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Abstract—Sports analytics encompasses the use of data science,
AI, psychology, and IoT devices to improve sports performance,
strategy, and decision-making. It involves collecting, processing,
and interpreting data from various sources such as video record-
ings and scouting reports. The data is used to evaluate player
and team performance, prevent injuries, and help coaches make
informed decisions in game and training. We adopt Probabilistic
Model Checking (PMC), a method commonly used in reliability
analysis for complex safety systems, and explain how this method
can be applied to sports strategy analytics to increase the chance
of winning by taking into account the reliability of a player’s
specific sub-skill sets. This paper describes how we have inte-
grated PMC, machine learning, and computer vision to develop a
new and complex system for sports strategy analytics. Finally, we
discuss the vision of a new series of international sports analytics
conferences (https://formal-analysis.com/isace/2023/).

Index Terms—sports analytics, probabilistic model checking,
object tracking, action recognition, deep learning

I. INTRODUCTION

The motivation of sports analytics is to use quantitative

data analysis and modeling techniques to better understand

the complex decision-making processes that occur during

competitive sports games. By analyzing historical data and

using advanced modeling techniques, sports analysts can iden-

tify patterns and trends that can inform strategic decision-

making and help players and coaches improve their chances

of winning.

In professional sports, intelligent decision-making is crucial

for increasing the winning chances. For instance, in tennis,

players must determine where to serve, return, and place

each shot to take advantage of their strengths and exploit

their opponent’s weaknesses. Randomizing decisions is also

necessary to deceive the opponent, such as using a 60%

wide, 30% T, and 10% body serve distribution. Quantifying

player skill levels through shot success rates is important. Our

aim is to understand the relationship among winning chance,

decisions, and skill levels.

This is similar to the reliability analysis in a complex

system. For example, the reliability of an aircraft can be

calculated based on the reliability of the inter-connected com-

ponents, such as engines, wings, sensors, etc. This similarity

leads to the idea, which is the use of Probabilistic Model

Checking (PMC) to compute the winning chances based on

the sequence of decisions and the related success rates. We

are the first to have applied PMC into tennis analytics [1] and

soccer analytics [2].

We build the PMC game model using historical data to

infer play patterns and skill levels of all players. Manual data

collection by watching recorded videos was time-consuming

and error-prone and limited to professional tournaments. To

help a wider range of players, we propose deep learning-

based models to automatically process YouTube broadcast

videos. Our multi-mode learning approach includes text boxes,

sound, and images to track balls and identify actions, which

is challenging with low-resolution video.

When applying our PMC method to team sports strategy

analysis, there is a “state explosion” problem because the

number of states grows exponentially with respect to the num-

ber of players. The commonly used Value Iteration algorithm

becomes computationally prohibitive because it is impossible

to store all state values exactly. We propose that it is possible

to store the approximated probabilistic reachability function in

a linear regressor compactly. Furthermore, we propose to use

tree search to improve (to reduce) the approximation error.

II. METHOD

The prerequisite of sports analytics is the collection of

detailed match data, as illustrated in Figure 1. Therefore, we

gather data from various websites and employ a video analytics

program to automate the data collection process. Once the data

is collected, we utilize machine learning tools to identify injury

patterns, and use model checkers to quantitatively analyze

how a player’s play pattern and sub-skill level impact their

overall winning chances. To facilitate team sports analysis, we

have improved the model checker to enable the execution of

models with a large number of states. These modules together

comprise a comprehensive system. In the subsequent sections,

we elaborate on each module in detail.

A. Court detection

The goal of court detection is to find a projective transfor-

mation matrix [3] which projects a standard court to the one

visible in the video frame. The inverse of the transformation

matrix allows the pixels in the video frame to be projected

back to the standard court, hence, provides measurements in

real-world coordinates.

Although the final goal is to find the transformation between

the standard court and the one in the image, it is actually

better to use two real images, as shown in Figure 2, because

the standard court is visually very different from the actual
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Fig. 1. Sports Analytics Overview. Video Analytics are deep learning based programs to automatically infer player’s success rates of various actions. Model
generator creates model based on historical data and domain knowledge. PAT is a Model Checker, which can automatically calculate the winning chance.

Fig. 2. Standard(left), source(top) and reference(bottom) court images

image. One important observation is that the difference be-

tween the two real images is not solely caused by the court

transformation. Anything above the court plane, for example,

the net, players and the audience do not follow the court

transformation. To exclude those pixels, we need a mask

function, which separates court line pixels from other pixels.

Fig. 3. Masked PF network architecture.

As shown in Figure 3, our solution consists of two branches.

The mask branch detects the court line pixels. For the second

branch (PF Branch), the input is a pair of grayscale images,

where one is the source image and the other is a reference

image. The output is the pixel-wise transformation between

the two images, also known as Perspective Fields (PF). Multi-

plying with the mask, we obtain the masked PF, representing

the court line pixel transformation.

B. Player and ball tracking

For player and ball tracking sub-tasks, the main challenges

are missing detection and false detection. Since the ball is

small, it is often occluded by players, the racket, or the net.

Also, the ball can move so fast that it appears to be a thin

blurring line. In soccer videos, players are often occluded

by other players in front of them due to the camera angle.

All these are the common reasons for missing detection.

False detection mostly occurs because there are many small

and ball-like objects or because several players are stacked

together. To overcome these challenges, we propose a method

of combining Convolutional Neural Network (CNN) [4] and

Bayesian Estimations [5] to detect and track the objects by

utilizing both spatial and temporal feature correlations. The

CNN is trained to detect the correct object in the spatial

context, e.g., a ball is detected not only because it has a

ball-like shape and colour but also because it appears in the

correct part of the image. The Bayesian estimation utilizes

temporal correlations; that is, the ball and player position in

the previous frame highly correlates to the position in the

current frame. Using this temporal correlation, we can filter out

false detection and fill in the missing detection. Once the ball

trajectory is detected, we then train a Random Forest classifier

to identify the ball landing positions (bouncing points).

C. Action sequence recognition

To extract a sequence of shots, such as serve, forehand

or backhand shots, from the long video, we first locate each

hitting moment in the time axis. This is achieved by slicing the

entire match video into many short clips, each is 0.72 seconds

long, and then classifying whether it contains a hitting. As

shown in Figure 4, we use audio data as the main guiding
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feature for hit detection, and we use the video to provide the

visual clues as the assisting feature. Intuitively, this matches

with the natural human experience of combining hearing and

vision at the same time to identify the hitting events.

Fig. 4. Hitting detection DNN [6] uses both audio and visual features to
improve detection accuracy.

To zoom into a small region where the action takes place,

we utilize our player tracking result, because hitting can only

happen near one of the players. After cropping according to

the player bounding boxes, we then retrain the MMAction2 [7]

toolbox (an open-source toolbox for video understanding) to

classify the type of shots.

D. Model generator

To generate the game model, we begin by collecting data

from relevant sources, such as tennisabstract.com, ATP, WTA

and FIFA websites. Since some data are manually annotated by

fans, it is essential to eliminate any incorrect data. Finally, by

merging data from both the online data sources and the video

analytics system, we have compiled tennis data for the past 12

years (2011-2022), and English Premier League for the past 6

years (2016-2021). The tennis data comprises 8,076 ATP and

WTA matches with detailed shot-by-shot information, which

involves 1,073 players and a total of 6,036,382 actions.

Creating models for tennis matches is a challenging process

that requires a balance between accuracy and efficiency. The

perfect model should capture the dynamic conditions of the

game while maintaining the appropriate level of abstraction for

explainability and efficient analysis. Our modeling approach

is designed to address these requirements by providing an

expressive representation and powerful analytical capabilities.

In a tennis single’s match, the two players are commonly

referred to as P1 and P2. To predict the match outcome, we

analyse the winning probability in a tiebreak game model,

which is an abstraction of the entire match. In a tiebreak game,

the first player to score 7 points is declared the winner. We

assume that the player with the highest probability of winning

the tiebreak game is also more likely to win the entire match.

This abstraction facilitates efficient performance verification

using a model checker.

Our model is event-based. For example, each point begins

with a service event. It is followed by a second serve event if

the first one fails. Else, depending on the landing position and

the player’s handedness (whether the player is a right-handed

or left-handed), the next event can be either a forehand return

or a backhand return. Depending on the return direction, the

next event can be a deuce court, middle court or ad court

stroke. If the return fails, a point is awarded to the server.

This event-based, story-like model is designed to be easy to

understand.

The transition probabilities from one event to another are

counted based on historical matches between P1 and P2, or

similar players (such as players with the same handedness and

similar Elo ranking points). The transition probabilities can

also be systematically adjusted to simulate different strategies.

Our tennis model focuses on two types of strategies. The

first, called in-game strategy, involves detailed tactics about

play patterns. For example, one can shift 10% T serves to

W serves against a particular opponent who is weaker in

returning W serves. The second type of strategy is training

strategy, which aims to increase the success rate for a certain

type of shot through targeted training. For instance, Federer

may concentrate on practicing his backhand down-the-line

shots before playing against Nadal, who is known for hitting

powerful forehand shots to the opponent’s backhand. This

training not only increases Federer’s backhand success rate

but also reduces the threat of Nadal’s forehand because the

down-the-line shot forces Nadal to hit backhand shots.

We use the Probability Communicating Sequential Programs

(PCSP) [8] to specify the event-based game model and PAT

model checker [9] to calculate the winning probabilities.

E. Injury prediction

Each week there are 2-3 professional top-level tournaments

around the world offering attractive prize money and ranking

points for the players. Even though match playing is an

important part of the professional player’s career development,

sports injuries will happen if the player plays too many

tournaments. Based on historical data, when players retired

in a match, we can trace their tournament schedule and

performance, to identify a particular scheduling pattern that

leads to a high risk of injury. The pattern is represented by a

Linear Temporal Logic (LTL) formula built up from a set of

Atomic Propositions (AP) and temporal operators. To improve

the efficacy and recall of the learnt LTL, we use Silas [10],

a high-performance machine learning tool with in-built logic

reasoning and verification capability.

F. Scale up PMC

In team sports, it is common to see models with a very

large number of states. For example, in a soccer game model,

suppose we divide the soccer field into a 7x10 grid. Excluding

the 2 gatekeepers, assume each of the remaining 20 players

move within a certain region and assume each of these regions

is a 3x4 grid, this is already 1220 different states.

The commonly used algorithm to calculate reachability in

the PCSP model is the Value Iteration (VI) [11] algorithm.

The value of a state represents the probability of reaching

the winning state starting from the given initial state. When

the number of states is very large, the VI algorithm becomes

computationally prohibitive because: (1) It stores values of
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all states in a long table, with one entry for each state. (2)

It updates all state values at each iteration. We apply the

Approximated Value Iteration (AVI) technique to overcome

the problem by: (1) Value for all states are compactly stored

in a linear regressor. (2) Value for small number of randomly

sampled states are updated, and are used to retrain the linear

regressor at each iteration.

Through AVI, we obtain an approximately correct value

function. To further reduce the approximation error, we add

an Adaptive Q-Value Tree Search (AQTS) component. Figure

5 shows the value at the root node is back propagated from

the leave nodes. Some of the leave nodes are final states

whose true values are already known, while other leave nodes

have approximately correct values. During the backpropaga-

tion, errors are reduced and cancelled. The error reduction is

significant when the tree is deep enough. To control the size

of the tree, we carefully trim the useless nodes if their value

is lower than the sibling’s values.

Fig. 5. Illustration of the Adaptive Q-value Tree Search. Final states are
indicated as 0. Nodes with clearly low values compared with their siblings
are trimmed (indicated as red X) to contain the size of the tree.

III. RESULTS AND FUTURE DIRECTIONS

To evaluate our model, we want to know: (1) How accu-

rately can we predict the match outcome? (2) Does the strategy

suggested by our model align with reality?

A good winning probability model should provide calibrated

probability estimations. For example, if player P1 has a

winning probability of 40% against P2, it means that if

they play 100 times, P1 will win approximately 40 times.

However, this is not possible because each match is played

only once. Instead, we collect all matches with a predicted

winning chance of 40% and see whether about 40% of

the corresponding matches actually resulted in the player’s

winnings. Therefore, we evaluate the model’s calibration using

the expected calibration error (ECE) [12]. In addition to

calibration, we also use Brier score (BS) [13] and log-loss

(LL) [13] to quantify how close the forecasts are to the actual

outcome.

Table I shows our model predicts the match outcome more

accurately than many other machine learning models, such

as Neural Network (NN), Support Vector Machine (SVM),

Random Forest (RF), and CatBoost. When compared with

bookmakers such as Bet365, our ECE is better while the BS

and LL scores are slightly lower. This is likely because the

bookmaker has information such as weather, recent forms,

injuries, insider news, etc., which are hard to obtain.

TABLE I
THE RESULT OF THE EXPERIMENT FOR WIN PREDICTION.

NN SVM RF CatBoost Ours Bet365

ECE 0.048 0.009 0.030 0.042 0.004 0.016
BS 0.240 0.241 0.247 0.247 0.240 0.214
LL 0.673 0.675 0.694 0.689 0.672 0.622

We simulated betting with two strategies: (1) if our model

predicts that a player has at least 60% probability of winning,

we will bet on that player; (2) if our model predicts that

a player has a winning probability that is higher than the

bookmaker’s prediction (intuitively, we think the bookmaker

underestimates the player) by at least 8%, we will bet on that

player. Table II shows that both strategies made long-term

profits with annualized ROI at 3.92% and 5.32%, respectively.

TABLE II
BETTING RESULTS OVER THE PAST 10 YEARS.

Num of bets Profits ROI Annualised ROI

Strategy 1 1,748 $4,693 46.93% 3.92%
Strategy 2 2,304 $6,795 67.95% 5.32%

It is challenging to determine the actual effectiveness of

strategies suggested by our model because we cannot ask

professional players to alter their playing patterns or skill

levels and observe the impact on their win rates. Thus, we

evaluate the effectiveness of these strategies using historical

data. For instance, consider the 16 recorded matches between

Roger Federer and Rafael Nadal. Before 2017, Federer only

won 2 out of 10 matches. But after 2017, his win rate

improved to 83%. Upon analyzing Federer’s actions and sub-

skill reliability, a notable difference is observed before and

after 2017. To determine if this improvement is due to changes

in strategy, we created two models based on historical data

before and after 2017. The result shows Federer’s winning

chances were 35.7% and 53.2% respectively, which match

the actual results. Table III summarises the empirical results,

which show that the majority of the best actions identified

by our system align with players’ actual strategy adjustments

and improvements. As such, we can conclude that our strategy

analytics are reasonable and effective.

In soccer experiment, we use 6 seasons (2016-2021) of

English Premier League matches (a total of 2280 matches)

to predict winning chances using team formations and player

ratings from EA’s FIFA database. Our model achieves 43%
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TABLE III
SYSTEM SUGGESTED ACTIONS FOR IMPROVEMENT COMPARED WITH

PLAYERS’ ACTUAL STRATEGY ADJUSTMENTS. “AG I” DENOTES THE

FRACTION OF OUR IN-GAME SUGGESTIONS THAT ALIGN WITH PLAYERS’
ACTUAL STRATEGY ADJUSTMENTS. “AG T” DENOTES THE FRACTION OF

OUR TRAINING SUGGESTIONS THAT ALIGN WITH PLAYERS’ ACTUAL

SUB-SKILL IMPROVEMENTS.

Win% Win%
Player vs opponent Year before after Ag I Ag T

Federer vs Nadal 2017 20% 83% 9/11 8/11
Nadal vs Djokovic 2017 26% 60% 7/11 8/11
Murray vs Nadal 2015 14% 50% 10/11 8/11

Medvedev vs Zverev 2020 25% 83% 6/11 7/11
Zverev vs Tsitsipas 2021 20% 50% 8/11 7/11

Djokovic vs Tsitsipas 2020 50% 100% 9/11 8/11
Zverev vs Nadal 2020 20% 67% 6/11 8/11

accuracy for 3-class prediction (win/lose/draw) and 63% ac-

curacy for 2-class prediction (win/not win). In simulated

betting, we make 6.9% and 2.7% profits in the last two

seasons, but losses in earlier seasons suggest inaccurate player

ratings. Some wrong predictions result from “fake” formations

submitted to deceive the opponent. (Table IV)

TABLE IV
SOCCER BETTING EXPERIMENT RESULT

Season 2015/16 16/17 17/18 18/19 19/20 20/21

Profit -8.2% -1.8% -0.4% -5.0% 6.9% 2.7%

In conclusion, sports analytics is a fast-growing field. Ac-

cording to the Mordor Intelligence report [14], the data-driven

sports analytics market was valued at US$ 1.05 billion in 2020

and is expected to reach US$ 5.11 billion by 2026, growing

at a Compound Annual Growth Rate (CAGR) of 30.13%.

Besides its commercial value, there are many interesting and

challenging problems waiting to be solved by the researchers.

In our research group, there are multiple PhD students who

devote their entire thesis [15] in this domain.

Currently, our MDP model is designed for a single agent,

but we are exploring the integration of game theory into our

system, as suggested by Fernando et al. [16], because most

games are played by two players or two teams. We also plan

to adopt some of the techniques used in AlphaGo [17], such

as developing two competing models and learning optimal

strategies by playing against each other. To support this effort,

we have developed a nested model checker, N-PAT [18], which

we intend to integrate into our sports analytics platform.

The accuracy of the deep learning modules is closely linked

to the quantity and quality of the training samples. To address

this, we are exploring the Active Learning approach proposed

by Settles [19], which converts a large amount of unlabeled

data into high-quality training data automatically. Another

method of collecting a large amount of accurate data is through

the use of smart IoT devices. A notable example of this is the

successful partnership between the German soccer team and

their technology partner SAP [20]. We are currently planning

to collaborate with the Singapore National team in a similar

manner.
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