic models and pro-
bit models. Recently, alternative machine learning methods
such as artificial neural networks (ANNs) (West (2000)),
neural networks (NN) (Yobas et al. (2000); Turkson et al.
(2016)), bayesian networks (Turkson et al. (2016)), support
vector machines (SVMs) (Harris (2015)), decision trees (Nie
et al. (2011); Dumitrescu et al. (2022); Yobas et al. (2000);
Turkson et al. (2016)), XGBoost (Xia et al. (2017)) and
other methods have been introduced to build credit scoring
models. The fairness of AI techniques in the context of
the credit scoring model has been analysed by Hurlin et al.
(2022).

Credit scoring systems are based on the past perfor-
mance of customers, similar to those who will be assessed
under the scheme. When the customer applies for a loan, the
financial institutions collect the customer details, known as
application data. Figure 5 presents an illustrative view of the

data flow for the credit assessment process. The application
data consists of variables such as the applicant’s age, time
at current/previous residence, time at current/previous job,
housing status, occupation group, income, number of de-
pendents, banking relationship, debt ratio, and credit refer-
ences. Credit references or bureau information consist of the
previous defaults, arrears and the customer’s current status
on other loans, including the number of enquiries, hardship
information and repayment history information. The major
credit bureau providers are Equifax, Illion and Experian. The
comprehensive credit score is the number that models the
data held in the credit bureau and indicates the likelihood of
repaying the money to the credit applicant’s credit bureau.
The bureau has its method for modelling the comprehen-
sive credit score. The customer application data is used
to perform the calculations related to the serviceability of
the customer, and that information is used in the scorecard
model.

The credit scoring model uses any characteristic of the
customers that aids prediction in the scoring system. The
variables are mainly associated with default risks, such as
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Figure 5: Overview of the credit assessment process.

previous defaults or arrears or the customer’s current sta-
tus on other loans and comprehensive credit score. Other
variables present the stability of the consumer, such as time
at address and time at present employment. A different
group of variables gives a view of the consumer’s residen-
tial status, spouse’s employment, number of children, and
number of dependents. A separate set of variables shows the
consumer’s serviceability, such as the Debt to Income ratio.

The good/bad flag is created based on the loan repayment
history of the accepted population for the scorecard devel-
opment. Borrowers who have missed payments or gone past
a certain number of days, usually 90 days, are categorised
as "bad" borrowers, while those who have not are classified
as "good" borrowers. The good and bad flags are then used
to develop a scorecard model. The Kolmogorov–Smirnov
statistic determines the cut-off score and measures the dis-
tance between the cumulative distribution of goods and bads.
The cut-off score is the maximum distance between the
distribution of good/bad and is used to predict the good/bad
(Dastile et al. (2020)). If the score of a customer is above or
equal to the cut-off score, then the customer is predicted as
a good borrower otherwise, a bad borrower. Subsequently,
the scorecard is applied to the rejected population to predict
good/bad, known as reject inference (Siddiqi (2017)).

A loan underwriting process or Underwriting Policy
Rules evaluates the information in a loan application follow-
ing the scorecard cut-off score outcome and the policy of the
lending institution as shown in Figure 5.

A loan underwriting system containing coded under-
writer guidelines decides acceptance or rejection when spe-
cific default rules in the rule base are triggered. The loan
underwriting could be manual or automated. Manual under-
writing refers to processing non-standard (higher risk) loans.
The underwriting system consists of a codified set of rules
based on the policy of the lending institution to assist in a
final lending decision. The key limitation in the existing liter-
ature is that the credit scoring and underwriting process have
been considered in isolation, while the automated intelligent
credit evaluation should consider both.

Sachan et al. (2020) proposed an XAI decision-support
system to automate loan underwriting by a belief-rule-base
(BRB) system. The solution proposed by the authors aims
to enhance the efficiency and accuracy of the underwriting
process while preserving transparency and fairness.

An intelligent credit risk scorecard approach based on
statistical principles is needed for specific business objec-
tives like predicting losses better (Siddiqi (2012)). A deeper
view of creating, evaluating, and monitoring scorecards is
presented in Siddiqi (2017).
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Credit scoring is a supervised learning problem. Specif-
ically, it is a binary classification problem aiming to classify
good and bad borrowers (Dastile et al. (2020)). A systematic
literature survey approach to statistical and machine learning
models in credit scoring, identifying literature limitations,
proposing a guiding machine learning framework and point-
ing to emerging directions have been proposed by Dastile
et al. (2020). However, the LIME method covers the explain-
ability of credit scoring methods to a limited extent.

The most popular technique in credit scoring modelling
is Logistic Regression Equation 3. The Logistic Regression
assumes a linear relationship between the log of probability
odds and inputs (Thomas (2000)). The logistic regression is
sensitive to the correlation between the predicted variables.
Thus, it should be ensured that no correlated variables are in
the regression set. Logistic regression is the log of the prob-
ability odds by a linear combination of the input variables.

𝑙𝑜𝑔(
𝑝

1 − 𝑝
) = 𝑤0 +

𝑚
∑

𝑖=1
𝑤𝑖𝑋𝑖 (3)

Where 𝑝 represents the proportional response, 𝑤0 is the
intercept, when 𝑋 = 0 intercept is the log of the odds of
having the outcome. 𝑿𝑖 are application characteristics and
weights 𝒘𝑖 are the score of the characteristics.

Equation 3 is considered a linear regression of the non-
linear function of the probability of being a good customer.
The score 𝑠(𝑥) of the scorecard presented in the Equation 3
is the following Equation:

𝑠(𝑥) = 𝑤0 +
𝑚
∑

𝑖=1
𝑤𝑖𝑋𝑖 (4)

Another important technique in credit scoring modelling
is non-linear regression, known as a probit analysis. The pro-
bit model 𝑵(𝑥) is given as the cumulative normal (standard
Gaussian) distribution function defined below:

𝑁(𝑥) = 1
√

2𝜋 ∫

𝑥

−∞
𝑒−

𝑦2
2 𝑑𝑦 (5)

The goal is to estimate 𝑵−1(𝑝𝑖) as a linear function of the
characteristics of the applicant, as follows:

𝑁−1(𝑝𝑖) = 𝑤0 +
𝑚
∑

𝑖=1
𝑤𝑖𝑋𝑖 (6)

The value of 𝑵−1 indicates that the customer is good if the
score is above a certain level. Linear programming is used
as a classification approach for scorecard modelling.

The popular machine-learning techniques in credit scor-
ing are Random Forest, Artificial Neural Networks, and
Convolution Neural Networks. Random Forest (RF) is an
ensemble of decision trees (Breiman (2001)), such that K
decision trees are built on different bootstrap samples of the
data.

The traditional credit risk assessment process utilises
the application data, while dynamic transactional data has
recently been used to evaluate the credit application (Zhang
et al. (2020b)). The authors proposed cost-sensitive multiple-
instance learning (CSMIL) to build a credit scoring model
incorporating customers’ dynamic transactional data and
static/personal information. This study is the first to apply
a CSMIL model to credit risk assessment and considers
the impact of dynamic transactional data and time-series
information. The work presented in Zhang et al. (2020b) is
limited as it does not include explainability techniques in the
credit scoring model while utilising dynamic transactional
data. Furthermore, the model performance may deviate due
to the data update; identifying those deviations may require
model recalibration.

P2P lending is a business model involving borrowers,
lenders, and a P2P platform. A P2P platform generally
has a large number of users and frequent transactions. A
benchmarking study of some of the most used credit risk
scoring models to predict if a loan will be repaid in a P2P
platform has been analyzed by Moscato et al. (2021). The
authors compared the obtained outcomes concerning the
state-of-the-art approaches and also evaluated them in terms
of their explainability through different XAI tools. Zhang
et al. (2020c) proposed a new online integrated credit scoring
model (OICSM) for P2P lending that integrates gradient-
boosting decision trees and the neural network to make the
credit scoring model handle two types of features (numerical
and categorical) more effectively and update the model
online. This is one of the first experiments considering the
problem of the credit scoring model online update to avoid
prediction deviation. The limitation of the OICSM scoring
model is that it does not include XAI techniques to ensure
transparency in the credit scoring model. Furthermore, the
traceability of model updates is not considered.
4.2. Blockchain and XAI for Credit Assessment

Credit assessment requires an efficient, transparent, trace-
able, secure, and sustainable process to reduce the model risk
and provide adequate governance. The surveyed work on
integrating CA, blockchain and XAI is presented in Table
3. Table 3 presents limited work that has been done to
examine the integration of blockchain and XAI for the credit
assessment process. As discussed previously, the system
proposed in Walambe et al. (2020) relies on the quality of the
machine learning model used for credit scoring. If the model
is unreliable, the explanation stored on the blockchain may
be inaccurate, resulting in incorrect credit scoring decisions.
The proposed mechanism lacks a technique to ensure that
the model is reliable and its performance is validated, thus
limiting its effectiveness.

The efficiency of the Credit evaluation has been ad-
dressed in the BACS scheme by Yang et al. (2022b). The
BACS scheme consists of credit data storage to the blockchain
to ensure traceability. The random forest model effectively
integrated the critical steps of credit data feature extraction,
feature selection, credit model construction, and model
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Table 3
A comparative analysis of the use of XAI and Blockchain (BC) for credit assessment: Yes (✓), No (×), Minor advancement (*).

Reference XAI for CA BC for CA XAI and BC
for CA

Key Technologies Considerations

Qiao et al. (2022,
2023a)

× ✓ * PHE, SMPC algorithm BC for privacy and data
security

Hassija et al. (2020) × ✓ * Prospect theory for risk
vs return

BC for secure lending

Walambe et al. (2020) ✓ ✓ ✓ RF method, LIME XAI with BC to store
explanation in block

Patel et al. (2020) × ✓ * LSTM BC to update the credit
score

Zhang et al. (2020a) × ✓ * PBFT consensus consortium BC for CA
Yang et al. (2022b) × ✓ * BACS BC and AutoML for CA
Yang et al. (2022a) × ✓ * IPFS to store encrypted

data
BC and FL for data
sharing in CA

evaluation. Blockchain technology as discussed in this ar-
ticle requires a consensus mechanism to determine whether
credit data is stored and used within predefined rules. The
consensus process is divided into the sorting service and the
synchronised ledger. This work by Yang et al. (2022b) has
a few limitations. Firstly, the paper does not explore alter-
native blockchain platforms beyond Fabric Hyper-ledger for
ensuring consensus on updates to the model. Additionally,
it does not consider XAI methods other than consensus for
improving transparency in credit decision outcomes. Finally,
the study relies solely on historical credit data and does
not explore the potential benefits of using transaction data
to identify early delinquent behaviour. Thus, identifying
changes in data, model input assumptions, or scorecard
model performance may also have limitations that have not
yet been explored.
4.2.1. Case studies

Authors in Yang et al. (2023) introduced an explainable
federated learning and blockchain-based credit scoring sys-
tem to address credit model sharing challenges and ensure
data privacy. Their approach explains the FL mechanism,
proposing a Decentralized Byzantine fault-tolerant Stochas-
tic Gradient Descent algorithm (D-SGD). Mathematically,
the study combines the Shapley value with Delegated Proof
of Stake (DPOS) for a consensus protocol. The algorithm
calculates the contribution values of the parties in the ex-
ecution of the federated algorithm. Evaluation of the pro-
posed Explainable Federated learning and blockchain-based
Credit scoring System (EFCS) includes simulations and
experiments using the "Give Me Some Credit" dataset from
Kaggle. The dataset contains 150,000 credit card payments
and income-related data, with 10,026 default customers.
The performance assessment encompasses accuracy, pre-
cision, recall, F1 score, and AUC. The modelling process
involves the coordinating party calculating contributions and
recording them in the current block of transactions. Training
results reflect aggregated data source outcomes, with each
participant iterating locally 20 times before sending the gra-
dient. Increased participants lead to longer training times due

to heightened communication overhead and computational
intensity in FL. The EFCS is evaluated using six credit
datasets from traditional financial institutions and peer-to-
peer lending platforms. The datasets from Germany, Taiwan,
and Australia are available through the UCI machine learn-
ing repository. Additionally, P2P lending datasets and credit
card datasets are employed for further validation. Specifi-
cally, two P2P datasets are collected from China’s pioneering
P2P lending platforms. This diverse set of datasets from
various sources enhances the applicability of the evaluation
process for EFCS.

Table 3 presents case studies of use cases of the XAI and
blockchain for credit assessment.

5. Proposed Conceptual Framework
This section presents a conceptual framework based on

decentralised blockchain as a solution to induce model ver-
ification, behavioural reliability and explainability for intel-
ligent credit assessment. This framework uses a blockchain-
based FL solution to enable AI machine model learning and
verification of the methods, and it is a machine-learning
model built on distributed datasets. FL benefits blockchain
with aspects of privacy-preserving data exchange. Our pro-
posed conceptual framework considers blockchain-based FL
through the consortium or private blockchain platform.

Robust integration of technologies can be defined as
facilitating decentralised model learning, verification, and
model aggregation on distributed multisource datasets. This
involves fostering collaboration among different sources
while preserving data privacy and enhancing the overall
reliability and transparency of the credit scoring system.
This definition effectively captures the essence of robust in-
tegration in the proposed conceptual framework, highlight-
ing key aspects such as decentralized learning, verification,
collaboration, data privacy, reliability, and transparency,
leading to a trustworthy credit scoring decision-making
process.

Blockchain enables FL to enhance the process of the
global model aggregation such that model aggregation is to
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be computed by the nodes and miners, leaving the central
aggregation unneeded.

Figure 6 illustrates the architecture of the proposed in-
telligent automated credit assessment that enables AI model
learning and blockchain miner verification of the model
while ensuring privacy is protected. The architecture con-
sists of the following roles:

• Scorecard Clients
• Federated Learning Local Model Miners
• Blockchain Miners verify the models and generate

XAI models
• Serverless Aggregation Node(s) for the Global Model
• Distributed ledger for the Global Model, Local Model

Updates, Re-train model
Our conceptual framework considers the architecture

of Flexible Couple Blockchain-based Federated Learning
(FIC-BCFL), presented in Wang and Hu (2021). The archi-
tecture of the FIC-BCFL indicates the clients are responsible
for collecting and training local models. The miners of
the blockchain perform the verification of the local model
updates. The FL can ensure the parameters of the models are
stored on the blockchain, and the blockchain miners perform
the aggregation of the global model.
Our conceptual proposal considers the Predefine Nodes per-
forming the model training for FL. Those nodes are au-
thorised to perform the model learning and are equipped
with computational powers and storage to receive the data
and train local models. Furthermore, our framework is an
extension to FIC-BCFL as it incorporates XAI as well.

Specifically, future implementation will consider 1)
IPFS for distributed storage of data, the global AI and
XAI models’ parameters, 2) Consortium blockchain for the
system’s logic and state, and 3) FL for the AI model learning.
5.1. Scorecard Clients

Banks use various channels to gather data for credit
scoring, such as credit reports from bureaus, loan applica-
tions, and income verification. They may also analyze bank
account transactions, review public records for legal infor-
mation, and take behavioral data into consideration when
assessing creditworthiness. Some banks even explore social
media and online presence. Credit scoring models weigh
factors differently to calculate credit scores, incorporating
information on payment history, outstanding debts, and fi-
nancial behaviours. It is important for banks to comply with
privacy regulations throughout the data collection process to
ensure the protection of individuals’ sensitive information.

A good credit assessment consists of multisource data,
such as banks’, bureaus’ and enterprises’ data. Multi-party
data enables a broader platform to provide a comprehen-
sive model learning foundation for a good credit evalu-
ation system. The technology we consider is the consor-
tium blockchain, which ensures a strict access mechanism.

The participating nodes from banks, bureaus and enter-
prises are required to obtain a user’s certificate for access
to data. Specifically, scorecard clients are the distinct client
functions that will collaborate in FL. Specifically, Hyper-
ledger Fabric incorporates the ciphertext-policy attribute-
based encryption (CP-ABE) access control scheme avoiding
unauthorized access, Qiao et al. (2023b). All nodes in the
Hyperledger Fabric network are generally assumed to be
credible. As a result, the consensus mechanism employed
by Fabric mainly focuses on ordering transaction proposals
rather than validating them, Qiao et al. (2023b).

In Thantharate and Thantharate (2023) presented Ze-
roTrustBlock, a comprehensive blockchain framework for
secure and private health information exchange using the
Hyperledger Fabric. The architecture and consensus proto-
cols are designed to comply with security and confidentiality
regulations.

Our proposed system uses FL and blockchain to en-
able the aggregation of information about customers with-
out compromising customer privacy. To ensure privacy-
preserving features in credit score modelling, our proposed
framework utilises federated model learning, incorporat-
ing credit application data, customer transaction data, and
credit bureau information. The original data associated with
providers, banks, credit bureaus and enterprises are hashed,
and the associated hash will be stored on the blockchain.
Privacy protection will be achieved using the SHA256 hash
algorithm. Our framework process considers the data is
stored off-chain, and the hash of the data is stored on the
blockchain to form a unique index to identify the corre-
sponding off-chain data. Raw data is not shared in our
proposed framework. Only the model, model parameters,
accuracy, and updates will be shared. Data sharing is a
common use case for IPFS due to its high availability and
good performance, Nyaletey et al. (2019), hence supporting
the idea of using IPFS in our proposed framework.
5.2. Role of Local Model Miners

Our proposed conceptual framework considers the Pre-
define Nodes performing the model training for FL. Those
nodes are authorised to perform the model learning and are
equipped with computational powers and storage to train
to receive the data and to train local models. The nodes
associated with the clients are randomly selected to perform
the model training. The clients define the initial models.
The nodes train the models on the local data and upload
hash local model parameters in the on-chain blockchain. The
client node updates the model parameters in off-chain IPFS
for the same on-chain hashed local model parameters. The
hash data and hash model generated locally will be stored
on the blockchain and maintained on-chain.

To ensure the privacy of the training model is achieved,
we will use Paillie’s Cryptosystem, which is homomorphic
encryption used in distributed machine learning.
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Figure 6: Proposed conceptual framework.

5.3. Generation and verification of XAI Models
The miners validate the local models by invoking the

Smart Contract through an oracle to access the model param-
eters value in the table off-chain. The smart contact queries
IPFS for the model parameters with the same on-chain
hashed model parameters. The local model’s authenticity is
confirmed by training the selected model on its local data.
Miners use the smart contract to invoke a pair of the local
hash data and local hash model to obtain data and model
parameters from off-chain IPFS. Off-chain data is used to
train and compare the model with the authentic model. A
range of different AI and XAI models will be considered,
such as Logistic Regression (LR), Random Forest (RF),
RidgeClassifier, GaussianNB, and SGDClassifier.

Most of the learning techniques in machine learning
belong to Non-convex Training. Training neural networks
can pose challenges, particularly due to factors like sensitiv-
ity to initialization, step sizes, mini-batching, and optimizer
selection. As a result, close monitoring and interpretation of
the model’s learning process are crucial due to its intricate
black-box nature. To have model parameters representing the

global solution, it is necessary to use Convex optimisation,
similar to the study presented in Chen and Wang (2014).

min
𝒖
𝐶(𝒖) s.t. 𝜑𝑖(𝒖)≤0,

𝜓𝑗(𝒖)=0, 𝑖= 1, ..., 𝑙, 𝑗= 1, ..., 𝑚
(7)

where 𝐶 is the cost function and 𝒖∈ℝ𝐻 is the optimization
(control) variable. The functions 𝐶,𝜑1, ..., 𝜑𝑙 are convex
while the functions 𝜓1, ..., 𝜓𝑚 are affine (Boyd et al. (2004)).

Selected miners will generate the XAI for the respected
models. Our work will consider the proposed framework
presented in Al Mallah and López (2022). This decoupled
the monitoring phase from the detection phase in defence
against poisoning attacks and replaced the centralised Fed-
erated Learning - chief with the workers that collaborate
to train the global model. Al Mallah and López (2022)
proposed techniques to address the latency challenges by
decoupling the monitoring phase from the detection phase
in decentralised FL approaches defences that protect against
poisoning attacks in FL. The blockchain replaced the cen-
tralized aggregation of the traditional FL. It divided the
blockchain network into two types of miners: minersFL

Jovanovic et al.: Preprint submitted to Elsevier Page 14 of 20



Blockchain, XAI and Credit Scoring

responsible for FL, and minersMON, responsible for mon-
itoring. Workers perform the FL and send their local model
updates to minersMON, responsible for monitoring. The
blockchain minersFL nodes randomly select a set of reliable
workers to continue the FL process and calculate the aver-
age model using the updated model from the workers, and
minersMON. The proposed design does not store the model
updates on the blockchain. Instead, the hash value is written
on the blockchain and points towards the model updates.
The blockchain stores the commitments of all workers on
the model updates they worked on. A Merkle tree is used to
authenticate the model updates submitted by the workers.

Hence, in our conceptual framework, we will consider
decoupling the miners performing the model verification
minerVER from those miners responsible for generating
model explanation named minerXAI. This improvement will
enable reliability, transparency and explainability of the
credit assessment model. The minerVER validates models
using a k-fold cross-validation technique. Regarding model
reliability, each local model obtains its own set of metric
functions after being trained. These metric functions are
used to evaluate a model’s performance based on specific
objectives, and they play a critical role in assessing predic-
tion errors. The SHAP model for explainability is used.
5.4. Functions of Serverless Aggregation Nodes

We will use serverless FL and blockchain to enhance
the process of the global model aggregation without a cen-
tralized aggregator. The serverless aggregation utilises the
cloud provider to ensure the scalability of the proposed so-
lution. Our approach will employ serverless computing, FL,
and blockchain to enable privacy-preserving, decentralised
machine learning. In this approach, each client runs a local
machine learning model using serverless computing, and
the updates from each client are securely aggregated using
blockchain. This approach will enable a decentralised and
secure model training process without needing a central
server or data aggregator.

Grafberger et al. (2021) presented the workflow for train-
ing multiple clients using FedLess in a single FL round.
The FL admin selects the model, registered client functions,
and hyperparameters. The FedLess controller requests a new
invocation token from the Auth Server and uses it along
with the credentials to access the parameter server to invoke
the clients randomly selected for this round. The clients
validate the signature and authorization of the token and
load the latest global model from the parameter server before
performing local training, optionally using Local Differen-
tial Privacy (LDP). Once training is finished, the clients
upload their parameters to the parameter server. The FedLess
controller waits until all clients have completed training and
starts the model aggregation by invoking the aggregator
function. The aggregator loads the client results, aggregates
the parameters, and stores the new global model. Finally,
the controller starts the evaluation, either using the global
test set or invoking a new selection of clients to evaluate
their test set. It aggregates the returned metrics to resume the

training process. Specifically, we will consider the FedLess
(Grafberger et al. (2021)) framework and extend its average
model aggregation Federated Averaging (FedAvg) with op-
timisation. The serverless computing platform to be used is
AWS Lambda (AWS (2022)). The hash of the global model
is to be stored on the blockchain. The miners who performed
the verification were randomly selected for the global model
aggregation and assembly. Federated Averaging (FedAvg)
is the most common model aggregation technique in FL
proposed by McMahan et al. (2017), based on averaging the
model weights across all clients.

Credit assessment requires an efficient, transparent, trace-
able, secure, and sustainable process to reduce the model risk
and provide adequate governan

Convex optimisation is a branch of mathematical op-
timisation focused on problems where both the objective
function and the constraints are convex. It deals with finding
a convex function’s minimum (or maximum) over a convex
set. A set Ω ∈ ℝ𝑛 is convex if, for all 𝕩 and 𝕪 in Ω and for
all 𝜆 in [0, 1] it holds 𝜆𝕩 + (1 − 𝜆)𝕪 .

A convex function has the property that the line segment
between any two points on the function lie above the function
itself. Formally, it is defined by the following theorem.
Lemma 1. (Boyd et al. (2004)) A function 𝕗 ∶ ℝ𝑛 → ℝ is
convex if, for all 𝕩 and 𝕪 in the domain of 𝕗 and for all 𝜆 in
the interval [0, 1], the following holds

𝕗 (𝜆𝕩 + (1 − 𝜆)𝕪) ≤ 𝜆𝕗 (𝕩) + (1 − 𝜆)𝕗 (𝕪) (8)
The main property of convex optimisation is its ability to
guarantee a global minimum, meaning it is possible to find
the best solution to a the problem rather than just a local
minimum.

max
𝒘

𝒑𝑇𝒘 − 1
2𝒘

𝑇𝑄𝒘
s.t. 𝐺𝒘 ≤ 𝒉, 𝐴𝒘 = 𝒃

(9)

where, 𝒑 is the mean accuracy of all accuracy types for
each local model 𝑛-dimensional vector.𝑄 is 𝑛×𝑛 covariance
matrix of local model accuracies that consists of the accu-
racy classification score metrics used to measure the classi-
fication performance of considered classification models. 𝐴
is 𝑚×𝑛 real matrix,𝐺 is 𝑚×𝑛 real matrix, 𝒃 is a real-valued
𝑚-dimensional vector. Quadratic programming aims to find
an n-dimensional vector 𝒘 to meet the imposed constraints.
The variable 𝒘 in our framework symbolises the weights
allocated to each model, reflecting their significance derived
from the accuracy of local data. The weights assigned to
each model emphasise their performance, contributing to a
compelling ensemble that enhances the overall predictive
power of the system. The Algorithm 1 presents local model
training. The assembling of the global model is formalised
in Algorithm 2.

Regarding the practical implementation of the Algo-
rithm 2, time complexity is critical. The time complexity
𝑇 (𝑛) of our proposed Algorithm 2 is linear to the training
time of ML models. For example, if the chosen model is
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Algorithm 1 Local Model Training Algorithm
procedure TRAIN LOCAL MODEL Λ𝑖(𝐷𝑖)Load data set𝐷𝑖 that includes local features and labels

Validate data
Select type of classification model Λ𝑖Tuning the hyper-parameters of a model Λ𝑖Train a local model Λ𝑖Evaluate a vector of model accuracy metric 𝜇𝑖Evaluate a mean value 𝜇𝑖 of a vector 𝜇𝑖
return Λ𝑖, 𝜇𝑖, 𝜇𝑖

end procedure

Algorithm 2 Global Model Aggregation Algorithm
procedure AGGREGATE GLOBAL MODEL Γ

Request 𝑁 local models
for 𝑖 ← 1, 𝑁 do

Λ𝑖, 𝜇𝑖, 𝜇𝑖 ← TRAIN LOCAL MODEL Λ𝑖
end for
Concatenate accuracy vectors into matrix 𝑋
for 𝑖 ← 1, 𝑁 do

𝑋 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝜇𝑖)
end for
Create matrix 𝑄← 𝑋𝑇𝑋
Create vector 𝑝← [𝜇1,… , ̄𝜇𝑁 ]𝑇
Calculate consensus weights 𝒘

max
𝒘

𝒑𝑇𝒘 − 1
2𝒘

𝑇𝑄𝒘
s.t. 𝐺𝒘 ≤ 𝒉, 𝐴𝒘 = 𝒃

Compose a global model Γ ← 𝑤1Λ1 +…+𝑤𝑁Λ𝑁
return Γ

end procedure

Random Forest, then the time complexity would be 𝑂(𝑁 ⋅
𝑚 ⋅ 𝑙𝑜𝑔 𝑚 ⋅ 𝑑 ⋅ 𝑘), where 𝑚 is the number of training
samples, 𝑑 is the dimension (number of features), 𝑘 is the
number of trees, and 𝑁 is the number of local models. We
assume that the input to the convex quadratic programming
problem is much smaller than the size of the dataset, so its
complexity is subsumed by the training time. The algorithm
for assembling the global model based on the optimisation
will follow specifications defined in the smart contract.

The uniqueness of our proposed approach lies in its non-
iterative and parallel nature, suggesting potential efficiency
gains over traditional iterative methods. An extension to our
framework incorporates an integrated evaluation process,
wherein local model prediction accuracy directly contributes
to the assembly of the global model. To augment overall
model accuracy, we propose an additional enhancement
involving utilising XAI model input impact measures and an
accuracy matrix during the global model assembly. This ex-
tension aims to provide a more comprehensive and accurate
credit assessment mechanism.

5.5. Model distribution and retraining
The assembly of the global model will occur as an

off-chain process. The hash global model parameters and
weights will be stored on the blockchain. Similar to Li
et al. (2020), we consider the Committee Consensus Mech-
anism blocks to store the global model and local updates.
Communication-based generated mechanisms reach an agree-
ment before appending blocks. Selected nodes will validate
the updates.

All clients can download the global model parameters
and weights from the blockchain and continue to use them
in the next round of learning models.

As the client’s data changes, the models may need to
be updated. Therefore, retraining will be performed as a fit
method for new data. At the same time, the original model
parameters are to be used as a starting point in the retraining
process. Re-training of the model will occur once a change
of the statistical properties is detected, such as a change in
the Population Stability Index (PSI).

6. Discussion and Analysis
Table 4 presents a comprehensive list of key charac-

teristics required to build reliable credit scoring modelling.
Specifically, credit score modelling requires diverse data
to enable collaborative modelling while ensuring privacy,
transparency, and fairness. Our research proposes a novel
conceptual framework that integrates these elements previ-
ously studied in isolation. Some previous research has ex-
plored the use of the blockchain in the context of credit data
sharing (Zhang et al. (2020a); Zhu (2020)), credit evaluation
(Zeng et al. (2019); Zhang et al. (2019)) and storing expla-
nation on the blockchain (Walambe et al. (2020)). However,
our motivation aligns with a similar study Al Mallah and
López (2022), which discussed the use of the blockchain
for model authentication. While our unique research focus
is on the importance of model explainability for the spe-
cific credit score modelling application, which incorporates
privacy-preserving decentralised model learning combined
with reliability, transparency, and explainability features of
the blockchain miners.

The authors in Al Mallah and López (2022) used the
blockchain to develop an immutable framework for decen-
tralised, federated model learning. The Merkle tree was
utilized to store the local model updates to verify the validity
of the model updates. However, the study does not consider
the explainability of the models and specific application of
credit scoring.

The system proposed by Walambe et al. (2020) relies on
the quality of the machine learning model used for credit
scoring. If the model is not verified, the explanation stored
on the blockchain may be inaccurate, resulting in incorrect
credit scoring decisions. The proposed mechanism lacks a
technique to ensure diverse data is used in a decentralised
FL model, and its performance is validated, thus limiting its
effectiveness.
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The serverless function for training Federated Learning
FedLess is detailed in Grafberger et al. (2021), which utilised
serverless technologies, AWS Lambda, Azure functions and
Openwhisk to enable multisource FL while providing model
aggregation. However, it is important to consider the limita-
tions of FedLess in the specific context of model verification
and explainability in the domain of credit scoring. Further
research and evaluation are needed to fully understand the
effectiveness and limitations of FedLess in other areas, such
as credit score modelling.

The work presented in Zhang et al. (2020a) explored
the use of blockchain in credit data sharing. However, this
research is limited as it does not include model learning,
verification, aggregation and explainability techniques in the
credit scoring model while utilising dynamic multisource
data.

A method to validate the quality of FL model gradients
and to determine reward is proposed in Martinez et al.
(2019). The advantages of the proposed approach encompass
increased trust in the FL process and enhanced incentives for
participants during gradient validation. However, potential
limitations may arise from centralised model aggregation,
lack of explainability of the trained models, and the impact
of new data on the training process in the domain of credit
scoring.

The proposed conceptual framework identifies the need
for combining different technologies to ensure model verifi-
cation, behavioural reliability, and model explainability for
intelligent credit scoring. Specifically, our framework uses
a Blockchain-based Federated Learning solution to enable
decentralised model learning, verification of the models and
model aggregation on distributed multisource datasets.
Risks: Implementing blockchain technology and FL for
credit assessment has vulnerabilities that require attention.
Regulatory compliance is a primary challenge that requires
constant monitoring of evolving regulations and ensuring
data privacy, model explainability and reliability across all
parties involved. Technologies also face data privacy is-
sues that demand careful management of sensitive infor-
mation and privacy-preserving techniques. Interoperabil-
ity and scalability concerns may arise when integrating
these technologies with existing financial systems. The real-
world challenge of achieving explainability and model inter-
pretability persists due to the decentralized and collaborative
nature of FL and the limited clarity of blockchain trans-
actions. To mitigate these risks, it is essential to focus on
robust security measures, careful technological design, and
ongoing collaboration with industry stakeholders and regu-
lators. By doing so, we may ensure that these technologies
can be safely and securely integrated into existing systems
while maintaining data privacy, model explainability and
regulatory compliance.

7. Conclusion
Our research investigates the core features of XAI,

blockchain, and credit scoring. Specifically, we examine
recent efforts to integrate XAI, blockchain, and FL for credit
scoring and identify limitations in these approaches. While
these solutions primarily focus on enhancing data storage
security and privacy, we identify the need for combining
these technologies to ensure model verification, behavioural
reliability, and model explainability for intelligent credit
assessment. To address those challenges and create a reliable
and explainable credit scoring process, we propose a novel
framework that leverages the benefits of blockchain and
FL. Our framework’s distinctiveness lies in its holistic
design, which incorporates privacy-preserving decentralised
model learning coupled with the reliability, transparency,
and explainability features of the blockchain.

We have thoroughly examined the qualitative features
necessary for designing an efficient credit scoring frame-
work. In our future work, we will employ the framework
to quantify and evaluate the effectiveness of the proposed
architecture, including communication delay in a real envi-
ronment.

Our proposed framework has certain limitations that
could be addressed and improved upon in future research.
The study is based on Hyperledger Fabric, which is a suitable
platform for credit scoring applications due to its scalabil-
ity and compliance features. Its modular architecture and
permissioned blockchain model facilitate efficient workload
distribution and make it well-suited for scaling up to meet
the demands of growing networks. By optimizing smart
contracts, computational overhead can be minimized to en-
sure effective transaction processing and contract execution.
Its features, such as private channels and access controls,
align with regulatory requirements for data privacy and
confidentiality in credit scoring. Its interoperability and au-
ditability features also support seamless integration with
external systems and compliance with financial regulations,
making it a reliable choice for building secure and scalable
credit scoring applications. Implement privacy-preserving
techniques like zero-knowledge proofs and homomorphic
encryption to protect sensitive data. However, improvements
related to performance, advanced cryptography, and real-
world pilot testing will be addressed in future work.

CRediT authorship contribution statement
Zorka Jovanovic: Formal analysis, Methodology, Writ-

ing - original draft. Zhe Hou: Conceptualization, Supervi-
sion, Writing - review and editing. Kamanashis Biswas:
Conceptualization, Supervision, Writing - review and edit-
ing. Vallipuram Muthukkumarasamy: Conceptualization,
Supervision, Writing - review and editing.

References
Al Mallah, R., López, D., 2022. Blockchain-based monitoring for poison at-

tack detection in decentralized federated learning, in: 2022 International

Jovanovic et al.: Preprint submitted to Elsevier Page 17 of 20



Blockchain, XAI and Credit Scoring

Table 4
Comparison of credit assessment requirements among different models: Yes (✓), No (×).

Reference Multisource Model
Verification

Model
Aggregation

XAI Model Credit Application

Al Mallah and López (2022) ✓ ✓ ✓ × ×
Walambe et al. (2020) × × × ✓ ✓

Grafberger et al. (2021) ✓ × ✓ × ×
Zhang et al. (2020a) ✓ × × × ✓

Martinez et al. (2019) ✓ ✓ ✓ × ×
Proposed Approach ✓ ✓ ✓ ✓ ✓

Conference on Electrical, Computer, Communications and Mechatron-
ics Engineering (ICECCME), IEEE. pp. 1–6.

Alam, S., Shuaib, M., Khan, W.Z., Garg, S., Kaddoum, G., Hossain, M.S.,
Zikria, Y.B., 2021. Blockchain-based initiatives: Current state and
challenges. Computer networks (Amsterdam, Netherlands : 1999) 198,
108395.

Alarab, I., Prakoonwit, S., 2022. Effect of data resampling on feature impor-
tance in imbalanced blockchain data: Comparison studies of resampling
techniques. Data Science and Management .

Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F., 2020. Federated learning:
A survey on enabling technologies, protocols, and applications. IEEE
Access 8, 140699–140725.

Altman, E.I., 1968. Financial ratios, discriminant analysis and the predic-
tion of corporate bankruptcy. The journal of finance 23, 589–609.

Altmann, A., Toloşi, L., Sander, O., Lengauer, T., 2010. Permutation
importance: a corrected feature importance measure. Bioinformatics 26,
1340–1347.

Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S.,
Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., et al.,
2020. Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information fusion
58, 82–115.

AWS, 2022. Aws lambda. URL: https://aws.amazon.com/lambda/.
Bamakan, S.M.H., Bondarti, A.B., Bondarti, P.B., Qu, Q., 2021. Blockchain

technology forecasting by patent analytics and text mining. Blockchain:
Research and Applications 2, 100019.

Bellagarda, J.S., Abu-Mahfouz, A.M., 2022. An updated survey on the
convergence of distributed ledger technology and artificial intelligence:
Current state, major challenges and future direction. IEEE Access 10,
50774–50793. doi:doi.org/10.1109/ACCESS.2022.3173297.

Boyd, S., Boyd, S.P., Vandenberghe, L., 2004. Convex optimization.
Cambridge university press.

Breiman, L., 2001. Random forests. Machine learning 45, 5–32.
Bride, H., Cai, C.H., Dong, J., Dong, J.S., Hóu, Z., Mirjalili, S., Sun,

J., 2021. Silas: A high-performance machine learning foundation for
logical reasoning and verification. Expert Systems with Applications
176, 114806.

Bride, H., Dong, J., Dong, J.S., Hóu, Z., 2018. Towards dependable and ex-
plainable machine learning using automated reasoning, in: International
Conference on Formal Engineering Methods, Springer. pp. 412–416.

Bücker, M., Szepannek, G., Gosiewska, A., Biecek, P., 2022a. Trans-
parency, auditability, and explainability of machine learning models in
credit scoring. Journal of the Operational Research Society 73, 70–90.

Bücker, M., Szepannek, G., Gosiewska, A., Biecek, P., 2022b. Trans-
parency, auditability, and explainability of machine learning models in
credit scoring. Journal of the Operational Research Society 73, 70–90.

Calvaresi, D., Mualla, Y., Najjar, A., Galland, S., Schumacher, M., 2019.
Explainable multi-agent systems through blockchain technology, in: In-
ternational Workshop on Explainable, Transparent Autonomous Agents
and Multi-Agent Systems, Springer. pp. 41–58.

Casino, F., Dasaklis, T.K., Patsakis, C., 2019. A systematic literature review
of blockchain-based applications: Current status, classification and open
issues. Telematics and informatics 36, 55–81.

Chakraborty, S., Aich, S., Seong, S.J., Kim, H.C., 2019. A blockchain
based credit analysis framework for efficient financial systems, in: 2019
21st International Conference on Advanced Communication Technol-
ogy (ICACT), IEEE. pp. 56–60.

Chen, B., Zeng, H., Xiang, T., Guo, S., Zhang, T., Liu, Y., 2022. Esb-
fl: Efficient and secure blockchain-based federated learning with fair
payment. IEEE Transactions on Big Data , 1–1doi:10.1109/TBDATA.2022.
3177170.

Chen, S., Wang, Y., 2014. Convolutional neural network and convex
optimization. Dept. of Elect. and Comput. Eng., Univ. of California at
San Diego, San Diego, CA, USA, Tech. Rep .

Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Papadopoulos, D., Yang, Q.,
2021. Secureboost: A lossless federated learning framework. IEEE
Intelligent Systems 36, 87–98. doi:10.1109/MIS.2021.3082561.

Cho, K.W., Jeong, B.G., Shin, S.U., 2021. Verifiable credential proof
generation and verification model for decentralized ssi-based credit
scoring data. IEICE Transactions on Information and Systems 104,
1857–1868.

Chowdhury, M.J.M., Ferdous, M.S., Biswas, K., Chowdhury, N.,
Muthukkumarasamy, V., 2020. A survey on blockchain-based platforms
for iot use-cases. Knowledge engineering review 35.

Dastile, X., Celik, T., Potsane, M., 2020. Statistical and machine learning
models in credit scoring: A systematic literature survey. Applied Soft
Computing 91, 106263.

Dastile, X., Celik, T., Vandierendonck, H., 2022. Model-agnostic counter-
factual explanations in credit scoring. IEEE Access 10, 69543–69554.

Davis, R., Lo, A.W., Mishra, S., Nourian, A., Singh, M., Wu, N., Zhang,
R., 2022. Explainable machine learning models of consumer credit risk.
Available at SSRN .

Dumitrescu, E., Hué, S., Hurlin, C., Tokpavi, S., 2022. Machine learning for
credit scoring: Improving logistic regression with non-linear decision-
tree effects. European Journal of Operational Research 297, 1178–1192.

El Azzaoui, A., Singh, S.K., Pan, Y., Park, J.H., 2020. Block5gintell:
Blockchain for ai-enabled 5g networks. IEEE Access 8, 145918–
145935.

Fahner, G., 2018. Developing transparent credit risk scorecards more
effectively: An explainable artificial intelligence approach. Data Anal
2018, 17.

Grafberger, A., Chadha, M., Jindal, A., Gu, J., Gerndt, M., 2021. Fedless:
Secure and scalable federated learning using serverless computing, in:
2021 IEEE International Conference on Big Data (Big Data), pp. 164–
173. doi:10.1109/BigData52589.2021.9672067.

Guo, Y., Liang, C., 2016. Blockchain application and outlook in the banking
industry. Financial innovation 2, 1–12.

Hara, S., Hayashi, K., 2018. Making tree ensembles interpretable: A
bayesian model selection approach, in: International conference on
artificial intelligence and statistics, PMLR. pp. 77–85.

Harris, T., 2015. Credit scoring using the clustered support vector machine.
Expert Systems with Applications 42, 741–750.

Hassija, V., Bansal, G., Chamola, V., Kumar, N., Guizani, M., 2020. Se-
cure lending: Blockchain and prospect theory-based decentralized credit
scoring model. IEEE Transactions on Network Science and Engineering
7, 2566–2575.

Jovanovic et al.: Preprint submitted to Elsevier Page 18 of 20

https://aws.amazon.com/lambda/
http://dx.doi.org/doi.org/10.1109/ACCESS.2022.3173297
http://dx.doi.org/10.1109/TBDATA.2022.3177170
http://dx.doi.org/10.1109/TBDATA.2022.3177170
http://dx.doi.org/10.1109/MIS.2021.3082561
http://dx.doi.org/10.1109/BigData52589.2021.9672067


Blockchain, XAI and Credit Scoring

Hieu, N.Q., Anh, T.T., Luong, N.C., Niyato, D., Kim, D.I., Elmroth,
E., 2020. Resource management for blockchain-enabled federated
learning: A deep reinforcement learning approach. arXiv preprint
arXiv:2004.04104 .

Hossain, M.S., Muhammad, G., Guizani, N., 2020. Explainable ai and mass
surveillance system-based healthcare framework to combat covid-i9 like
pandemics. IEEE Network 34, 126–132.

Hurley, M., Adebayo, J., 2016. Credit scoring in the era of big data. Yale
JL & Tech. 18, 148.

Hurlin, C., Pérignon, C., Saurin, S., 2022. The fairness of credit scoring
models. arXiv preprint arXiv:2205.10200 .

Imteaj, A., Amini, M.H., 2022. Leveraging asynchronous federated learning
to predict customers financial distress. Intelligent Systems with Appli-
cations 14, 200064.

Islam, M.R., Ahmed, M.U., Barua, S., Begum, S., 2022. A systematic
review of explainable artificial intelligence in terms of different appli-
cation domains and tasks. Applied Sciences 12, 1353.

Issa, W., Moustafa, N., Turnbull, B., Sohrabi, N., Tari, Z., 2023.
Blockchain-based federated learning for securing internet of things: A
comprehensive survey. ACM Computing Surveys 55, 1–43.

Karandikar, N., Abhishek, R., Saurabh, N., Zhao, Z., Lercher, A., Marina,
N., Prodan, R., Rong, C., Chakravorty, A., 2021. Blockchain-based pro-
sumer incentivization for peak mitigation through temporal aggregation
and contextual clustering. Blockchain: Research and Applications 2.

Khan, I.A., Moustafa, N., Pi, D., Sallam, K.M., Zomaya, A.Y., Li, B., 2021.
A new explainable deep learning framework for cyber threat discovery
in industrial iot networks. IEEE Internet of Things Journal .
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