
Tree Ensemble Property Verification from A Testing
Perspective

Bohao Wang1,2, Zhe Hou3, Gelin Zhang2, Jianqi Shi2, and Yanhong Huang* 1,2

1Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China
2National Trusted Embedded Software Engineering Technology Research Center,

East China Normal University, Shanghai, China,
{bohao.wang, gelin.zhang}@ntesec.ecnu.edu.cn,{yhhuang, jqshi}@sei.ecnu.edu.cn

3Griffith University, Australia, z.hou@griffith.edu.au

Abstract—With the development of artificial intelligence, ma-
chine learning algorithms are currently being used in more and
more fields, such as autonomous driving, medical diagnosis, etc.
In recent years, much research focuses on property verification
of machine learning models. As one of the machine learning
models, the tree ensemble model’s structure is amicable to formal
verification, but large models still prove hard to verify due to
the combinatorial path explosion. This paper presents a violation-
driven, sound but incomplete method from a testing perspective.
We generate an explanation model of the original model and
verify it formally. After a narrowed search space is obtained,
we verify the original model by a testing-based method. A
counterexample is then proof that the original model violates the
property. We elaborate our method through a case study in detail.
And we have developed our method into a tool called TEPV
(Tree Ensemble Property Verification) and tested it on datasets
of various sizes. The experiment demonstrates that our approach
is scalable and works well on large tree ensemble models.

Index Terms—Tree Ensemble, Property Verification, Testing

I. INTRODUCTION

Nowadays, artificial intelligence utilizing machine learning
algorithms has achieved a lot of success in many fields, such as
face recognition, autonomous driving, medical diagnostics, etc.
With the application of these technologies in more and more
fields, people doubt whether they can meet certain properties,
such as security, robustness, fairness etc., since deep learning
models are almost a black-box, and the tree ensemble models
are also too complex. In recent years, deep learning has
developed rapidly, and now there has been much research on
the verification of neural network [1], [2]. This paper is mainly
focused on whether the tree ensemble models satisfy specific
interesting properties.

Suppose you have a random forest model that tells you
whether or not two cars will collide based on a variety of
features. Traffic safety experts suggest that when the distance
between two cars is less than 5 meters and both cars’ speed is
greater than 120km/h, the two cars are bound to collide. The
prediction of a random forest model may be correct 99% of

*Corresponding Author
DOI reference number: 10.18293/SEKE2021-087

the time, but it may violate this property in some input spaces,
so we still need to verify the random forest model.

As background work, we tried to develop and implement a
general, sound and complete verification algorithm for random
forest. Our method divided the input space of the random
forest into different disjoint sets. Suppose the random forest
has 10 trees, each tree has 32 leaf nodes (depth is 5), and
each leaf node corresponds to a branch. We join each tree
branch with one branch of all other trees to represent the
disjoint sets of the input space divided by the random forest
model. When the input space is divided into disjoint sets, the
specific region of input space that does not satisfy the property
will be found by a property checking algorithm. The method
mentioned above faces combinatorial path explosions, which
means it is not scalable and can only handle random forests
where the sum of the number and depth are no more 15 in
our experiment. Random forest models on this scale are toys
that do not work in real life. Similar results are obtained in
recent work on verifying tree ensembles [3].

Consequently, we take a step back and sacrifice complete-
ness for a more feasible approach. The proposed approach
in this paper performs verification of tree ensembles from
a testing perspective. We first transform the original tree
ensemble model into a relatively simple model, which is
referred to as an “explanation model”. The explanation model
has a highly similar predictive behaviour compared to the
original model [4]. Then we verify the explanation model
against a property. Our hypothesis is that when the explanation
model violates the property in a certain search space, it is
highly likely that the original model also violates the property
in the same search space. Then we can narrow down the search
space using the explanation model and verify the original
model in a much smaller input space by a test-based method.
If a counterexample is found, then it is proved that the original
model violates the property.

The contributions of this paper include:

• We propose a method for tree ensemble property verifi-
cation, which alleviates combinatorial path explosion.

• We have developed a tool called TEPV that can perform
property checking on tree ensemble models.



• We validate our approach on datasets of different sizes,
and the experiment demonstrates that our approach is
scalable and works well on large tree ensemble models.

The rest of this paper is organized as follows: Section II
gives the background knowledge of this paper. Section III
details the proposed method. Section IV demonstrates a case
study and experiment of our approach. We discuss related
work in Section V. Finally, we conclude and give some future
work in section VI.

II. PRELIMINARIES

This section presents the required background knowledge,
including decision trees, ensemble of decision trees, and the
explanation tree ensemble model. We also give the definition
of the properties used in this paper.

A. Decision Trees With a Logical Foundation

We adopt the definitions of decision tree described in [4].
In supervised learning, a structured dataset for classification
is defined as set of instances of the form (~x, y) where ~x =
[x1, ..., xn], n ∈ N, is an input vector called features and y is
an outcome value often called the label. We denote by X the
feature space and Y the outcome space.

F1

(0,6)

(2,1) (3,1)

F2

False True

TrueFalse

Fig. 1. An example decision tree.

A decision tree is composed of internal nodes (diamonds in
Figure 1) and terminal nodes called leaves (ovals in Figure 1).
Each internal node is associated with a logical formula over
a feature. Each leaf node contains a set of instances, which
yield a vote distribution of the form (n1, · · · , nm) where m
is the number of classes and ni (1 ≤ i ≤ m) is the number of
instances of the corresponding class. For example, in Figure 1,
the leftmost leaf node (0, 6) indicates that there are 0 class1
instances and 6 class2 instances. Without loss of generality,
we focus on binary trees, in which internal nodes have two
successors respectively called the left and right child nodes.
By convention, the instances that satisfy the logical formula
of an internal node go to the right child node, and those that
do not satisfy go to the left child node. For example, in Figure
1, let I be the set of training instances associated with the root
node, I1 ⊂ I be the subset that satisfies the formula F1, then
I1 will be the set of instances associated with the right child
node (with formula F2), and I2 = I \ I1 will be the set of
instances associated with the left child (leaf) node.

Given a decision tree, any input vector (or instance) is
associated with a single leaf. A decision tree is, therefore, a

compact representation of a function of the form t : X → Nm,
where m is the number of classes. The output of a decision tree
is a distribution of votes for each class. To obtain an outcome
in Y , we take the class with the most votes.

B. Random Forest

We adopt the definitions of Cui et al. [5]. Let an ensemble
be a set of decision trees of size T . It gives the weighted sum
of the trees as follows:

E(x) =

T∑
i=1

wi · ti(x) (1)

where E is the function for the ensemble, wi and ti are respec-
tively the weight and function for each tree. The summation
aggregates the weighted votes from each tree and obtains
the final votes for each class. Thus, the ensemble is also
a function of the signature E : X → Nm and requires a
voting mechanism to obtain the outcome. We mainly focus on
the ensemble trees by bagging. Each decision tree is trained
using a subset of the dataset that is sampled uniformly with
replacement. The remaining instances form the out-of-bag
(OOB) set. When selecting the best formula at each decision
node in a tree, only a subset of the features are considered. This
is commonly found in algorithms such as Random Forest [6].
Bagging grows large trees with low bias, and the ensemble
reduces variance.

C. Explanation Tree Ensemble

In our previous work [4], we extract logical formulas
from an original tree ensemble model Mo to synthesize an
explanation model Me. Me is an approximation of Mo, and
it contains a set of decision rules. A decision rule is a tuple
(F, s, w), where F is a classical logic formula, s is the signa-
ture, which is a normalized vote distribution between classes,
and w is the weight, which indicates the importance of the rule.
There are four parameters that determine the generation of the
Me, which are θ, φ, ψ and k. θ determines the complexity
of the decision rules, ψ determines the signature s of each
decision rule. Both φ and k determine the number of the
decision rule in Me. Refer to [4] for the details.

The explanation model Me can make predictions based on
the following method: given a data instance x, find all the
decision rules in Me whose logical formula F is satisfied
by x, then multiply the signature of those rules by their
corresponding weight, and add them up to get a tuple of vote
distributions. The class with the largest value is the output. The
above procedure is denoted asMe(x) = c, where c is a class.
Figure 2 gives an example of how Me makes a prediction.

D. Properties of Interest

In this paper, we consider a general class of properties,
which is defined below.

Definition 1: (Properties) Let f : Xn → Rm be the function
to be verified. A property is of the form P : Constraint →



Instance x satisfies 
r1,r2,r4

(2,0)*42

(0,2)*35

(0,2)*20

(84,110)

predict:class2

Rule F
signature

(clss1,class2)
weightRule F

signature
(clss1,class2)

weight

r1 F1 (2,0) 42r1 F1 (2,0) 42

r2 F2 (0,2) 35r2 F2 (0,2) 35

r3 F3 (2,0) 33r3 F3 (2,0) 33

r4 F4 (0,2) 20r4 F4 (0,2) 20

…
..

Rule F
signature

(clss1,class2)
weight

r1 F1 (2,0) 42

r2 F2 (0,2) 35

r3 F3 (2,0) 33

r4 F4 (0,2) 20

…
..

+

+

Fig. 2. An illustration of how Me makes a prediction for an instance x.

Target, where Constraint is the boundary of input features
and Target is the target label, i.e.,

Constraint ::=
∧
αi 6 xi 6 βi,∀i ∈ {1, ..., n} (2)

Target ::= (y = ci), i ∈ {1, ...,m} (3)

where αi, βi ∈ R and ci is the ith class of all m classes. If
αi = −∞ and βi = +∞, then xi has no constraint. That is,
−∞ ≤ xi ≤ +∞ ≡ >.

III. METHODOLOGY

This section details our tree ensemble property checking
approach. The overview of our method is given in Figure 3.
There are three stages in our method. First, we generate an
appropriate explanation model Me, which has high fidelity.
Here, fidelity refers to the degree of similarity between the
predictions of Me and Mo on unseen data [7]. The second
stage is the ExModel Checker part. In this step, our approach
checks whether the property P is violated by Me. If the
ExModel Checker finds that P is violated, the process will
continue. Finally, OrModel Checker will verify Mo against
the property P. If Mo violates P, we will output a decision
rule explanation and a counterexample. The counterexample
is an instance that P is not satisfied by Mo, and the decision
rule explanation is a narrowed-down search space.

OrModel

ExModel 
Checker

OrModel 
Checker

ExModel

Generate Violates

Rule Explanation
&

Counter Example

Violates

Stage 1

Property

Property

Stage 2

Stage 3

Fig. 3. An overview of the proposed method.

A. STAGE 1: Generate Explanation Model

We adopt our previous work [4] to generate the explanation
model Me. The process of generating explanation model is
expressed as the following formula:

explain(Mo, θ, φ, ψ, k) =Me (4)

A major difference compared to the previous work is that the
Me we generate here does not need to follow the criteria
of the explanation should be concise and small. Instead, we
only follow one criterion: the classification behavior of the
explanation modelMe should be as similar as possible to the
original model Mo.

We mentioned in Section II-C that different parameters
generate different Me. In order to get an explanation model
Me with high fidelity, we also use the linearly decreasing
inertia weight particle swarm optimization algorithm (LDIW-
PSO) [8] to optimise the four parameters:θ, φ, ψ and k. Since
our criteria are different from [4], we propose a new equation
below as the fitness, i.e., the objective function to be optimised.

Sopt =

n∑
i

Θ(Me(xi),Mo(xi)) (5)

where Θ(x, y) is a function that outputs 1 when x = y;
otherwise outputs 0, xi is the sample in the test set, and n
is the number of samples in the test set. After optimization,
we finally obtain Mopt

e .

B. STAGE 2:Verify Explanation Model

Once we obtainMopt
e , we can use the ExModel Checker to

verifyMopt
e against properties. The detail of Stage 2 is shown

in Algorithm 1.

Algorithm 1 Stage 2: find violation of explanation model
1: Input: Property P, Explanation Model Mopt

e

2: Output: a set of decision rules set Φ
3: R← ∅
4: Φ← ∅
5: for all r ∈Mopt

e do
6: if r ∧ P.constraint is satisfiable then
7: R← R ∪ {r}
8: end if
9: end for

10: for all R′ ⊆ R do
11: if R′ is satisfiable and Mopt

e .predict(R′) 6= P.target
then

12: Φ← Φ ∪ {R′}
13: end if
14: end for
15: return Φ

Given an Mopt
e and a property P, the first step of checking

Mopt
e is rule selection, corresponding to the lines 4-8 in

Algorithm 1. For simplicity, the notation of Mopt
e not only

refers to the explanation model but also the decision rules in
the explanation model. For the decision rules in Mopt

e that



are compatible with the constraint of property P, we collect
them as R. After rule selection, we try to find the subset of R
whose decision rules are satisfiable when combined. Assume
there is a set R′ that meets the requirements; we useMopt

e to
make a prediction based on R′. We mentioned in Section II-C
that the explanation model would first select decision rules in
Mopt

e are satisfied by x, and then make a specific prediction
according to the selected decision rules. Here, the prediction
of Mopt

e omits the steps for selecting decision rules, as these
are done in lines 4 - 8 already. Instead, we directly give the
prediction based on the set R′.

If the prediction result is not consistent with the target
of the property P, Mopt

e violates the property P. Then, we
will continue to verify the original modelMo using OrModel
Checker based on the narrowed search space.

C. STAGE 3: Verify Original Model

BecauseMopt
e andMo have very similar predictive behav-

ior, when we look at the same (narrowed-down) search space,
ifMopt

e violates the property P, it is very likely thatMo may
also violate P. We present the details of stage 3 in Algorithm 2.

Algorithm 2 Stage 3: find violation sample of original model.
1: Input: Property P, Original ModelMo, decision rules set
R′ and the number of generated samples n

2: Output: flag, c and e
3: flag ← False
4: c← None
5: e← R′ ∧ P.constraint
6: samples← generate n samples based on e
7: for all s ∈ samples do
8: if Mo.predict(s) 6= P.target then
9: flag ← True

10: c← s
11: return flag, c, e
12: end if
13: end for
14: return False,None,None

Note that the constraint component of a property has the
same structure as the logical formula of a decision rule, so
they can be used in conjunction to limit the search space.
More specifically, we combine the decision rules in R′ and
the property P’s constraint and simplify them by merging sub-
formulae on the same feature (Line 5 of Algorithm 2). At
this point, the counterexample search space of property P is
reduced significantly by the above simplified formula, which
we call decision rule explanation. Then, a sample generator
will generate many samples in the narrow search space.

We adopt a Generative Adversarial Network (GAN) [9]
model as the sample generator. GAN has two parts: a discrim-
inative network (the discriminator) and a generative network
(the generator). The discriminator learns to distinguish the
features of a given data instance. The generator, which learns
to confuse the discriminator, can generate fake but plausible
data via an adversarial learning process. GAN will generate

samples with the same distribution as the training set, but we
need samples within the narrow search space determined by
e. So we add a filter after the GAN model to select samples
that meet the requirements. The process mentioned above
corresponds to Line 6 of Algorithm 2.

Next, we use Mo to make predictions from the generated
samples, which are expected to have a high chance of violating
P. If the predicted result is indeed different from the target
of the property, it means that Mo violates the property. The
sample with the different predicted result is provided as the
counterexample, and the final narrow search space is output
as a decision rule explanation.

Noted that there may be a lot of R′ that cause property
violation of Mopt

e in the subset of R, which means a lot of
decision rules sets will be emitted in stage2, but what we
want to find is a R′′ that cause property violation of both
two models. Since our approach is violation-driven, once we
find one appropriate R′′, our method will stop and return the
counterexample and decision rule explanation. Otherwise, the
method will continue to find the violation.

IV. EXPERIMENT AND CASE STUDY

We implement our method in Python and develop a tool
called TEPV (Tree Ensemble Property Verification). We use
scikit-learn [10] to train random forest models and evaluate our
tool TEPV through a case study and experiment. For random
forest in our experiment, the number of trees is 100, and the
depth of the tree is unlimited. For simplicity, we only consider
binary classification datasets with numeric features. However,
the proposed approach can easily be extended to multi-class
datasets with both numeric and nominal features. We test our
method on three datasets: diabetes, JM1 and MiniBooNE,
all of which are available on OpenML [11]. Particle size
and iteration period are set to 20 by default, which are two
parameters in LDIW-PSO. Experiments were conducted on a
machine with an Intel Core i9-7960X CPU and 32GB RAM.

TABLE I
THE CHANGE OF SEARCH SPACE.

Constraint of the Property Rule Explanation
Feature lower bound upper bound lower bound upper bound

preg 7.51 10.65 7.51 9.5
plas 138.52 +∞ 157.5 +∞
pres 99.02 101.23 99.02 101.23
insu 77.94 93.51 77.94 93.51
skin −∞ 99.04 −∞ 99.04
mass 26.94 60.39 27.9 28.9
pedi 0.63 2.23 0.63 1.1
age −∞ +∞ −∞ 27.5

A. Case Study 1:Pima Indians Diabetes Dataset

The Pima Indians Diabetes dataset [12] has 768 samples,
8 features, 2 classes. The features are as follows: the number
of times pregnant (preg), plasma glucose concentration (plas),
diastolic blood pressure (pres), 2hour serum insulin (insu),
triceps skinfold thickness (skin), body mass index (mass),
diabetes pedigree function (pedi) and age. Two classes are



TABLE II
ALL DECISION RULES OFMopt

e .

Rule Logic Formula Signature
(N, P) Weight Rule Logic Formula Signature

(N, P) Weight

r1 (plas ≤ 132.0)
∧
(mass ≤ 26.4) (2,0) 133 r13 (preg ≤ 9.5)

∧
(plas > 157.5)

∧
(mass > 27.9) (0,2) 60

r2 (mass ≤ 28.9) (2,0) 127 r14 (plas > 154.5)
∧
(pres ≤ 92.0)

∧
(pedi > 0.3) (0,2) 52

r3 (plas ≤ 123.0) (2,0) 124 r15 (plas > 154.5)
∧
(mass > 29.9)

∧
(age ≤ 49.5) (0,2) 47

r4 (plas ≤ 128.5)
∧
(mass ≤ 30.9) (2,0) 122 r16 (plas > 154.5)

∧
(pedi ≤ 1.1) (0,2) 46

r5 (plas ≤ 130.5)
∧
(insu ≤ 30.5) (2,0) 116 r17 (plas > 155.0)

∧
(pres ≤ 92.0)

∧
(mass > 30.1) (0,2) 44

r6 (plas ≤ 104.0) (2,0) 116 r18 (plas > 157.5)
∧
(mass > 28.8) (0,2) 43

r7 (plas ≤ 112.5) (2,0) 115 r19 (plas > 147.5)
∧
(pedi > 0.3) (0,2) 41

r8 (plas ≤ 123.5) (2,0) 115 r20 (plas > 139.0)
∧
(pedi > 0.2) (0,2) 40

r9 (plas ≤ 112.5) (2,0) 114 r21 (plas > 132.0)
∧
(mass > 35.5) (0,2) 38

r10 (age ≤ 27.5) (2,0) 113 r22 (preg > 7.5) (0,2) 36
r11 (plas ≤ 124.5)

∧
(mass ≤ 27.8) (2,0) 112 r23 (preg > 6.5)

∧
(insu > 22.5) (0,2) 36

r12 (mass ≤ 30.1) (2,0) 111 r24 (plas > 129.5)
∧
(insu > 16.5)

∧
(skin ≤ 629.5) (0,2) 36

positive and negative. We use 668 samples to train a random
forest and 100 samples as the testing set.

In this case study, a doctor wants to check if the random
forest model Mo satisfies his expert knowledge. He puts
forward a property as follows. When a patient meets the
constraint that preg is between 7.51 and 10.65, plas is bigger
than 138.52, pres is between 99.02 and 101.23, insu is between
77.94 and 93.51, skin is less than 99.04, mass is between 26.94
and 60.39, and pedi is between 0.63 and 2.23, she should
be diagnosed as positive. The doctor argues that the machine
learning model is unreliable if it violates this property which
is derived from his expertise.

We use our tool TEPV to verify the random forest model
Mo against the property put forward by the doctor. We
generate explanation model Mopt

e as Table II shows. And the
decision rules in red is one set of the output of Algorithm 1.
Based on Algorithm 1 and Algorithm 2, we have narrowed
the search space and provide a counterexample of violation.
In Table I, compared to the constraint of the tested property
P, it is clear that the upper bound of preg, mass, pedi and age
shrinks; in the meantime, the lower bound of plas and mass
rises.

TABLE III
A COUNTER EXAMPLE OF THE TESTED PROPERTY

preg plas pres insu skin mass pedi age predict

8 157.64 99.99 86.62 47.19 28.61 0.66 21 negative

The counterexample that reflects the violation of Mo is
shown in Table III. This sample is generated by our sample
generator in the input space defined by the decision rule ex-
planation. Our method narrows down the search space, and the
counterexample found in this space reflects the effectiveness
of our approach.

B. Experiment

Under normal circumstances, users want to test whether the
model violates certain user-specified properties that may be
domain-specified. Since we are not domain experts and can

not define properties with professional knowledge, we use the
following method to randomly generate properties.

Assume the dataset has n features and m classes, we first
find the mini and maxi of feature fi, i ∈ {1, .., n}, which is
the minimum and maximum of the fi in the training samples.
For the constraint of the property, we select fi with a chance
of p1%. And for each fi selected, randomly generate αi and βi
between mini and maxi(assume αi <βi). Then we generate
the constraint αi ≤ fi ≤ βi with a chance of p2%, otherwise
generate the constraint αi ≤ fi or fi ≤ βi with 50% change
each. For the target of the property, we randomly select one
class as the target with equal probability.

We test on three datasets: diabetes, JM1 and MiniBooNE.
JM1 is a dataset about software defect prediction; it has 21
features and 10k samples. MiniBooNE dataset is used to
distinguish electron neutrinos (signal) from muon neutrinos;
it has 50 features and 130k samples. For each dataset, we
train a random forest model with 100 trees of unlimited depth,
which are the usual default settings in real-life applications.
We set p1 ∈ {0.5, 0.8}, p2 ∈ {0.5, 0.8} and randomly generate
25 properties of every (p1, p2) combination, totalling 100
properties for each dataset. The number of samples generated
by the sample generator is 1000. For JM1 and MiniBooNE,
90% of the samples are used as the training set, and 10% of
the samples are used as the testing set. For each property, if
no counterexample is found or if the process takes more than
one hour, we consider it a failure and the property is skipped,
and the program begins to verify the next property.

TABLE IV
PROPERTIES CHECKING ON DIFFERENT DATASETS.

Dataset Mopt
e Fidelity

Parameters (θ, φ, ψ, k)
Acc. Vio. Time Std.

Diabetes 93%
(0.57, 0.1, 0.67, 12.0)

80% 75% 388 1424

JM1 92%
(0.66, 0.14, 0.7, 12.0)

92% 60% 354 600

MiniBooNE 88%
(0.8, 0.04, 0.93, 20.0)

93% 58% 524 752

The results of the experiment are shown in Table IV.
Mopt

e Fidelity is the proportion that Mopt
e and Mo predict



the same results in the test set. Acc. is the prediction accuracy
ofMo on the test set. V io. is the percentage of the properties
for which we can find a counterexample within timeout, Time
is the average time of finding counterexamples (in seconds),
and Std. is the standard deviation of the time. The results show
that our tool, TFPV, can find some violation of tree ensemble
in different datasets. When the model violates properties, the
average time required is less than 20 minutes. Since the
properties are generated randomly, a large standard deviation
is acceptable. But it is clear that our approach is scalable
and works well on datasets of different sizes and large tree
ensemble models.

V. RELATED WORK

Since machine learning algorithms are used more and
more frequently in daily life, people have some doubts about
whether they meet certain requirements or properties. There-
fore, more and more researchers are now working on the prop-
erty verification of machine learning models. In the following,
we will introduce the property verification of machine learning
models in two parts: verification of deep learning models and
verification of tree ensemble models.

A. Verification of Deep Learning Models

In 2010, Pulina et al. [2] proposes abstract interpretation to
verify a DNN and introduces a linear approximation algorithm
to estimate the interval of ReLU and Sigmoid output.

Fichetti et al. [13] propose a 0-1 MILP encoding to model
a DNN for property verification and reasons through a MILP
solver and implements a bound tightening mechanism to
reduce the search space.

A method for verification of feed-forward neural networks
with piecewise linear activation function was presented in
[14]. They treat the neural network model as a block-box
and use the SMT solver to verify the approximation of the
block-box. Compared with Ehlers, Huang et al. [1] describe a
white-box approach to verify the feed-forward neural networks
and introduce a feed-forward analysis that partially based on
discretization to test robustness and find adversarial examples.

B. Verification of Tree Ensemble Models

Tree ensemble models are non-continuous step functions,
which is different from neural networks in deep learning.
Therefore, the techniques mentioned above cannot be used
to verification of tree ensemble models. Recently several
researchers have pursued approaches to the verification of tree
ensemble models.

Tornblem et al. [3] proposed a robustness verification tool
of tree ensembles called VoTE. Their method is an abstraction-
refinement procedure that iteratively refines a partition of the
input space where each block of the partition is a hyperrect-
angle. A tool named Silva introduced by Ranzato and Zanella
[15] pushes forward the line of research by designing a general
and principled abstract interpretation-based framework for the
formal verification of robustness and stability properties of

decision tree ensemble models. Unlike tool VoTE, the sound-
ness and completeness properties of Tornblem’s verification
algorithm are not formally proved. The algorithm of Silva
is based on the principles of abstract interpretation, which is
endowed with a formal soundness and completeness proof.

VI. CONCLUSION AND FUTURE WORK

This paper presents a method for verifying whether a tree
ensemble model violates a user-specific property. We give
one case study and show that our approach works. Moreover,
in the experiment, we test various properties on datasets of
different scale, which reflects the effectiveness of our method.
In addition, the number of trees in the tree ensemble we tested
is 100, and the depth is unlimited. By contrast, related methods
struggle to verify 25 trees of depth 20 [3]. This demonstrates
that our approach is scalable. Our approach relies heavily on
sample generation, and in some certain cases, the performance
of our tool, TEPV, may degrade dramatically. As future work,
we plan to improve the sample generation algorithm so that our
method can produce samples that meet the requirements more
quickly and improve the speed of finding counterexamples.

REFERENCES

[1] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in International conference on computer aided
verification. Springer, 2017, pp. 3–29.

[2] L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in International Conference
on Computer Aided Verification. Springer, 2010, pp. 243–257.

[3] J. Törnblom and S. Nadjm-Tehrani, “Formal verification of input-output
mappings of tree ensembles,” Science of Computer Programming, vol.
194, p. 102450, 2020.

[4] G. Zhang, Z. Hou, Y. Huang, J. Shi, H. Bride, J. S. Dong, and
Y. Gao, “Extracting optimal explanations for ensemble trees via logical
reasoning,” arXiv preprint arXiv:2103.02191, 2021.

[5] Z. Cui, W. Chen, Y. He, and Y. Chen, “Optimal action extraction for
random forests and boosted trees,” in Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data
mining, 2015, pp. 179–188.

[6] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[7] A. Papenmeier, G. Englebienne, and C. Seifert, “How model ac-
curacy and explanation fidelity influence user trust,” arXiv preprint
arXiv:1907.12652, 2019.

[8] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[11] OpenML, “openml.org,” https://www.openml.org, Accessed 2019.
[12] P. D. Turney, “Cost-sensitive classification: Empirical evaluation of a

hybrid genetic decision tree induction algorithm,” Journal of artificial
intelligence research, vol. 2, pp. 369–409, 1994.

[13] M. Fischetti and J. Jo, “Deep neural networks and mixed integer linear
optimization,” Constraints, vol. 23, no. 3, pp. 296–309, 2018.

[14] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2017, pp. 269–286.

[15] F. Ranzato and M. Zanella, “Abstract interpretation of decision tree en-
semble classifiers,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 5478–5486.


