
SWIFTGUARD: Enhanced Privacy and Efficiency in
Blockchain-Based Fine-Grained Access Control for

Cross-Domain Healthcare Collaboration
Mengke Zhang

College of Intelligence and Computing
Tianjin University

Tianjin, China
mengkezhangcs@tju.edu.cn

Xiaohong Li
College of Intelligence and Computing

Tianjin University
Tianjin, China

xiaohongli@tju.edu.cn

Jie Zhang
College of Intelligence and Computing

Tianjin University
Tianjin, China

jackzhang@tju.edu.cn

Zhe Hou
School of Electrical Engineering and

Computer Science
Griffith University
Nathan, Australia

z.hou@griffith.edu.au

Guangdong Bai
Faculty of Science and Engineering

The University of Queensland
Brisbane, Australia

g.bai@uq.edu.au

Ruitao Feng*
Faculty of Science and Engineering

Southern Cross University
Bilinga, Australia

ruitao.feng@scu.edu.au

Abstract—As healthcare systems evolve and healthcare data
grows, the need for cross-domain collaboration treatment has
become more complex, necessitating fine-grained access control
to enhance privacy and security. Blockchain provides a dis-
tributed trusted platform without third parties, but the current
blockchain-based access control systems lack efficiency and
sufficient privacy protection in cross-domain collaboration. To
address these challenges, we propose SWIFTGUARD, an efficient
and fine-grained access control system based on a master-slave
chain to strengthen the security and privacy of cross-domain
healthcare collaboration. SWIFTGUARD incorporates a zero-
knowledge proof protocol for cross-domain authentication with-
out exposing sensitive data and leverages quantitative attribute
weights for efficient access control. Through game-based security
proof, we demonstrate the zero knowledge and soundness of
the system. Extensive experiments evaluate that SWIFTGUARD
reduces the time complexity of access authorization from O(n)
to O(logn), with improved throughput and stable performance
in cross-domain collaboration. Our comprehensive evaluation
confirms that SWIFTGUARD provides a secure and efficient access
control system for cross-domain healthcare collaboration.

Index Terms—Access control, cross-domain collaboration,
blockchain, zero-knowledge proof, smart healthcare

I. INTRODUCTION

In the digital era, data has become the cornerstone of
advancements across fields such as homecare and healthcare
[1]. In particular, the massive electronic health records (EHRs)
drive the efficiency and precision of healthcare services.
Secure and efficient sharing of EHRs can provide better
healthcare services for patients. However, due to disparities
in medical capabilities across regions, cross-domain collabora-
tion in healthcare has become an inevitable trend. The security
and privacy protection of the EHRs used in such collaboration,

Ruitao Feng is the corresponding author.

however, requires further research [2]. To tackle this, access
control is widely applied in healthcare to safeguard EHRs.
Attribute-Based Access Control (ABAC) has emerged as an
effective fine-grained data control method due to its flexibility
in adjusting access rights based on user attributes [3].

In practice, cross-domain collaboration based on ABAC [4]–
[6] often rely on trusted third parties or centralized cloud
servers for data and policy management, posing trust and
security risks [7]. Especially in an untrustworthy environment,
the failure or untrustworthiness of the centralized server can
lead to data manipulation and leakage. Therefore, there is an
urgent need for a decentralized access control system that
supports cross-domain collaboration in healthcare, addressing
the trust crisis inherent in traditional systems.

Blockchain, with its decentralized ledger, offers potential
solutions to address the above weakness, which can achieve
cross-domain access control without a trusted third party [8].
However, despite the advantages of blockchain, it suffers from
inherent performance limitations, particularly when using a
single-chain structure for managing ABAC [9]. Researchers
have already tried to utilize multi-chain structures to address
these limitations [10], but these solutions often conflict with
ABAC’s need for high security and privacy due to cross-chain
operations and the transparency of blockchain [11]. To address
these challenges, we introduce zero-knowledge proof (ZKP),
which enables authentication without revealing sensitive infor-
mation [12]. However, the additional high computing power
consumption makes it challenging to implement the enhanced
ABAC in cross-domain healthcare collaboration [13].

To address these challenges, we propose SWIFTGUARD,
a fine-grained access control system tailored for the secure
cross-domain sharing of EHR. SWIFTGUARD adopts a master-

slave chain architecture to create a trusted platform without
the need for a third party, It also implements a cross-domain
authentication mechanism based on zero-knowledge proof to
protect cross-domain privacy. To relieve the stress of the
high delay caused by the ZKP protocol overhead, the system
also implements a fast-response access control scheme by
quantifying the degree of attribute decision on authorization.
Ultimately, SWIFTGUARD ensures the privacy of cross-domain
data access while significantly enhancing system efficiency
and security. By Game-based security proof, we proved the
zero knowledge and soundness of SWIFTGUARD. Extensive
experiments underscore that SWIFTGUARD exhibits excellent
efficiency in cross-domain collaboration and access control.
The specific contributions are as follows:
• We implement a decentralized access control system

based on the master-slave chain, which supports efficient
cross-domain collaboration and ensures data privacy.

• SWIFTGUARD introduces a cross-domain collaboration
authentication scheme, utilizing the proposed zero-
knowledge proof protocol to protect privacy.

• SWIFTGUARD reduces authorization complexity from
O(n) to O(log n) by quantitative attribute decision-
making ability and dynamic rule structure.

Therefore, SWIFTGUARD offers a novel solution for cross-
domain data access control in healthcare, enabling robust data
protection and efficient collaboration.

II. RELATED WORK

Attribute-based access control [3] offers fine-grained con-
trol in healthcare settings by leveraging complex contextual
information and user attributes. However, traditional cross-
domain implementations in ABAC typically rely on trusted
third parties to authenticate cross-domain requests and make
access decisions, leading to privacy and security risks. Bai
et al. [4] developed a cross-domain ABAC model based on
the attribute mapping center, where a trusted third party is
required to transform attribute certificates during cross-domain
authentication. While the addition of attribute certificates and
mapping tables improves cross-domain efficiency, the reliance
on a third party introduces attribute leakage and unauthorized
access risks. Oliveira et al. [5] proposed AC-ABAC for health-
care and acute care, using cloud storage services instead of the
attribute mapping center to manage EHR access. However,
cloud storage is not entirely trustworthy and may expose
data to leakage risks due to its lack of reliable cross-domain
collaboration policies and authentication schemes.

Blockchain’s decentralization and distributed ledger char-
acteristics provide new ideas for many researchers. Liu et al.
[14] and Damiano et al. [15] explored blockchain-based ABAC
models to improve security and address issues of untrusted
third parties. However, the single-chain architectures used
in these studies still face scalability and storage efficiency
challenges for large-scale data. This has sparked interest in
multi-chain solutions. Zhang et al. [10] utilized a master-slave
chain to store data in slave chains and record secure indexes
on the master chain, thereby strengthening the potential for

Authorize

…

……
Slave Chain A

DO DRPN

Access Control Contract

Attribute Management
Contract

……
Slave Chain N

DO DRPN

Access Control Contract

Attribute Management
Contract

…

Master Chain

Users
(Data Owners)

data

Data Center A

…

Domain A

Users
(Data Requesters)

Data Center N

…

Domain N

Cross-domain
Request

Cross-domain
Request

Authentication Contract

Zero knowledge proof

…
Master Chain

Cross-domain
Authenticate

Cross-domain
Collaboration

Authentication Contract

Zero knowledge proof

Request

…

……
Slave Chain A

Access Control Contract

Attribute Management
Contract

……
Slave Chain N

Access Control Contract

Attribute Management
Contract

Users
(Data Owners)

data

Data Center A

…

Domain A

Users
(Data Requesters) Data Center N

…

Domain NCross-domain Access

Fig. 1. System model of SWIFTGUARD

decentralized EHR management. Furthermore, considering the
security and autonomy requirements in multi-domain IoT
collaboration, Zhang et al. [9] proposed a master-slave chain-
based decentralized cross-domain access control model. In this
model, slave chains handle intra-domain access control, while
the master chain facilitates cross-domain access, preserving
each domain’s independence and performance. However, they
do not have a reliable design for cross-domain collaboration
schemes. Due to blockchain’s transparency, each cross-domain
request and authentication process is publicly visible, creating
a risk that adversaries could infer sensitive details. Wu et
al. [11] proposed a new access control scheme using zero-
knowledge proof (ZKP) with smart contracts to hide attributes
or policies in authorization decisions. However, they did not
address cross-domain collaboration and sharing. Additionally,
despite offering privacy benefits, integrating ZKP increases
computational complexity [12], potentially causing process-
ing delays in time-sensitive settings like healthcare, where
dynamic access efficiency is essential.

To address these challenges, we propose SWIFTGUARD,
a blockchain-based cross-domain collaborative access con-
trol system tailored for healthcare. SWIFTGUARD supports
a privacy-preserving cross-domain authentication scheme and
efficient multi-attribute access control, offering a novel solu-
tion for secure and efficient data protection and collaboration.

III. PROPOSED MODEL

A. System Model

Fig. 1 outlines the key components of SWIFTGUARD,
tailored for cross-domain data management in healthcare:
• Data Owner (DO): DO owns patient data in the data

center. It defines and manages access policies to ensure
access is limited to authorized entities.

Analyze the
Context

Generate
the proof

Construct
the MC
Generate
msk and pp

Generate
msk and pp

Construct
the SCs

Setup

Generate
access policies

DR SCDO MC

Register users and
configure attributes

Upload data index

Generate the
commitment

Verify proof and
authenticate

Authorized decision-making

Collaborative share

Manage data and policies
Data

Upload

Access
Control

Calculate the path
and credentialsSend requestRequest

Authenticate

Fig. 2. The main workflow of SWIFTGUARD

• Data Requester (DR): DR seeks access to the data. It
sends data access requests or cross-domain collaboration
requests to access DO’s data.

• Slave Chain (SC): Each domain maintains an au-
tonomous SC, which ensures data security within the
domain. It performs attribute management and authenti-
cation for all users via smart contracts and enforces intra-
domain access control policies.

• Master Chain (MC): MC is responsible for the authen-
tication and authorization of cross-domain collaboration.
It authenticates cross-domain requests, employs a zero-
knowledge proof to protect the privacy of sensitive infor-
mation, and issues tokens for validated requests.

B. Design Goals

Our design goals encompass the following key aspects:
G1. Ensure secure authentication schemes for cross-domain

collaboration to ensure secure collaboration without com-
promising the security of any involved parties.

G2. Protect the privacy of sensitive information even dur-
ing cross-domain interactions, mitigating risks related to
unauthorized access or data leakage.

G3. Achieve efficiency and fine-grained access control that
adapts to various roles, scenarios, and data sensitivity
levels while maintaining high system performance.

IV. DESIGN OF SWIFTGUARD

A. Overview

Fig. 2 briefly illustrates the workflow of SWIFTGUARD,
which comprises the following four phases.

1) Setup: This phase establishes the master-slave chain
architecture and the basic settings of SWIFTGUARD based
on Hyperledger Fabric. Firstly, the master chain MC is
initialized with {nodei}Mi=1. The slave chain SCj for domain
Dj is constructed with {nodek}

Nj

k=1 and connected to MC.
Secondly, SWIFTGUARD generates the master system key
msk and public parameters pp by Setup and KeyGen
functions. Finally, all users complete registration and attribute
configuration via the Attribute Management Contract (AMC).

2) Data Upload: In this phase, DO calculates a secure
index eid = [H(metadata)]pk based on the metadata stored
in the data center and uploads eid to SC. Then SC initializes
access policies through the contract AMC. DO can dynami-
cally manage these policies following access requirements.

3) Request Authenticate: DR in SCi sends requests to ac-
cess DO’s data or initiates cross-domain requests to SCj when
collaborative treatment is required. The request is structured
as req = {uid, type, eid, SCi, SCj ,

−−−−−→
context}. Upon receiving

req, SCi verifies it via the Access Control Contract (ACC),
generating a path based on uid’s attributes and req’s context
(e.g., timestamp, environment). For cross-domain requests,
SCi and SCj compute cross-domain credentials crei and crej .
Based on credentials, SCJ calculates commitments to conceal
intra-domain sensitive information, generates a proof π by
MC’s Authentication Contract (AC), and verifies the validity
of the proof by SCi to complete authentication.

4) Access Control: In this phase, SCi conducts a context-
aware analysis and judges the existence of path in the policy
by the contract ACC, dynamically making authorization deci-
sions and issuing an access token. This token enables DR to
access DO’s data securely upon receiving authorization.

B. Smart Contract Design

This section introduces the system’s specific implementation
of three smart contracts. To clearly illustrate the core operating
logic, we additionally describe the functions involving com-
plex calculations or multiple steps in algorithms 1.

1) Attribute Management Contract (AMC): In SWIFT-
GUARD, users and policies are composed of attribute tuples.
To achieve modular management, we jointly design all oper-
ations involving attributes as AMC.
• AttrConfig() → A: It configures all attribute parame-

ters in the system and outputs the attribute set A.
• UserGen() → −−−−→

attruid: It registers users, assigns the
attribute tuple

−−−−→
attruid = (attr1, · · · , attrn) to useri.

• DataUpload(ehr)→ eid: When DO uploads ehr, this
algorithm runs hash(ehr) and uses pk to encrypt and get eid.
• InitPolicy(eid)→ pid: It initializes the policy p of eid,

which is composed of multiple attribute tuples and defined as
P = {−−−−−→attrrule1 ∨ · · · ∨

−−−−−→
attrrulen|

−−−−−→
attrrulei ⊆ A}, where the

same attrk are shared in
−−−−−→
attrrulei and the order of attrk is

determined by attribute weights. Finally, it returns pid.
• AWCal() → W : It regularly calculates the attribute

weights list W . The calculation formula is as follows.

W = sort(−
∑

attri∈A
P (X = attri) log(P (X = attri))) (1)

2) Access Control Contract (ACC): ACC is responsible for
processing all access control requests and verifying permis-
sions based on attributes and policies.
• VeriReq(req) → T/F : It verifies whether the request

received is legal. If it is legitimate, it returns true and proceeds
to the next step, otherwise, it terminates the request.
• GetPath(req) → path: Based on DR’s attributes and

the req’s context, it generates a path = (
−−−−→
attrDR,

−−−−−−−→
contextreq).

Algorithm 1 Smart Contract
//Quantify the attribute decision-making and sort it as W

1: function AWCAL()
2: Initialize an empty entropy list entrov
3: for each attri in A do
4: Calculate the entropyi for attri as formula 1
5: entrov ← (attri, entropyi)
6: end for
7: return W ← sort(entrov)
8: end function

//Restructure the policy into a tree structure
9: function RECON(P,W)

10: Initialize an empty root to point to PW
11: for each rule

−−−−−→
attrrule in P do

12: sort
−−−−−→
attrrule based on W

13: if not exist root.child[attri ∈ attrrule] then
14: create root.child[attri]
15: end if
16: end for
17: return PW
18: end function

//Check whether there is a RoottoLeaf path in PW
19: function ACCESS(path, PW)
20: root← PW , attri ← path.attr1
21: for root! = null && attri! = null do
22: if not exist root.child[attri] then return ⊥
23: end if
24: root← root.child[attri], attri ← attri+1

25: end for
26: Generate the token
27: return token
28: end function

• Recon(P,W) → PW : It reconstructs policies P into
PW according to attribute weights in W . For attri, the higher
weight awi reflects more decision-making in restricting access,
so it prioritizes matching to speed up the authorization.
• Access(path, PW) → token/ ⊥: It is the core autho-

rization algorithm and reduces the time complexity of autho-
rization from O(n) to O(log n), formally expressed as the
existence judgment of path in Pw shown in the Algorithm 1.
• CreCal(uid) → cre: It calculates the cross-domain

collaboration credential cre based on the formula cre = Cs

Ct
∗

ρ1 + Ad

At
∗ρ2 +CP ∗ρ3. Ct is the number of requests initiated

and participated in, and Cs is the successful collaborations
number. At and Ad denote the number of access requests and
authorization times. CP is computing power and ρ1, ρ2, ρ3
are the weights assigned to the three parts and the total is 1.

3) Authentication Contract (AC): AC implements the cross-
domain authentication scheme based on the zero-knowledge
proof. The specific algorithms and formulas are as follows.

• Setup(λ)→ pp: Given a security parameter λ, it chooses
two large prime numbers p, q, where L(p) = L(q) = λ. Then
it computes N = pq and randomly selects θ ∈ [1, N/4].

Finally it generates a generator g of order (p − 1)(q − 1)
and computes h = gθmodN2.
• KeyGen(λ) → (pk, sk): It randomly selects θi ∈

[1, N/4] as sk and generates pk = (N, g, gθ1modN2).
• Commitment(m)→ y: Given a secret value m known

to P , the output is y, where y is a commitment triple. The
algorithm computes M = (M1, . . . ,Mn) ∈ {0, 1}n based
on the input m, satisfying 〈M,2n〉 = 2m, where n is the
maximum limit of all secret values. Let s = M[a,n] and
m = M[0,m+1]. P generates random numbers α, β, γ, δ, ε, x ∈
Zp, and computes C1 = gαhβ , C2 = g〈s,x

n−a〉hγ , and
C3 = g〈m,x(m+1)〉hδ . Finally, it outputs y = (C1, C2, C3).
• Proof(y, c) → (y, π): V gives a challenge c, and P

constructs a proof (y, π) according to the challenge c and
commitment triple y. It calculates computes z1 = α+cm, z2 =
β + cε, z3 = g(c−1)〈m,xm+1〉hγ and z4 = gc(x

a−1)〈s,xn−a〉hδ .
Let π = (z1, z2, z3, z4) and the final proof is (y, π).
• Verify(y, π) → 0/1: Upon receiving the proof (y, π),

V determines the validity of Equation 2 to ensure m is not
tampered with and checks Equation 3 to ensure the relationship
between m and n. If both Equation 2 and Equation 3 are
satisfied, the output is 1, indicating successful authentication;
otherwise, it is 0, signifying Authentication failure.

gz1 · hz2 = T e · C1 (2)

Cc2 · z4 = C3 · z3 (3)

• ColToken(req) → token: After completing the func-
tion Verify, call this function, which authorizes access by
calling the in-domain policy and generates access tokens.

V. SECURITY AND PERFORMANCE ANALYSIS

A. Security Proof

Theorem 1 (Zero-knowledge): The proposed authentica-
tion scheme satisfies zero-knowledge if the Decision Diffie-
Hellman (DDH) assumption holds.

Proof. We will prove the theorem by constructing a sim-
ulator S based on a DDH problem instance (g, gε0 , gε1 , Z)
so that A cannot distinguish the witness from S. If A can
distinguish the knowledge m0, m1 from (y, π) with a non-
negligible advantage ε so that S can break the DDH problem
with a non-negligible probability.

Setup. S generates the system public parameter pp by
running the algorithm Setup(λ).

Query. A submits two distinct knowledge m0,m1 to S.
S flips a random coin b ∈ {0, 1} and generates yb =
(C ′1, C

′
2, C

′
3) by running Commitement(mb). Then S cal-

culates πb based the challenge c, and sends (yb, πb) to A.
Guess. When the adversary A receives the pair (yb, πb), it

guesses a bit b′ and sends to the simulator S. If b′ = b then
A wins the game, otherwise it fails.

If b′ = b, the adversary A gets the knowledge mb′ and
knows T = gmb′hε from the pair (yb, πb). Therefore, A
can get Z = gε0ε1 = hε and solve the DDH problem. The
simulation is indistinguishable from the real attack. Thus, A
has probability 1

2 + ε of guessing correctly.

If b′ 6= b, A only knows T 6= gmb′hε and Z 6= gε0ε1 . It is
equivalent to using a random number Z independent of other
parameters, without gaining any additional information. Thus,
the probability that A guesses correctly is 1

2 .
Therefore, the probability that A solves the DDH problem is

1
2 (1

2 +ε+ 1
2) = 1

2 + 1
2ε. It is contrary to the DDH assumption.

Theorem 2 (Soundness): The proposed authentication
scheme satisfies soundness if the Discrete logarithm assump-
tion (DLA) holds.

Proof. We prove this theorem by showing the probability
that A prevailing in a series of games against Ω is less than
negl(λ), as determined through the use of DLA. We construct
an extractor Ω to fight against A and denote Pr [Wini] as the
probability of A winning in the Gamei.

Game0. Suppose an attacker A attempts to forge a le-
gitimate proof (y1, π1) to deceive the V , while an extractor
Ω endeavors to extract a valid witness from a fake proof.
Initially, Ω receives gmhε and A generates y1 = (C1, C2, C3).
Ω generates a random challenge c and A responds with a fake
proof (y1, π1) based on c. Ω verifies that equation 3 is not
satisfied, then Ω rewinds to the challenge phase and sends a
new challenge c′ to generate new π′. So Ω can calculate:

m =
z1 − z′1
c− c′

ε =
z2 − z′2
c− c′

(4)

If A wins Game0, then the discrete logarithm can be
computed, which is contrary to the DLA. Thus we can get

Pr[Win0] 6 negl(λ) (5)

Game1. Suppose A attempts to forge a secret value m1

as input to complete the proof. In the commitment phase, A
chooses α1,β1,γ1,δ1,ε1,x1 ∈ Zp randomly to generate

y1 =
(
gα1hβ1 , g〈s1,x1

n−a〉hγ , g〈m1,x1
(m1+1)〉hδ

)
(6)

Ω generates a random challenge c and A generates z1 =
α1 + cm1, z2 = β1 + cε1, z3 = g(c−1)〈m1,x1

m1+1〉hγ1 and
z4 = gc(x

a
1−1)〈s1,x1

n−a〉hδ1 , along with generating the proof
(y1, π

′
1). Ω verifies that Equation 2 does not hold, then rewinds

to the challenge phase and sends a new challenge c′. Similar
to Game0, A generates π′1 = (z′1, z

′
2, z
′
3, z
′
4) and returns a

new proof (y1, π
′
1). So Ω can calculate

m =
z1 − z′1
c− c′

ε =
z2 − z′2
c− c′

(7)

Therefore, if A can win Game1 with a non-negligible
advantage over Game0, then Ω can use it to break the DLA.
Thus we can get

Pr[Win1]− Pr[Win0] 6 negl(λ) (8)

In conclusion, we prove that A cannot forge legitimate
evidence to deceive V , establishing the soundness of the
proposed protocol. The proof concludes here.

(a) access control vs. requests (b) access control vs. requests

(c) access control vs. attributes (d) access control vs. attributes

(e) collaboration vs. requests (f) collaboration vs. requests

Fig. 3. Evaluation of SWIFTGUARD for throughput and delay

B. Performance Analysis

SWIFTGUARD is implemented using Hyperledger Fabric
v2.2, Docker v20.10, Docker-compose v1.29, and GoLang
version 1.18. All experiments are conducted on an Apple M1
Pro machine with 16GB memory and a 512GB SSD running
on MacOS Monterey v12.3.1. To evaluate the design goals of
SWIFTGUARD and demonstrate its benefits, we conducted the
following experiments, each of which was repeated ten times,
and the average was used as the final result.

Firstly, we tested throughput and delay on the system’s ac-
cess control based on two factors: the number of requests and
the number of attributes. These results were compared with
fabric-iot [14], an open-source ABAC model implemented on
the Hyperledger Fabric. Fabric-iot [14] serves as a reference
framework for fine-grained access control and is used to
evaluate the system’s performance under multiple attributes.
Fig. 3(a) illustrates the impact of increasing request num-
ber on throughput. SWIFTGUARD demonstrates a significant
advantage in off-chain authorization, with higher throughput
to handle more requests than fabric-iot [14]. As shown in
Fig. 3(b), the delay of fabric-iot [14] increases exponentially
as the number of requests grows, indicating a time complexity
of O(n). In contrast, the delay of SWIFTGUARD demonstrates
a significant reduction, with its growth remaining nearly linear
as the number of requests increases, which indicates that
our system effectively reduces time complexity from O(n)
to O(log n). Fig. 3(c) shows that as the attributes’ number
exponentially grows, the performance gap in throughput be-
tween the models becomes more pronounced. The throughput
of fabric-iot [14] decreases and behaves in a stressed manner,

TABLE I
OUR PROTOCOL VS. BULLETPROOFS

method time (ms/op) byte (kB/ op) mem alloc (alloc/op)
Our protocol 2,196.45 56.83 1,571.7

Bulletproofs [16] 19,031.93 303.51 8,329.5

TABLE II
STEPS EVALUATION

UserGen DataUpload VeriReq Recon
throughput(TPS) 61.282 695.787 764772.788 34141.82

delay(ms) 16358.7347 1497.72129 1.8853 89.8737

while SWIFTGUARD adapts well to various attribute granu-
larities. Fig. 3(d) shows that attribute exponential growth has
minimal effect on SWIFTGUARD’s response speed.

Second, we also investigated cross-domain collaboration
requests and compared them to Bai’s cross-domain access
control scheme based on the attribute mapping center [4]. The
Bai’s scheme [4] relies on a trusted third party and involves
more time-consuming encryption and decryption mechanisms.
To effectively assess the advantages of SWIFTGUARD, we
replicated Bai’s cross-domain scheme [4] within our architec-
ture, keeping all other system settings consistent. Fig. 3(e)
illustrates that SWIFTGUARD’s throughput significantly in-
creases as the number of concurrent collaborations grows
while Bai’s [4] decreases. This indicates that SWIFTGUARD’s
advantage in handling more transactions with greater privacy
and security. As shown in Fig. 3(f), the delay of SWIFTGUARD
remains almost constant and slightly decreases, attributed to
the fixed operational scale in SWIFTGUARD’s cross-domain
process. While Bai’s scheme [4] experiences increased delay
as the number of collaborations increases, due to the frequent
attribute mappings and certificate transformations required.

Additionally, to evaluate our proposed proof protocol, we
compared it with Bulletproofs [16] in terms of time, bytes, and
memory allocation. The result is shown in Table I and indicates
that our protocol processes perform better than Bulletproofs.

Finally, to ensure the system’s usability, we progressively
evaluate SWIFTGUARD the cost (throughput and delay) out-
side the core function. The averaged result is shown in Table II.
Since the functions UserGen and DataUpload involve
frequent database operations, we believe that the overhead is
reasonable and acceptable. In the access request phase, we also
evaluated VeriReq separately. We tested the Recon used for
policy reconstruction in the access control phase.

Our comprehensive evaluation concludes that SWIFT-
GUARD performs well and can meet the needs for cross-
domain collaboration in healthcare.

VI. CONCLUSION

This paper proposed SWIFTGUARD, an attribute-based ac-
cess control model designed to enhance privacy and se-
curity in cross-domain EHR management. By leveraging a
master-slave blockchain architecture and integrating a zero-
knowledge proof protocol, SWIFTGUARD enables secure,

privacy-preserving cross-domain authentication without expos-
ing sensitive information. To achieve efficient access control, it
also quantifies the degree of decision-making in multi-attribute
access control and implements context-aware authorization to
reduce the time complexity from O(n) to O(log n). Through
security analysis, we prove the security zero-knowledge and
soundness in SWIFTGUARD. By implementing SWIFTGUARD
on Hyperledger Fabric and comparing it with other existing
schemes, we demonstrate its performance excellence. In future
work, we aim to test it in a large-scale production environment
and conduct a thorough security analysis of potential attacks.

ACKNOWLEDGEMENT

This work is supported by the National Key Research and
Development Program under Grant 2021YFF1201102.

REFERENCES

[1] M. Sookhak, M. R. J. Sattari, N. S. Safa, and F. R. Yu, “Blockchain
and smart contract for access control in healthcare: A survey, issues
and challenges, and open issues,” J. Netw. Comput. Appl., vol. 178, p.
102950, 2021.

[2] S. K. Memon, N. I. Sarkar, A. Al-Anbuky, and M. A. Hossain,
“Preemptive admission control mechanism for strict qos guarantee to
life-saving emergency traffic in wireless lans,” J. Netw. Comput. Appl.,
vol. 199, p. 103318, 2021.

[3] V. C. Hu, D. F. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin,
R. Miller, and K. Scarfone, “Guide to attribute based access
control (abac) definition and considerations,” 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:168659974/

[4] L. Bai, K. Fan, Y. Bai, X. Cheng, H. Li, and Y. Yang, “Cross-domain
access control based on trusted third-party and attribute mapping center,”
Journal of Systems Architecture, vol. 116, p. 101957, 2021.

[5] M. T. de Oliveira, G. Verginadis, L. H. A. Reis, E. Psarra, I. Patiniotakis,
and S. D. Olabarriaga, “Ac-abac: Attribute-based access control for
electronic medical records during acute care,” Expert Syst. Appl., vol.
213, p. 119271, 2022.

[6] M. A. Lail, M. Moncivais, R. Benton, and A. J. Perez, “Cloud-based
access control including time and location,” Electronics, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:271278182

[7] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, “Attribute-based
access control for smart cities: A smart-contract-driven framework,”
IEEE Internet of Things Journal, vol. 8, pp. 6372–6384, 2020.

[8] W. Viriyasitavat and D. Hoonsopon, “Blockchain characteristics and
consensus in modern business processes,” J. Ind. Inf. Integr., vol. 13,
pp. 32–39, 2019.

[9] Z. Zhang, X. li Wu, and S. Wei, “Cross-domain access control model
in industrial iot environment,” Applied Sciences, 2023.

[10] A. Zhang and X. Lin, “Towards secure and privacy-preserving data
sharing in e-health systems via consortium blockchain,” Journal of
Medical Systems, vol. 42, pp. 1–18, 2018.

[11] N. Wu, L. Xu, and L. Zhu, “A blockchain based access control scheme
with hidden policy and attribute,” Future Gener. Comput. Syst., vol. 141,
pp. 186–196, 2022.

[12] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE Network, vol. 35, pp.
198–205, 2021.

[13] A. E. Mensah, S. Zhou, Y. Liao, E. Antwi-Boasiako, and I. A. Obiri,
“Authentication scheme based on non-interactive zero-knowledge proof
for mobile health,” 2022 IEEE 24th Int Conf on High Performance
Computing & Communications, pp. 1690–1696, 2022.

[14] H. Liu, D. Han, and D. Li, “Fabric-iot: A blockchain-based access
control system in iot,” IEEE Access, vol. 8, pp. 18 207–18 218, 2020.

[15] D. di Francesco Maesa, P. Mori, and L. Ricci, “A blockchain based
approach for the definition of auditable access control systems,” Comput.
Secur., vol. 84, pp. 93–119, 2019.

[16] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” 2018
IEEE Symposium on Security and Privacy (SP), pp. 315–334, 2018.

