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Abstract—Blockchain technology has been integrated into a
wide range of applications in various sectors, such as finance, sup-
ply chain, health, and governance. However, the participation of
a few actors with malicious intentions challenges law enforcement
authorities, regulators and other users. These challenges revolve
around dealing with an array of illegal activities such as asset
trades in dark markets, receiving payments for cyber-attacks, and
facilitating money laundering. Developing an efficient mechanism
to identify malicious actors in blockchain networks is a pressing
need to build confidence among the stakeholders and ensure
regulatory adherence. The raw data of blockchain transactions
do not readily reveal the dynamic behavioural changes and
their interconnection between transactions and accounts. These
behavioural patterns can be useful for identifying malicious
actors. Machine Learning (ML)-based models for early warning
and/or detection are considered one of the potential approaches.
In ML, feature engineering plays a crucial role in enhancing
the predictive performance of a model. This study proposes
different categories of features and unified feature extraction
approaches for raw Bitcoin and Ethereum transaction data
and their interconnection information. As far as we are aware,
there has been no study that considered a feature engineering
approach for identifying malicious activities. The significance of
the engineered features was validated against eight classifiers,
including Random Forest (RF), XG-boost (XG), Silas, and neural
network-based classifiers. The results showed that these features
contribute to higher classification accuracy and higher Area
Under the Receiver Operating Characteristic Curve (AUC) value
for both Bitcoin and Ethereum transactions. This work also anal-
ysed the influence of engineered features in classification using
the eXplainable Artificial Intelligence (XAI) technique SHapley
Additive exPlanations (SHAP) values. The feature importance
scores confirmed the significance of the proposed engineered
features towards implementing classification models to identify,
target and disrupt malicious activities in blockchain networks.

Index Terms—blockchain, Explainable Artificial Intelligence,
cryptocurrency, anomaly detection, graph embedding

I. INTRODUCTION

BLockchain technology has many potential applications
in different industries [1], [2] that gives decentralisa-

tion, provenance and immutability for trustless transaction
activities. In permissionless blockchain networks, participants
can be pseudo-identified through public keys. This pseudony-
mous nature facilitates users to hide their real identities
and/ or protect their privacy when performing transactions.
This advantage also comes with caveats, as an enabler for
malicious activities, such as Bitcoin payments for ransomware
attacks [3], black market trades and facilitating money launder-
ing. Cybercriminals exploit anonymity property together with

the borderless distributedness of the blockchain to easily cover
up traces of illegal activities. Recently, the Cerber ransomware
campaign [4] demanded ransomware payments in Bitcoin.
In this event, tens of thousands of victims transferred their
Bitcoins to a single wallet. From there, the Bitcoin payments
were transferred into a large number of other accounts, facili-
tating a form of money laundering. The ability to analyse the
behaviour of such transaction networks, in almost real-time,
would pave an effective way to taking down malicious entities
and identifying the actual source behind such activities.

The transactions in a blockchain network can send and
receive cryptocurrencies or asset tokens and create or invoke
a smart contract. Each of these transactions has its own
properties and an interconnection (spend or receive) with other
transactions. The interconnections between the transactions
represent the behaviour of the entities (accounts or smart con-
tracts) in the blockchain network. The properties of transac-
tions and their behavioural information are the potential inputs
for identifying malicious entities. In general, the identification
of malicious entities involves exploiting domain knowledge,
forming logical reasoning, feature engineering and, most of
all, a time-consuming process to identify the best-performing
features and machine learning models. Identifying malicious
entities in blockchain networks also needs meaningful trans-
formation of the transaction data into an appropriate domain
that can easily support the needed analysis. Various studies
analysed blockchain transactions based on path, connectivity,
community, and node analysis [5]–[8]. These studies mainly
utilised address-based features of blockchain transactions. The
extraction of address-based features involves domain knowl-
edge of the address holders and clustering heuristics [7],
[9], [10]. The clustering heuristics are, however, task-specific
and cannot achieve similar performance while employing
different or unknown tasks. When these heuristics perform
the analysis on large-scale industrial networks, they may also
suffer from high computational costs and excessive memory
requirements. Considering these limitations, this research pro-
posed an automated unified feature engineering pipeline for
extracting feature values from blockchain networks. Feature
engineering involves obtaining features from raw transaction
data, aggregating statistical measures of the extracted features,
transforming transaction data into a graph, obtaining network
properties (using node centrality measures), and generating
embedding features using graphs. These features obtained
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significantly high test accuracies for classifying malicious
behaviour of Bitcoin transactions (88.0%) and Ethereum EOAs
(97.86%). In addition, this work analysed the influence of a
feature or set of features in malicious behaviour identification
using the XAI technique SHAP values. The main contributions
of this work are:

1) Identified novel structural and relational features of the
Bitcoin transactions and Ethereum’s Externally Owned
Accounts (EOAs) in this work. The validation results
based on the performance of standard machine learn-
ing techniques for detecting malicious transactions and
EOAs confirmed that the proposed features achieve a
higher F1-score compared to the features in existing
datasets sourced from the same raw data.

2) Proposed a unified automated feature engineering
pipeline to extract feature values from raw Bitcoin/
Ethereum transaction data and their interconnection in-
formation. To the best of our knowledge, this is the first
work which automates blockchain data engineering in
a systematic way that is applicable to multiple types of
blockchain networks.

3) The results of the XAI-based analysis revealed the
influential features which are highly correlated with
the behaviour of blockchain transactions. This sheds
light on the features which are significantly correlated
with suspicious behaviour and are beneficial for training
efficient classifiers.

The rest of the paper is structured as follows: Section II
presents a critical review of related work. Section III de-
scribes an overview of the proposed unified feature engineer-
ing approach, and Section IV explains the process of data
collection from blockchain networks. Section V details the
feature extraction, graph modelling and algorithms involved
in features engineering. Section VI presents results for engi-
neered feature validation using the classification approaches.
Section VII analyses the effectiveness of engineered features
in classification using the SHAP feature importance measure.
Section VIII discusses the research findings, limitations, and
future directions. Finally, Section IX concludes the paper.

II. RELATED WORK

This section summarises the literature on malicious activity
detection in blockchain networks. Specifically, this section
details the features used in the literature for the said purpose.
Most of the research used address-based features such as
structural (based on metadata information), centrality scores,
and topological and geometric structures of the user or entity
graphs to analyse the characteristics of transactions in a
specific blockchain.

Akcora et al., [5] proposed a classification approach based
on topological and geometric features of a Bitcoin trans-
action graph. Their proposed method used an obfuscation
pattern of the Bitcoin transaction to predict ransomware
and normal addresses. They published Bitcoin normal and
ransomware-related address-based dataset BitcoinHeistRan-
somwareAddressDataset [11] with six features. These six
address-based features were identified using domain knowl-
edge of ransomware transactions and clustering heuristics.

Moreover, their proposed heuristics are task-specific (based on
splitting and merging) and do not achieve similar performance
across different or unknown tasks.

Pranav et al., [7] proposed an ensemble of Decision Tree
(DT) approaches to classify malicious actors in the Bitcoin
network. Their proposed approach considered nine features
based on the amount and time of transactions and addresses in
the Bitcoin network. There is no result reported regarding the
influence of the features and the type of malicious behaviour
classified. The dataset used in their experiment is also not
publicly available to compare the impact of the features.

Weber et al., [12] published an Elliptic dataset from a graph
network of Bitcoin transactions. Their proposed graph network
maps the Bitcoin transactions of real entities belonging to licit
categories (exchanges, wallet providers, miners, licit services)
and illicit categories (scams, malware, terrorist, organizations,
ransomware, Ponzi schemes). In their constructed graph, nodes
represent transactions and the edges represent the flow of
Bitcoin (BTC) from one transaction to the next. In the Elliptic
dataset, 2% are labeled illicit and 21% are labelled licit the
remaining transactions are labelled as unknown. Each node
in the graph is associated with 166 features and the first
94 features represent local information about the transaction
such as time step, number of input/output, transaction fee,
and output volume. The remaining 72 features are called
aggregated features. Their proposed dataset achieved 97.1%
precision, 67.5% recall, and 79.6% F1-score for the RF clas-
sifier. It is noteworthy that the class imbalance in the Elliptic
dataset could be the cause of the low recall and precision,
despite achieving a high precision. The major limitation of the
Elliptic dataset is that the feature set details are anonymised;
making it impossible to identify the features influencing the
classification. Their work did not report any results regarding
the influence of the transaction features in the classification.

Lorenz et al., [13] used the Active Learning (AL) approach
to detect money laundering-related transactions in the Bitcoin
network. They used the Elliptic [12] dataset for their experi-
ment. The major limitation of the Elliptic dataset is that the
feature set is anonymised; due to this reason, their experiment
has not reported any results regarding the influence of the
features in the AL-based money laundering-related nodes’
classification.

Elmougy et al., [14], published the Elliptic++ dataset as an
extension of the Elliptic dataset. It contains 822k Bitcoin wal-
let addresses with 56 features and 203k Bitcoin transactions
with 183 features. The values of transaction and wallet features
published in this dataset mainly focus on money laundering
activities. Their transaction dataset achieved 97.5% precision,
71.9% recall, and 82.8% F1-score for the RF classifier. The
limitations in the Elliptic dataset are applicable here as well.

Song et al., [15] published an HBTBD heterogeneous Bit-
coin transaction dataset for predicting anti-money laundering
in the Bitcoin network. This only considers licit and illicit
transactions of the Elliptic dataset [12]. In addition to the
features of the transactions at the Elliptic dataset, HBTBD
obtained another set of features using the Bitcoin transactions
and addresses metapaths. The metapath feature of the address
is calculated based on the input and output relations between
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the transaction and wallets. The features identified in this
dataset achieved 92.2% precision, 61.7% recall, and 73.9%
F1-score as the best results for the illicit nodes’ classification
using Random Forest+MAGNN. The MAGNN is a heteroge-
neous graph neural network. In their dataset, the real context
information of the wallet address features is not available for
validation.

Monamo et al., [16] detected fraudulent activity in Bitcoin
transactions using an unlabelled dataset (URL not available
for validation) created by the Laboratory for Computational
Biology at the University of Illinois. The data used for their
experiment contains fourteen Bitcoin transaction-based fea-
tures, considering currency-based, network features-based, and
the average neighbourhood-based aspects. Their results only
evaluated the trimmed k-means clustering for unsupervised
cybercrime detection in the Bitcoin network. However, their
investigation did not include any comprehensive examination
or disclosure of the influence and effects of the engineered
features employed during the analysis.

Pham et al., [17] investigated the Bitcoin network analy-
sis using three unsupervised learning-based network analysis
approaches - power degree and densification laws, k-means
clustering, and Local Outlier Factor (LOF) [18]. The network
analysis approaches utilised six features of the user graph
and three features of the transaction graph. These features are
based on the number of input (in-degree) and output (out-
degree) transactions and their total and mean incoming and
outgoing transaction amounts. The total transaction amount
feature reveals the anomalous behaviour for power degree
distribution values, and the mean of incoming and outgoing
transaction amount features support identifying anomalies us-
ing the LOF approach. There are no specific findings reported
for the k-means clustering. Noticeably, the dataset used in their
research work is not publicly available for comparison.

Podgorelec et al., [19] used features based on the minimum,
maximum, mean and standard deviation of the number of
transactions from Ethereum mainnet within a given time-
frame. Their identified features were used for the anomalous
behaviour detection of smart contract or externally owned
accounts using the Isolation Forest unsupervised learning
approach [20]. However, they have not reported any details
regarding the impact of the identified features in anomaly de-
tection. The dataset they used for the experiment is unlabelled,
lacks detailed information about the features, and is publicly
unavailable for comparison.

Zhang, Rui et al., [6] used the Bitcoin transaction dataset
provided by the ELTE project [21] to evaluate their BTCOut
algorithm. The dataset contained unlabelled 11 million users
(addresses) and 19 million transaction records. The features
of the transaction used in their research were based on time,
amount, and structural constraints. Their unsupervised-based
anomaly detection used 18 features of the transaction and user
graphs. However, they did not report any analysis regarding the
contribution of their selected features for anomaly detection.

Scicchitano et al., [22] used historical logs of the Ethereum
Classic network to detect the Decentralised Autonomous Or-
ganisation (DAO) attacks using an unsupervised learning-
based encoder-decoder deep learning model. They released

Ethereum Classic Blockchain dataset [23], which
contains blocks, transactions, contracts, logs, token transfers,
tokens, and traces. Their experiment only validated the data
related to block using twelve features related to block size
and related transactions. Based on the result, their engineered
features are insufficient to detect the DAO attack.

Samantha et al., [24] used the structural features of the Bit-
coin transactions namely inDegree, outDegree, totalInput, and
totalOupt as node properties for hypergraph-based detection of
malicious participants. They obtained improved performance
for the node classification using the above features.

Wu, Jiajing et al., [25] proposed a network embedding
algorithm trans2Vec to classify phishing transactions of
EOAs in the Ethereum network. Their node embedding al-
gorithm utilised the amount and time-based features of the
EOAs to construct an embedding vector (64 dimensions).
The embedding vectors constructed by their proposed ap-
proach were validated using the Logistic Regression (LR),
Naive Bayes (NB), Isolation forest, and one-class Support
Vector Machine (SVM) [26] and obtained a reasonable F1-
score. Their findings reported that the transaction networks’
structural, time and amount-based information influenced the
detection of phishing.

In the literature, analysis of blockchain transactions mostly
considered structural, time-based, centrality measures-based
features of the wallets and topological and geometric-based
features of user or entity graphs. Most of the datasets used
in related studies noticeably lack public accessibility, which
hinders validation. The usability of the existing Elliptic [12]
dataset is limited since the number of anomalous transactions
is relatively small compared to normal ones. This can make
it challenging for machine learning models to learn and
generalise to identify unknown anomalies. Another limitation
is the lack of context for features. The absence of context
makes it difficult to understand the reasons behind the labels
of transactions. Both Elliptic and Xblock datasets [25] may not
fully capture the temporal dynamics of financial transactions
which limits the ability of models to detect anomalies over
time. The other dataset BitcoinHeist [10] for normal and
various ransomware wallet settlements comprises six graph-
based features. Considerably, the features in BitcoinHeist
were extracted based on the heuristics and the labelling of
ransomware wallets was made on certain assumptions. These
subjective and uninformative features considered in the liter-
ature underscore the need for systematic feature engineering
for the analysis of blockchain networks. Recognising these
gaps and challenges, this research aims to introduce a unified
feature engineering to extract various categories of features
of blockchain transactions. Further, the significance of these
features is validated through the application of XAI techniques
in identifying nodes involved in illicit activities.

III. OVERVIEW OF THE PROPOSED METHODOLOGY

This section outlines the methodology of the proposed uni-
fied feature engineering approach, including data collection,
extracting features from blockchain transactions and validating
them using various machine learning models and feature
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Fig. 1: Overview of the proposed methodology.

importance scores. As represented in Fig. 1, the proposed
methodology contains three main phases: (i) data collection,
(ii) feature engineering, and (iii) analysis. These phases clearly
describe the main tasks involved in this research work and
group the techniques and processes associated with them.

The data collection phase performed the fetching of raw
transactions (JSONs) related to normal and malicious nodes
from Bitcoin and Ethereum networks (transaction or EOA
address). A detailed explanation of the processes within this
phase is given in Section IV. The outcome of this phase is fed
into the second phase dedicated to feature engineering.

In the feature engineering phase, transaction data obtained
via the data collection are used to engineer three sets of fea-
tures namely, structural, graph-based network properties, and
embedding. For the first part of feature engineering, several
raw transaction feature values are extracted and then used
to generate aggregated feature values by applying different
statistical measures. The combination of raw and aggregated
features is referred to as structural features. A detailed expla-
nation for structural feature extraction is given in Section V-A.
For the second part of feature engineering, the transaction
JSONs are transformed into various graphs on top of the graph
database that involves various algorithms [27]. These graphs
capture the behavioural features of transactions and EOAs for
different types of blockchain networks (Unspent Transaction
Output - UTXO or account-based). Graph modelling on top
of the graph database eliminates the need for intermediate
processes like data normalisation. The process involved in
graph modelling for blockchain transactions is detailed in
Section V-B.

The outcome of graph modelling is used to capture graph-
based network property features and embedding features.
Graph-based network properties and embedding features are
a vector representation of the relationship between a node
and its neighbours. The embedding with higher dimensions
increases the computational cost but generally yields richer
information in the embedding vector. This research chose a
dimension of 20 for the embedding vector to balance the
required computational resources and information to detect
malicious activities. The detailed description of this phase is
described in Sections V-C and V-D.

The final phase deals with the analysis of the engineered
features from the previous phase. This phase evaluates the
significance of engineered features via the results of node
(transactions or EOAs) classification and feature importance
analysis using the XAI technique, which identifies influential
features related to malicious activities. The detailed processes
involved in this phase are given in Sections VI and VII.

IV. DATA COLLECTION

This section describes the collection of normal and mali-
cious blockchain transaction data using public APIs. The APIs
used in this research ( [28] and [29]) have usage limitations,
permitting only up to 250 transactions per wallet and a
maximum of 100 requests per day. The APIs from various
platforms provide transaction data in different formats; this
will change the reference name of the key features in the
generalised graph modelling algorithm. Additionally, the null
or invalid values in the transactions provided via API affect
feature aggregation and efficiency in graph-based modelling.
Based on our knowledge, the design of blockchain transactions
is often associated with pseudo-anonymity and the participants
are identified by cryptographic addresses rather than personal
information, but the linkage between these addresses and real-
world identities may be established through various means [30]
that may compromise privacy. Notably, it is not possible to
infer any real-world identities related to transactions and the
EOAs data used in this research work, ensuring privacy.

A. Datasets for Bitcoin network

Two Bitcoin datasets are created in this research. The
first one consists of binary classes (normal and ransomware
settlement-based) transactions and the other has multiple
classes (theft, hack, dark market-based) of malicious trans-
actions. The binary class dataset is created with normal
and ransomware settlement-related Bitcoin transactions using
the labelled ransomware addresses available in the Bitcoin-
Heist [10] dataset. Recent 100 transactions corresponding with
labelled addresses were captured using public API [28]. The
assumptions made here are that all the transactions related to
the normal addresses are non-suspicious and those related to
ransomware settlements-related addresses are suspicious.
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The multiclass malicious Bitcoin transactions dataset was
created using raw transaction information of the hashes cap-
tured via public API [28]. The transactions were labelled based
on the published IEEE-bitcoin malicious dataset [31]. Unlike
the BitcoinHeist [10] dataset, which has only the addresses,
the IEEE-bitcoin malicious dataset contains transaction hashes
related to 1st FBI Silk Road seizures (542), 2nd FBI Silk Road
seizures (609), Bitcoin thefts (55), and Bitcoin hack (47).

B. Dataset for Ethereum network

The dataset for normal and phishing settlements-related
EOA addresses was prepared using the transaction information
captured via public API [29]. The EOAs and their transactions
were labelled based on the information available in the pub-
lished first-order transaction data of the EOA addresses [25]
which contain 1,660 phishing and 1,700 normal addresses
with 9 features. The rest of the transaction information related
to gas value and transaction fee was captured using public
API [29].

V. FEATURE ENGINEERING

This section describes the approach to engineering three
categories of feature sets from the blockchain transaction data
mentioned in Section IV. Subsection A describes the process
of extracting structural features from Bitcoin and Ethereum
data. Subsection B describes the algorithms related to graph
modelling. Subsections C and D explain the approaches in-
volved in graph-based feature extraction of network properties
and graph embedding, respectively.

A. Feature extraction: Structural properties

The structural properties of a transaction may vary based on
the type of the blockchain network. This section describes the
process of extracting structural properties from the Bitcoin and
Ethereum transaction data. It involves capturing raw features
directly from the blockchain transaction and other aggregated
features via statistical measures (maximum, minimum, mean,
median, mode, and standard deviation).

1) Bitcoin transaction: This study focuses mainly on the
transaction-based features of Bitcoin data. A total of 16 fea-
tures were selected for the analysis. Among these, 12 features
are newly created in this work. The features inDegree and
outDegree, are reported in [32] and totalInput and totalOutput
are reported in [24]. The details of the features are presented in
Table I. It should, however, be noted that the hash, lockTime,
blockNumber, time, and isCoinbase features are included to
inform the features available in the raw transaction data, but
are not used for classification.

2) Ethereum EOA: This study focuses mainly on the EOA-
address-based features of Ethereum data. A total of 52 features
were selected for the analysis. Among these, 50 features are
newly introduced in this work, and the other two features,
standard deviations of the received and spent amounts, are
from the previous work reported in [33]. The equations (1), (2),
(3), and (4) explain four main features (asSender, asReceiver,

TABLE I: Structural features for Bitcoin transaction.

Feature Description
hash unique identifier of the transaction
lockT ime limit of waiting time from the arrival of the

transaction
blockNumber unique number of the block which contains

the transaction
time confirmation time of the transaction
isCoinbase feature indicating if the transaction is coin-

base
inDegree number of incoming transactions
outDegree number of outgoing transactions
totalInput total amount of Bitcoins received
totalOutput total amount of Bitcoin sent
(∗)− input (min/ avg/ max/ med/ mod/ std) amount of

Bitcoin received
(∗)− output (min/avg/max/med/mod/std) amount of Bit-

coin spent

totalSpent and totalReceived), which contribute to the property
of the EOA are given below:

asSender = f(ux), where ux ∈ S (1)

asReceiver = f(ux), where ux ∈ R (2)

totalSpent(ux) =

m∑
i=1

|tuxvi |, where vi ∈ R (3)

totalReceive(ux) =

n∑
i=1

|tviux
|, where vi ∈ S (4)

Where f(ux) represents the total number of times the node ux
participated as a sender or receiver, S is a list of senders, and
R is a list of receivers. In equation (3) |tuxvi | is the amount
spent by node ux to node vi. Whereas, in equation (4) |tviux |
is the amount received by node ux from node vi. Where ux
and vi are EOA addresses and m and n are the total number of
spending and receiving transactions, respectively. The rest of
the 48 features are created by aggregating the values of these
four base features using statistical measures. Table II presents
a detailed description of these structural features.

In Table I and Table II, the (∗)− represents the six
statistical-based (maximum, minimum, mean, median, mode,
and standard deviation) values of the given feature. The time
complexity of structural feature extraction is expressed as
O(n), where n is the total amount of data in each category
(transaction or EOA).

The structural features alone are not sufficient to char-
acterise the interactions between the transactions. Capturing
the intrinsic nature of these interactions needs appropriate
representation. This research chooses graph modelling as an
approach to achieve this need. The Algorithm 1 is designed to
construct the graphs based on the type of blockchain network.
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TABLE II: Structural features for Ethereum EOA.

Feature Description
asSender number of times a specific address as a

sender
asReceiver number of times a specific address as a

receiver
totalSpent total amount spent by a specific address
totalReceive total amount received by a specific address
(∗)− spent (min/avg/max/med/mod/std) amount spent

by a specific address
(∗)− receive (min/avg/max/med/mod/std) amount

received by a specific address
(∗)− gasUsed s (min/avg/max/med/mod/std) gas used for

sending
(∗)− gasUsed r (min/avg/max/med/mod/std) gas used for re-

ceiving
(∗)− gasPrice s (min/avg/max/med/mod/std) gas price used

for sending
(∗)− gasPrice r (min/avg/max/med/mod/std) gas price used

for receiving
(∗)− fee s (min/avg/max/med/mod/std) transaction fee

for sending
(∗)− fee r (min/avg/max/med/mod/std) transaction fee

for receiving

B. Graph modelling for blockchain transaction

In a blockchain network, the blocks are arranged as an
ordered list, where each block is a collection of transactions.
A transaction normally represents a record of transferring a
digital asset between the sender and receiver. The sender and
receiver can be transactions, wallets, EOAs or smart contracts.
The nature of the asset depends on the type of blockchain. For
example, in the Bitcoin network, the asset is a cryptocurrency
in Bitcoin (BTC). Similarly, in the Ethereum network, the
asset is a cryptocurrency in ether (ETH) or a token. In this
research, the graph modelling considers interactions between
transactions of the Bitcoin network and EOAs of the Ethereum
network. The feature engineering from smart contract-based
transaction data is similar to EOA [24], but this work only
considered EOA. The graph modelling for smart contract-
based transactions is also the same as the graph for EOA; only
the type of the node will be different. The node properties for
the EOA are applicable for smart contract addresses as well.

1) Transaction graph: A transaction graph is a homoge-
neous type of graph that applies to UTXO-based blockchain
networks. A transaction graph Gt = (V,E), where V repre-
sents the set of transactions and E ⊂ V × V represents the
set of edges. Each transaction node has a set of node features
F = {inDegree, outDegree, totalInput, totalOutput}. The
e(u, v) represents the amount of bitcoin transferred between
u and v.

2) Money flow transaction graph: The money flow trans-
action (MFT) graph is a homogeneous graph. It is appli-
cable for both UTXO and account-based blockchain net-
works. In this research, the MFT graph Gm = (V,E),
where V represents the set of EOAs, and E ⊂ V × V
is a set of edges. Each EOA node has a set of features,
F = {asSender, asReceiver, totalSpent, totalReceive}.

The represents the amount of cryptocurrency transferred be-
tween u and v and the confirmation order of the transaction.

The lines from 5-22 and 23-35 in graph modelling Algo-
rithm 1 incorporate both aspects described in subsections V-B1
and V-B2, respectively. It begins by reading the blockchain
transactions and identifying the type of blockchain network
(Bitcoin or Ethereum). Based on the type, it goes through
the list of transactions individually and creates the nodes with
their properties as stated either in subsections V-B1 or V-B2.
The next step is creating edges between the nodes based
on the transaction information. The edge information e(u, v)
varies based on the type of the blockchain network. The
txIndex variable defined in line 31 of Algorithm 1, is an
index of the transaction which is calculated using the function
findIndex(tnxihash). The function findIndex returns an
index for a given transaction hash from a sorted (ascending
order) transaction list. Here sorting is carried out based on
the confirmation time of transactions. Here, the tnxList is
the list of transactions. The time complexity of the graph
modelling algorithm is primarily determined by the size of the
transaction list, denoted as N . As described in Algorithm 1,
when modelling Bitcoin transactions, the outer loop iterates
N times, the first inner loop runs (N − 1) times, and the
second inner loop runs M times to establish connections
between transactions, where M represents the number of
inputs (UTXOs). In most cases, the value of M is insignificant
compared to the value of N (M ≪ N ). As a result, the
time complexity can be expressed as O(N2). In the case of
Ethereum transactions, where there are no direct connections
between the transactions, only the outer loop influences the
time complexity, which is O(N).

C. Feature extraction: Network properties

The network properties are considered powerful features
for representing complex networks or graphs [34]. Graph
modelling represents blockchain transactions as graphs. This
work considers a node’s centrality measures under the category
of network properties only for the Ethereum network. The cen-
trality measures are used to effectively capture the interactions
of nodes in a graph quantitatively. The centrality measures of
degree, betweenness, closeness, and eigenvector are calculated
for the EOA to inform their influence or importance in the
MFT. These are described below:

1) Degree centrality: The degree centrality represents the
popularity of a node within a graph based on the total number
of nodes connected to it. In this research, the degree centrality
Cd(ux) in equation (5) represents the number of interactions
of a particular EOA ux with other EOAs {vi}.

Cd(ux) =

k∑
i=1

auxvi , where auxvi ∈ A (5)

The matrix A represents the connection between node ux and
other nodes {vi} and auxvi

is an element in matrix A. The
time complexity of Cd(ux) is O(k+ |E|), where k is the total
number of nodes (EOA) and |E| is the total number of edges
in graph G.
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Algorithm 1: Graph modelling for blockchain trans-
actions.

Input: tnxList, type
Output: G

1 constructGraph(tnxList)
2 G← {}
3 for i ∈ [1, size(tnxList)] do
4 tnxi← tnxList[i]
5 hashi← tnxihash
6 if type == Bitcoin then
7 for j ∈ [i+ 1, size(tnxList)] do
8 tnxj ← tnxList[j]
9 inputsj ← tnxjinputs

10 hashj ← tnxjhash
11 for ins ∈ inputsj do
12 sjhash ← inshash
13 if sjhash == hashi then
14 s←

(sjhash, inDegree s, outDegree s,
15 totalInput s, totalOutput s)
16 r ←

(hashj, inDegree r, outDegree r,
17 totalInput r, totalOutput r)
18 e(s, r)← insvalue
19 V ← (s, r)
20 G← (V, e(s, r))
21 end
22 end
23 end
24 else
25 address s← tnxifrom
26 address r ← tnxito
27 s← (address s, asSender s, asReceiver s,
28 totalReceive s, totalSpent s)
29 r ← (address r, asSender r, asReceiver r,
30 totalReceive r, totalSpent r)
31 value← tnxivalue
32 txIndex← findIndex(tnxihash)
33 e(s, r)← (value, txIndex)
34 V ← (s, r)
35 G← (V, e(s, r))
36 end
37 end
38 return G

2) Betweenness centrality: The betweenness centrality
Cb(ux) measure is calculated based on the number of times an
EOA ux acts as a bridge along the shortest path between two
other nodes {vi} and {vj} which is described in equation(6).

Cb(ux) =
∑

(vi,ux,vj)
i̸=j

f(ψviûxvj )

f(ψvivj )
(6)

Where, ψvivj is the shortest path between nodes vi and vj .
The f(ψvivj ) is the number of shortest paths between vi and
vj , and f(ψviûxvj ) is the number of the shortest paths between

vi and vj that passes through node ux, where, (vi, ux, vj) is
an ordered triple. The time complexity of Cb(ux) is O(k ∗
(k + |E|)). The graph of the blockchain network exhibits a
substantial volume for both k and |E|, the expression k ∗ (k+
|E|) suggests an increase in the complexity of the betweenness
centrality calculation. Node (EOA) with higher betweenness
centrality has more influence over the transactions between
other nodes.

3) Closeness centrality: The closeness centrality in equa-
tion (7) measures how close a node is to other nodes in a
graph.

Cc(u) =
1∑

v ̸=u e(u, v)
(7)

where e(u, v) is considered as the distance (value transferred)
between node u and v in graph G. The time complexity of
Cc(u) is O(k ∗ (|E| + k ∗ log(k))), where k ∗ log(k) is the
complexity for calculating the shortest path from a source node
to other. The node with the highest closeness centrality score
has the shortest distances to all other nodes.

4) Eigenvector centrality: The eigenvector centrality Ce(u)
of a node in equation (8) is defined as the weighted sum of
the degree centralities of all vertices that are connected to that
particular node by an edge.

Ce(ux) =
1

λ

k∑
i=1

auxviCd(vi), where auxvi ∈ A (8)

The matrix A represents the connection between EOA ux
and other EOAs {vi}, λ is the largest eigenvalue of A
and auxvi is an element of matrix A. Where, Cd(vi) =
(C(1), C(2), ..., C(k))T is an eigenvector corresponding to
the value λ. The Cd(vi) is calculated based on the incoming
neighbours of node vi. The time complexity for Ce(ux) is
O(j ∗ (k2)), where j is the total number of iterations and k is
the total number of incoming nodes of node vi; in this work,
the value of j is 20. A node with a higher eigenvector centrality
score implies that the node is involved in many transactions.

D. Feature extraction: Graph embedding

Graph embedding is an effective way to represent the struc-
ture of a graph as a set of vectors. It can capture the topology,
vertex-to-vertex relationship, and other relevant information
about graphs. Equation (9) describes calculation of embedding,
H(u), is based on the graph topology, T , vertex-to-vertex
relation, ℜ(u, v), and other relevant information about the
graph, I.

H(u) = {T ,ℜ(u, v), I} (9)

In a blockchain network, the graph topology T depends on
the type of blockchain. The node types may be transactions,
EOA addresses, or smart contracts. The ℜ(u, v) represents the
relation between different or the same types of nodes. The I
represents the properties of the nodes and edges.

Graph embedding methods can belong to one of three
categories: 1) factorisation, 2) random walk, and 3) deep learn-
ing. In this work, the random-walk-based graph embedding
approach GraphSAGE [35] was chosen to calculate the graph
embedding vector of the graphs stated in subsection V-B. The
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GraphSAGE samples a tree rooted at each node by recursively
expanding the root node’s neighbourhood with a fixed number
of iterations i. For each iteration, it computes the root node’s
hidden representation by hierarchically aggregating intermedi-
ate nodes’ representation from bottom to top. Equation (10)
details the calculation for node u intermediate embedding
vector hiu at ith iteration.

hiu = ℓ(W i.µ(hi−1
u , {hi−1

u ∀u ∈ N̂(u)})) (10)

h0u = Xu (11)

where Xu is the initial feature vector of root node u, ℓ is a loss
function, W i is a weight matrix for each convolution layer, µ
is an aggregation function, and N̂(u) is a random sample of
the root node u’s neighbors [36].

In this work, the inputs for GraphSAGE are as follows:

T ← Gt or Gm

i ← 5

Xu ← F
µ ← max pooling

The Gt and Gm are the Bitcoin transaction and the Ethereum
MFT graphs respectively. Here, the number of iterations i = 5,
and the aggregation function is max pooling. Max pooling
calculates the largest value in each patch of a feature vector. At
the end of a given number of iterations, GraphSAGE provides
an embedding vector H(u) for the node u. This embedding
vector is considered the graph-embedding feature of the node
u (transaction or EOA) during the classification. The time
complexity for calculating graph embedding feature vector is
O(|V | ∗ D ∗ L ∗M). Sampling neighbours for each node in
each layer takes O(|V |∗M) and aggregating information from
neighbours in each layer takes O(|V | ∗ D) time. Here |V |
number of nodes in graph G, D is the dimensionality of the
embedding vector, L is the number of layers in GraphSAGE,
and M is the number of samples per node in each layer.

VI. FEATURE EVALUATION VIA CLASSIFICATION RESULTS

This section presents the validation process for engineered
structural, embedding, and network property-based features.
The features are validated by analysing their significance
in classifying both normal and malicious financial activities
related to Bitcoin and Ethereum EOA transactions.

A. Experimental setup

The experimental setup utilised three different datasets 1)
the normal and ransomware settlement-related Bitcoin trans-
actions, 2) malicious (hacks, theft, and Silk Road-related
trades) Bitcoin transactions, and 3) normal and phishing
settlement-related Ethereum transactions. Feature evaluation
utilised two types of approaches such as 5-fold cross-validation
and Grid search (optimised hyperparameters). 5-fold cross-
validation was learned on the whole dataset and each indi-
vidual (Structural, Network, and Embedding) and combined
(Structural+Embedding, and Structural+Network+Embedding)
feature set was considered for the evaluation. For the Grid

search approach, data samples were divided into training
(70%) and testing (30%) sets. The Grid search performed
cross-validation on the training set for different models of
classifiers and identified the best model based on the evaluation
results. Finally, the best-trained model for each classifier is
tested using a separate testing dataset. The capabilities of the
features were evaluated using accuracy(ACC), ROC-AUC(roc-
auc), precision (pre), recall (rec), and F1-score(f1) measures.
In this experiment, Logistic Regression (LR) [37], Random
Forest (RF) [38], Decision Tree (DT) [39], k-Nearest Neighbor
(k-NN) [40], Naı̈ve Bayes (NB) [41], XG-boost (XG) [42],
Silas [43], and AutoKeras [44] are used to classify transactions
(Bitcoin) and EOAs (Ethereum) to identify the suspicious
behaviours.

The experiments ran on a computer with Ubuntu 20.04.4
LTS, 11th Gen Intel(R) Core(TM) i7-11850H and 32.0 GB
RAM. The code is written in Python, and the graph database
is GraphQL 1.

B. Classifiers for blockchain transactions

Logistic regression is a standard classifier for supervised
learning. In this experiment, the LR is considered a baseline
for classifying malicious transactions and EOA. Further, it
is relatively easy to implement and computationally less in-
tensive than other models. The other classifiers, RF, DT, and
XG, perform classification by building various decision trees
and applying the bagging or boosting idea. These classifiers
are computationally more intensive than the LR approach.
Silas [43] is a generic data mining and predictive analytics
framework that deals with structured data. Also, it contains
several modules to understand the model’s classification using
the XAI technique. The k-NN algorithm is relatively a simple,
supervised machine learning algorithm. It works by finding the
distances between a target node and all the other nodes in the
blockchain dataset to select the specified number of instances
(k) closest to the target. It is used to obtain an understanding of
the models and the complexity of the data in the classification.
AutoKeras [44] is an efficient neural architecture search (NAS)
with network morphism. It automatically finds the best combi-
nation of data preparation, model, and model hyperparameters
for a predictive modelling problem.

C. Validation for structural and embedding features of Bit-
coin transactions: Normal and ransomware settlement-related
classification

The binary class classification of Bitcoin transactions used
the normal and ransomware settlement-related dataset ex-
plained in subsection IV-A. Where Class 1 represents ran-
somware transactions, and Class 0 represents normal trans-
actions. Table III shows the number of training and testing
Bitcoin transaction nodes.

Tables IVa, and IVb present classification results for
structural, embedding, and structural+embedding engineered
features, respectively. Evaluation results in Table IVa were
obtained from 5-fold cross-validation, while those in Table IVb

1https://graphql.org/
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TABLE III: Number of samples in binary class Bitcoin trans-
action dataset.

Transaction type # Training # Testing
Normal 10482 2644

Malicious 5818 1431

were obtained from the test dataset. For the classification
results based on 5-fold cross-validation, RF received the best
accuracy of 88.66% and roc-auc of 95.04% for the structural
features. Silas obtained the best precision of 100.0% for
embedding features, recall of 88.59%, and F1-score of 86.36%
for structural features. Whereas the results obtained for the
test dataset XG obtained the best accuracy of 88.0% and roc-
auc of 94.79% for the structural+embedding features. Silas
obtained the best precision of 100.0% for embedding features.
NB obtained a recall of 99.06% for embedding features and
an F1-score of 82.02% for structural+embedding features. In
Table IVb, the AutoKeras classifier, only accuracy result is
accessible, and no other values are available to compute results
for additional evaluation measures of the test dataset.

The accuracy of the structural features in Tables IVa is al-
most comparable to the accuracy of the structural+embedding
features. These results conclude that the structural features
greatly influence the binary class classification of Bitcoin
transactions. Also, the classifiers based on DT and k-NN
obtained a test accuracy of over 81.00%.

D. Validation for structural and embedding features of Bitcoin
transactions: Multiclass malicious classification

The multiclass classification of Bitcoin transactions used
multiclass malicious activities related datasets described in
subsection IV-A. This dataset only contains malicious trans-
actions and they belong to three categories: Class 1 (hacks),
Class 2 (theft), and Class 3 (1st and 2nd FBI Silk Road
seizures). Table V shows the number of training and test-
ing Bitcoin multi-class transaction nodes. This dataset faced
an imbalanced problem. Therefore, the Synthetic Minority
Oversampling Technique (SMOTE) was employed to balance
the data belonging to the malicious classes. The minority
malicious class belonged to the hack attack-based transactions.

Table VIa and VIb represent the performance of various
classification models for all three sets of features. The classifi-
cation results based on 5-fold cross-validation, k-NN received
the best accuracy of 95.16% for structural+embedding fea-
tures, AutoKeras obtained macro precision of 93.03%, macro
recall of 92.64% and macro F1-score of 92.33% for structural
features. Whereas the results based on the test dataset, RF
obtained the best accuracy of 94.97% for structural features,
k-NN obtained macro precision of 68.86%, RF obtained
macro recall of 79.09% and macro F1-score of 70.15% for
structural+embedding features.

E. Validation for individual features of EOA: Normal and
phishing settlement-related classification

This section presents the classification results of EOAs
based on the structural, network property-based, and embed-

ding features. Table VII presents the number of EOAs used
in training and testing samples. The Ethereum EOA’s features
were evaluated using the non-phishing and phishing datasets
described in subsection IV-B. Class 0 represents normal and
Class 1 represents phishing EOA. The classification results
based on 5-fold cross-validation presented in Table VIIIa
informed, that the RF classifier obtained the best accuracy
of 98.69% and roc-auc of 99.82%, XG classifier obtained
precision, recall and F1-score of 98.25% for structural features.
Whereas the results based on testing data in Table VIIIb show
that the Silas classifier obtained an accuracy of 96.08%, roc-
auc of 99.27% and recall of 98.10%, the RF classifier obtained
a precision of 98.06%, and the XG classifier obtained F1-score
of 98.80% for structural features.

F. Validation for combined features of EOA: Normal and
phishing settlement-related classification

This section details classification results for
structural+embedding, and structural+network property-
based+embedding EOA features. The classification results
based on 5-fold cross-validation informed, the RF classifier
obtained the best accuracy of 98.76%, and roc-auc of
99.80% for structural+network properties-based+embedding
features, XG classifier obtained a precision, recall and
F1-score of 98.19% for structural+embedding features.
Whereas the results based on testing data, the RF classifier
obtained the best accuracy of 97.86%, the XG classifier
obtained a roc-auc of 99.55%, precision of 97.47%, recall
of 98.72%, and F1-score of 98.09% for structural+network
property-based+embedding features.

Based on the classification results presented in Tables IV,
VI and VIII, the accuracy and roc-auc scores for Bitcoin
transactions are influenced by the structural features using
RF classifier. Although the majority and minority class-based
evaluation scores precision and recall were influenced by
embedding features using Silas and NB classifiers, respectively
and the F1-score was influenced by the structural features
using the Silas classifier. These results informed that the
generated embedding features for Bitcoin transactions with
20 dimensions have high false positives and false negative
costs. The accuracy and roc-auc scores for multiclass Bit-
coin transactions are influenced by the structural+embedding
features using the k-NN classifier. The class-based evalua-
tion scores macro precision, macro recall, and macro F1-
score are also influenced by the structural+embedding features
using the XG classifier. Finally, the accuracy and roc-auc
scores for the EOA classification are influenced by the struc-
tural+network property-based+embedding features. The class-
based evaluation score precision is influenced by structural
features using the k-NN classifier, recall is influenced by the
structural+embedding features using the DT classifier, and the
F1-score is influenced by the structural features using the
XG classifier. In summary, the decision tree-based classifiers
performed well in classification, the accuracy and roc-auc
measures are highly dependent on the structural features, and
the structural+embedding features are highly contributed to the
class-based measures.
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TABLE IV: Classification results for the binary class Bitcoin transactions dataset. The numeric columns are the results for
structural, embedding and structural+embedding features, respectively. The results are presented via accuracy (acc), ROC-AUC
(roc-auc), precision (pre), recall (rec), and F1-score (f1). The “-” indicates that there are no relevant results available from the
classifier.

(a) 5-fold cross-validation.

Classifier
Structural Embedding Structural+Embedding

acc roc-auc pre rec f1 acc roc-auc pre rec f1 acc roc-auc pre rec f1

LR 0.7018 0.7863 0.6706 0.6591 0.6621 0.7015 0.6918 0.3522 0.4999 0.3767 0.7087 0.7996 0.6804 0.6691 0.6723

RF 0.8866 0.9504 0.8281 0.8284 0.8282 0.7178 0.7030 0.7899 0.5026 0.3824 0.8815 0.9465 0.8342 0.8344 0.8343

k-NN 0.8533 0.9035 0.7845 0.7848 0.7847 0.6834 0.6227 0.7787 0.7879 0.7813 0.8490 0.9155 0.7828 0.7924 0.7854

DT 0.8653 0.8519 0.7988 0.7986 0.7987 0.7183 0.7034 0.7448 0.5029 0.3834 0.8611 0.8468 0.8037 0.8104 0.8063

NB 0.8653 0.8519 0.6755 0.6833 0.6737 0.5961 0.6509 0.6144 0.5079 0.3075 0.6650 0.7202 0.6144 0.5079 0.3075

XG 0.8509 0.9134 0.8355 0.8392 0.8371 0.7136 0.7097 0.7863 0.5026 0.3825 0.8510 0.9150 0.8411 0.8463 0.8434

Silas 0.8847 0.9502 0.8425 0.8859 0.8636 0.7077 0.7061 1.0000 0.5991 0.7493 0.8819 0.9491 0.8439 0.8825 0.8628
AutoKeras 0.4013 0.5000 0.2006 0.5000 0.2864 0.4012 0.5000 0.7007 0.5001 0.2864 0.4067 0.5045 0.6937 0.5045 0.2967

(b) Optimised hyperparameters.

Classifier
Structural Embedding Structural+Embedding

acc roc-auc pre rec f1 acc roc-auc pre rec f1 acc roc-auc pre rec f1

LR 0.7212 0.7939 0.6196 0.5145 0.5621 0.7119 0.7124 0.0000 0.0000 0.0000 0.7244 0.8073 0.6345 0.5367 0.5815

RF 0.8577 0.9331 0.7767 0.7835 0.7801 0.7245 0.7244 0.7619 0.0073 0.0145 0.8623 0.9363 0.7850 0.7938 0.7894

k-NN 0.8510 0.9254 0.7819 0.7815 0.7817 0.7193 0.7156 1.0000 0.0055 0.0109 0.8319 0.9056 0.7756 0.7878 0.7817

DT 0.8189 0.8019 0.7544 0.7707 0.7624 0.7239 0.7239 0.5000 0.0071 0.0140 0.8282 0.8094 0.7544 0.7815 0.7677

NB 0.7266 0.7662 0.5849 0.7219 0.6463 0.6533 0.6646 0.4019 0.9906 0.5719 0.6763 0.7450 0.5725 0.8852 0.6953

XG 0.8675 0.9428 0.7335 0.8503 0.7876 0.7244 0.7240 0.5088 0.0067 0.0131 0.8800 0.9479 0.7309 0.8517 0.7867

Silas 0.8250 0.9107 0.8782 0.7483 0.8080 0.6699 0.7246 1.0000 0.6028 0.7522 0.8260 0.9129 0.8808 0.7685 0.8208
AutoKeras 0.7737 - - - - 0.6513 - - - - 0.7386 - - -

TABLE V: Number of samples in the multi-class Bitcoin
transaction dataset.

Transaction type # Training # Testing
Hacks 32 10
Theft 782 234

Silk road 674 253

G. Class-based performance measure for blockchain transac-
tions

The analysis of classification performance in various classes
employs the top-performing classifiers, which achieved the
highest test accuracy as in Tables IVb, VIb, and VIIId. The
importance of features in each class is analysed by presenting
confusion matrices in Fig. 2. Furthermore, Fig. 2a demon-
strates how the structural features of Bitcoin transactions exert
influence by attaining high true positives, and true negatives,
and minimising false positives and false negatives (Table
IVb). Additionally, the combination of structural and graph
embedding features significantly impacts the achievement of
high true positives and true negatives for Class 1 (hacks) and
2 (theft), while classifying most of Class 3 (dark market-
related ) malicious activity as Class 2, as depicted in Fig. 2b
(Table VIb). Similarly, the combination of structural, network
property-based, and embedding features exhibits substantial
influence, resulting in high true positives, true negatives, and
reduced false positives and false negatives, as illustrated in

Fig. 2c (Table VIIId). Here true positive: is the number of
normal transactions or EOAs correctly identified as normal,
true negative: is the number of malicious transactions or
EOAs identified as malicious, false positive: is the number
of malicious transactions or EOAs identified as normal, and
false negative: is the number of normal transactions or EOAs
identified as malicious. Based on the observation overall, for
both Bitcoin and Ethereum datasets, all three categories of
engineered features (structural, network property-based, and
embedding) bring promising results in classification accuracy
and roc-auc. Among all three, structural features have the most
significant impact on classification results.

The highlighted results in bold in Tables IVa, IVb, VIa, VIb,
VIIIa, VIIIb, VIIIc, and VIIId show the best results obtained
for the classification accuracy and the roc-auc.

VII. FEATURE IMPORTANCE ANALYSIS USING
EXPLAINABLE AI

Identifying important features helps to eliminate unim-
portant features and improve the classification accuracy and
performance of the machine learning models. This section
analyses the importance of the features for the performance of
the best classifiers using the eXplainable Artificial Intelligence
(XAI) technique SHAP values. The XAI is a research field that
aims to make AI systems and their results more understandable
for humans [45]. XAI tools are crucial for understanding
and interpreting the decisions made by machine learning
models [46]. This research work utilises the well-known game
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TABLE VI: Classification results for the multi-class malicious Bitcoin transactions dataset. The numeric columns indicate
results for structural, embedding and structural+embedding features, respectively. The results are presented via accuracy (acc),
ROC-AUC (roc- auc), macro precision (mar-pre), macro recall (mar-rec), and macro F1-score (mar-f1). The “-” indicates that
there are no relevant results available from the classifier.

(a) 5-fold cross-validation.

Classifier
Structural Embedding Structural+Embedding

acc mar-pre mar-rec mar-f1 acc mar-pre mar-rec mar-f1 acc mar-pre mar-rec mar-f1

LR 0.7349 0.6836 0.6911 0.6842 0.6743 0.5896 0.3752 0.2587 0.8438 0.7184 0.7211 0.7134

RF 0.9370 0.9079 0.9051 0.9029 0.6961 0.6526 0.3798 0.2659 0.9479 0.9094 0.9068 0.9048

k-NN 0.9346 0.8798 0.8727 0.8689 0.6731 0.5361 0.3464 0.2632 0.9516 0.8800 0.8750 0.8722

DT 0.9274 0.8712 0.8726 0.8712 0.8679 0.6026 0.3776 0.2622 0.9346 0.8892 0.8879 0.8859

NB 0.6525 0.5929 0.5935 0.5761 0.5012 0.3876 0.3575 0.2265 0.7191 0.6333 0.3634 0.2323

XG 0.8664 0.9135 0.9114 0.9095 0.6488 0.6122 0.3767 0.2604 0.8606 0.9170 0.9150 0.9133
Silas 0.9206 - - - 0.7485 - - - 0.9161 - - -

AutoKeras 0.9309 0.9303 0.9264 0.9233 0.3947 0.6502 0.3793 0.2698 0.9019 0.9041 0.8945 0.8901

(b) Optimised hyperparameters.

Classifier
Structural Embedding Structural+Embedding

acc mar-pre mar-rec mar-f1 acc mar-pre mar-rec mar-f1 acc mar-pre mar-rec mar-f1

LR 0.8356 0.6405 0.7291 0.6512 0.7253 0.4240 0.3542 0.2619 0.8723 0.6507 0.7638 0.6637

RF 0.9497 0.6834 0.7448 0.6957 0.7369 0.3157 0.3171 0.0446 0.9478 0.6821 0.7909 0.7015
k-NN 0.9419 0.6818 0.6933 0.6865 0.7079 0.4237 0.3528 0.2613 0.9419 0.6886 0.6935 0.6909

DT 0.9207 0.6541 0.6831 0.6411 0.7369 0.4240 0.3542 0.2619 0.9323 0.6411 0.6607 0.6399

NB 0.6286 0.5642 0.6094 0.5162 0.5589 0.1697 0.3333 0.2249 0.6828 0.1697 0.3333 0.2249

XG 0.9110 0.6489 0.6494 0.6445 0.7524 0.2658 0.2570 0.0531 0.9226 0.6441 0.6481 0.6432

Silas 0.9399 - - - 0.7373 - - - 0.9399 - - -

AutoKeras 0.9226 - - - 0.7562 - - - 0.9264 - - -

TABLE VII: Number of samples in the binary class Ethereum
EOA dataset.

Transaction type # Training # Testing
Normal 455 112

Malicious 464 118

theory-based feature importance measure SHAP (SHapley
Additive exPlanations) [47] to identify the influential features
of Bitcoin and Ethereum transactions. The game represents
the outcome (normal or malicious), and the players are the
features (structural, embedding, and network). It quantifies the
contribution that each feature brings to the classification out-
come. The outcome of each possible combination of features is
considered in determining the importance of a single feature.
Based on the classification results presented in Section VI,
the RF classifier obtained promising results in classifying
malicious behaviour of blockchain transactions. Fig. 3 repre-
sents the top six important features of the Bitcoin transaction
dataset identified by SHAP based on the outcome of the
RF classifier. The min-input and outDegree are identified as
important features for only normal and malicious transactions,
respectively. The max-input, avg-input, max-output, and min-
output are identified as the other important features for both
normal and malicious transactions. Significantly, these four

features obtained the highest score for malicious transactions.
Fig. 4, and 5 partly justify the reasons for the outcome of
the feature importance score. Fig. 4 shows that the probability
density of maximum, minimum, and average input values for
malicious transactions is much higher than that of normal
transactions below 225 BTC. Similarly, Fig. 5 shows that
the probability density of maximum, minimum, and average
output values of malicious, transactions is much higher than
that of normal transactions below 600 BTC.

For the Ethereum EOA, Fig. 6, however, shows that there are
no common important features between normal and malicious
transactions. Five statistical measures of fee, spent amount,
and received amount are important features of normal trans-
actions. Whereas, the statistical features of fees and frequency
of receiving contribute to the important features of malicious
transactions.

The outcome of the feature importance analysis concludes
that these engineered features are the most important to train
classification models and this correlates with the findings in
Section VI. The nature of these important features within
a blockchain network may also be used to investigate the
underlying behaviour patterns of suspicious transactions.

VIII. DISCUSSION

In the context of this research, significant contributions
are made by introducing unified mechanisms designed for



12

TABLE VIII: Classification results for the binary class Ethereum EOAs dataset. The numeric columns indicate results for
individual ((a) and (b)) and combined features ((c) and (d)). The results are presented via accuracy (acc), ROC-AUC (roc-
auc), precision (pre), recall (rec), and F1-score (f1). The “-” indicates that there are no relevant results available from the
classifier.

(a) 5-fold cross-validation.

Classifier
Structural Network Embedding

acc roc-auc pre rec f1 acc roc-auc pre rec f1 acc roc-auc pre rec f1

LR 0.9521 0.9943 0.9264 0.9262 0.9261 0.5165 0.5717 0.6338 0.6189 0.6079 0.7217 0.7494 0.8161 0.8160 0.8160

RF 0.9869 0.9982 0.9788 0.9787 0.9787 0.6446 0.6784 0.6708 0.6702 0.6699 0.7391 0.8300 0.8426 0.8413 0.8423

k-NN 0.9434 0.9827 0.9242 0.9224 0.9223 0.6322 0.6801 0.6074 0.5932 0.5794 0.7391 0.7113 0.8410 0.8423 0.8472
DT 0.9695 0.9693 0.9649 0.9649 0.9649 0.6528 0.6564 0.6477 0.6476 0.6477 0.7391 0.8286 0.8168 0.8166 0.8166

NB 0.9696 0.9693 0.7418 0.7190 0.7123 0.5868 0.6346 0.6232 0.5907 0.5619 0.6260 0.7589 0.7850 0.7841 0.7839

XG 0.9661 0.9892 0.9825 0.9825 0.9825 0.6545 0.6568 0.6671 0.6665 0.6661 0.7363 0.8036 0.8469 0.8467 0.8467

Silas 0.9651 0.9931 0.9577 0.9444 0.9412 0.6267 0.7076 0.6944 0.6173 0.6536 0.7377 0.7958 0.7260 0.9298 0.8154

AutoKeras 0.5235 0.5000 0.2616 0.5000 0.3436 0.5235 0.5000 0.2618 0.5000 0.3436 0.5235 0.5000 0.2328 0.5000 0.3177

(b) Optimised hyperparameters.

Classifier
Structural Network Embedding

acc roc-auc pre rec f1 acc roc-auc pre rec f1 acc roc-auc pre rec f1

LR 0.9279 0.9834 0.9321 0.9679 0.9497 0.4957 0.5329 0.5488 0.7564 0.6361 0.6271 0.7025 0.7938 0.8141 0.8038

RF 0.9576 0.9913 0.9806 0.9744 0.9775 0.6239 0.6329 0.6437 0.7179 0.6788 0.7203 0.7770 0.7514 0.8526 0.7988

k-NN 0.9491 0.9895 0.8862 0.9487 0.9164 0.6282 0.6381 0.6341 0.6667 0.6499 0.7245 0.7723 0.7740 0.8782 0.8228
DT 0.9449 0.9449 0.9682 0.9744 0.9712 0.5940 0.5997 0.6419 0.6667 0.6541 0.7161 0.7742 0.7514 0.8333 0.7903

NB 0.9110 0.9442 0.7881 0.5962 0.6788 0.5619 0.5513 0.5556 0.9295 0.6954 0.5974 0.7142 0.7471 0.8141 0.7791

XG 0.9491 0.9880 0.9745 0.9808 0.9880 0.5897 0.6218 0.5909 0.6667 0.6265 0.7161 0.7889 0.7746 0.8589 0.8146

Silas 0.9608 0.9927 0.9451 0.9810 0.9627 0.5000 0.6391 0.3109 0.7391 0.4378 0.4869 0.7667 0.7256 0.8207 0.7702

AutoKeras 0.9522 - - - - 0.5478 - - - - 0.5130 - - - -

(c) 5-fold cross-validation.

Classifier
Structural+Embedding Structural+Network+Embedding

acc roc-auc pre rec f1 acc roc-auc pre rec f1

LR 0.9565 0.9946 0.9339 0.9337 0.9337 0.9380 0.9878 0.9333 0.9330 0.9330

RF 0.9869 0.9979 0.9733 0.9731 0.9731 0.9876 0.9980 0.9753 0.9749 0.9749

k-NN 0.9391 0.9808 0.9036 0.9011 0.9009 0.9421 0.9849 0.9035 0.9011 0.9009

DT 0.9695 0.9692 0.9651 0.9649 0.9649 0.9710 0.9712 0.9700 0.9699 0.9699

NB 0.9130 0.9462 0.7949 0.7947 0.7947 0.8636 0.9021 0.7931 0.7928 0.7928

XG 0.9888 0.9652 0.9819 0.9819 0.9819 0.9678 0.9882 0.9813 0.9812 0.9812
Silas 0.9619 0.9946 0.9315 0.9315 0.9315 0.9695 0.9935 0.9729 0.9114 0.9411

AutoKeras 0.5235 0.4656 0.5000 0.2328 0.5000 0.3177 - - - -

(d) Optimised hyperparameters.

Classifier
Structural+Embedding Structural+Network+Embedding

acc roc-auc pre rec f1 acc roc-auc pre rec f1

LR 0.9194 0.9838 0.9207 0.9679 0.9438 0.9658 0.9921 0.9207 0.9679 0.9438

RF 0.9576 0.9919 0.9683 0.9807 0.9745 0.9786 0.9952 0.9745 0.9808 0.9776

k-NN 0.9449 0.9909 0.8286 0.9294 0.8761 0.9487 0.9882 0.8286 0.9295 0.8761

DT 0.9449 0.9449 0.9451 0.9936 0.9688 0.9615 0.9615 0.9615 0.9615 0.9615

NB 0.8602 0.9005 0.7500 0.8269 0.7866 0.8419 0.8948 0.7443 0.8397 0.7892

XG 0.9533 0.9873 0.9746 0.9872 0.9809 0.9573 0.9955 0.9747 0.9872 0.9809
Silas 0.9565 0.9913 0.9390 0.9809 0.9595 0.9478 0.9888 0.9451 0.9810 0.9627

AutoKeras 0.5478 - - - - 0.9522 - - - -

the extraction of three distinct categories of features from
raw blockchain transactions (structural) and graphs of the

blockchain networks (network properties and embedding). The
effectiveness of these features was validated by classifying
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(a) The class-based performance for binary class Bitcoin
transactions with structural+embedding features.

(b) The class-based performance for multi-class malicious Bitcoin
transactions with structural+embedding features.

(c) The class-based performance for binary class Ethereum
EOAs with structural+network+embedding features.

Fig. 2: Confusion matrix for blockchain transactions.

normal and malicious activities in the blockchain network.
In contrast to the datasets mentioned in the literature, such

as [12] and [25], the Bitcoin and Ethereum normal and
malicious transactions data utilised in this study possess bal-
anced samples in each class. This characteristic facilitates the
learning of generalised patterns by models and enhances their
efficiency in detection. The graph-based features engineered
via this proposed work capture the temporal dynamics of the
ransomware and phishing settlement-based transactions. The
significance of these features is reflected in the combined
features classification results presented in Tables IVb, and
‘Structural+Embedding‘ column in VIb, VIIIb and VIIId.
The feature importance analysis using XAI reveals that the
structural features of Bitcoin transactions influenced the identi-
fication of malicious transactions. In contrast, the combination
of structural and embedding features made a significant con-
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Fig. 3: Top six features influencing the classification of binary
class Bitcoin transactions.
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Fig. 4: Probability density of statistical measures for input
value feature of binary class Bitcoin transactions.

tribution to the identification of malicious Bitcoin transactions
and Ethereum EOA.

Table IX presents a comparison between the results achieved
for binary class Bitcoin transactions and Ethereum EOAs using
combined features and the results reported in the literature. For
direct comparison purposes, the experimental results from this
research are rounded to three decimal places. The term Pro-
posed (S+E) refers to Structural+Embedding for Bitcoin and
Proposed (S+N+E) refers to Structural+Network+Embedding
for Ethereum. The results for the classification of binary
class Bitcoin transactions are referenced from Table IVa.
For Ethereum, related work [25] extracted features using
trans2Vec and then used one-class SVM for classification. For
the comparison, this work conducted a separate classification
using one-class SVM for combined features of EOA and then
compared the results with the results reported in the literature.

The datasets examined in the related studies exhibit a
substantial imbalance issue, particularly with a high number of
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Fig. 5: Probability density of statistical measures for output
value feature of binary class Bitcoin transactions.
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Fig. 6: Top five features influencing the classification of binary
class Ethereum EOAs.

positive samples which is reflected in their reported precision
results. However, the features derived from this research
yield significantly improved recall and F1-score results when
compared with the outcomes reported in the literature. The
combined features identified via this work support classifica-
tion models to achieve high recall which implies that these
features are sensitive to the presence of positive instances,
and it is successful in avoiding a significant number of
false negatives. A high F1-score indicates a balance between
precision and recall, implying that these engineered features
perform well in accurately identifying both false positives and
false negatives. The marginal enhancement in the F1-score of
research works [13] and [14] informs the limitation in the
dimension of the embedding vector. In general, the Bitcoin
transaction graph involves multiple hops, while the Ethereum
MFT graph is limited to a maximum of two hops (account-
based model). Consequently, employing a 20-dimensional em-
bedding proves to be more effective for Ethereum than Bitcoin,
as evidenced by the 1.0 precision (high false positive) of em-
bedding features. This limitation contributes to only marginal

TABLE IX: Comparison details for the classification results
obtained via engineered features and the results in related
literature. Where columns precision (pre), recall (rec), and F1-
score (f1) result in the classification. The “-” indicates that
there are no relevant results available in the literature.

Blockchain Classifier Dataset pre rec f1

Bitcoin RF

Elliptic [12] 0.971 0.675 0.796

Elliptic++ [14] 0.975 0.719 0.828

HBTBD [15] 0.789 0.609 0.687

MoneyLaundering [13] - - 0.830

Proposed (S+E) 0.834 0.834 0.834

Ethereum One-class SVM [26]
Xblock [25] 0.927 0.893 0.908

Proposed (S+N+E) 0.915 0.962 0.938

improvements in the F1-score for the Structural+Embedding
features of Bitcoin transactions.

Upon analysing the outcomes, it becomes evident that
engineered features in this work yield significantly better recall
and F1-score results when compared to previous analyses on
both Bitcoin and Ethereum datasets.

Limitations: The proposed approach has a number of lim-
itations such as the APIs from various platforms providing
transaction data in different formats; this will change the
reference name of the key features in the generalised graph
modelling algorithm. Another limitation is the dimension of
embedding was limited to 20. Also, the number of hidden
layers for GraphSAGE with Neo4j can only be two fixed-
sized hidden layers. However, the exhaustive feature collection
resulting from the existing data sources of the Bitcoin wallet
addresses and Ethereum EOAs for financial crime-based anal-
ysis contributes to advancing blockchain analysis by deepening
the understanding and enabling benchmarking.

IX. CONCLUSION

This work proposed a unified feature engineering pipeline
to extract three categories of features for malicious activity
detection in Bitcoin and Ethereum blockchain networks. The
XAI-based feature importance analysis revealed that for both
Bitcoin and the Ethereum networks the statistical measures-
based features yield higher predictive performance in the
classification of malicious actors. The comparison outcomes
indicate that, when considering the proposed feature sets, the
Structural+Network+Embedding features demonstrate superior
performance in classifying EOAs. On the other hand, the use
of a 20-dimensional embedding vector marginally enhances
the performance for classifying Bitcoin transactions when
using Structural+Embedding features. In future research, the
identified features will serve as the foundation for training
blockchain-specific classification models, conducting suspi-
cious community identification, and exploring graph-based
node properties. Additionally, the effectiveness of the key com-
ponents, namely, graph modelling and embedding generation,
will be evaluated on real-time blockchain activity.

REFERENCES

[1] W. Dai, C. Dai, K.-K. R. Choo, C. Cui, D. Zou, and H. Jin, “Sdte:
A secure blockchain-based data trading ecosystem,” IEEE Transactions



15

on Information Forensics and Security, vol. 15, pp. 725–737, 2019.
[Online]. Available: https://doi.org/10.1109/tifs.2019.2928256

[2] N. B. Truong, K. Sun, G. M. Lee, and Y. Guo, “Gdpr-compliant personal
data management: A blockchain-based solution,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 1746–1761, 2019.
[Online]. Available: https://doi.org/10.1109/tifs.2019.2948287

[3] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn,
“Uncovering the face of android ransomware: Characterization and
real-time detection,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 5, pp. 1286–1300, 2017. [Online]. Available:
https://doi.org/10.1109/tifs.2017.2787905

[4] “Cerber ransomware campaign,” https://www.zdnet.com/article/
how-bitcoin-helped-fuel-an-explosion-in-ransomware-attacks/, 2021.

[5] C. Akcora, “Bitcoinheist: Topological data analysis for ransomware
prediction on the bitcoin blockchain,” in IJCAI, 2020. [Online].
Available: https://doi.org/10.24963/ijcai.2020/612

[6] R. Zhang, G. Zhang, L. Liu, C. Wang, and S. Wan, “Anomaly detection
in bitcoin information networks with multi-constrained meta path,”
Journal of Systems Architecture, vol. 110, p. 101829, 2020. [Online].
Available: https://doi.org/10.1016/j.sysarc.2020.101829

[7] P. Nerurkar, S. Bhirud, D. Patel, R. Ludinard, Y. Busnel, and S. Kumari,
“Supervised learning model for identifying illegal activities in bitcoin,”
Applied Intelligence, vol. 51, no. 6, pp. 3824–3843, 2021. [Online].
Available: https://doi.org/10.1007/s10489-020-02048-w

[8] Z. Wu, J. Liu, J. Wu, Z. Zheng, and T. Chen, “Tracer: Scalable graph-
based transaction tracing for account-based blockchain trading systems,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
2609–2621, 2023.

[9] P. Nerurkar, Y. Busnel, R. Ludinard, K. Shah, S. Bhirud, and
D. Patel, “Detecting illicit entities in bitcoin using supervised learning
of ensemble decision trees,” in ICICM, 2020, pp. 25–30. [Online].
Available: https://doi.org/10.1145/3418981.3418984

[10] C. G. Akcora, Y. Li, Y. R. Gel, and M. Kantarcioglu, “Bitcoinheist:
Topological data analysis for ransomware detection on the bitcoin
blockchain,” arXiv preprint [Web Link], 2019.

[11] “BitcoinHeistRansomwareAddressDataset,” UCI Machine Learning
Repository, 2020, DOI: https://doi.org/10.24432/C5BG8V.

[12] M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei,
T. Robinson, and C. E. Leiserson, “Anti-money laundering in bitcoin:
Experimenting with graph convolutional networks for financial foren-
sics,” arXiv preprint arXiv:1908.02591, 2019.

[13] J. Lorenz, M. I. Silva, D. Aparı́cio, J. T. Ascensão, and P. Bizarro,
“Machine learning methods to detect money laundering in the bitcoin
blockchain in the presence of label scarcity,” in Proceedings of the
First ACM International Conference on AI in Finance, 2020, pp. 1–8.
[Online]. Available: https://doi.org/10.1145/3383455.3422549

[14] Y. Elmougy and L. Liu, “Demystifying fraudulent transactions and illicit
nodes in the bitcoin network for financial forensics,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, ser. KDD ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 3979–3990. [Online]. Available:
https://doi.org/10.1145/3580305.3599803

[15] J. Song and Y. Gu, “Hbtbd: A heterogeneous bitcoin transaction
behavior dataset for anti-money laundering,” Applied Sciences, vol. 13,
no. 15, 2023. [Online]. Available: https://www.mdpi.com/2076-3417/
13/15/8766

[16] P. Monamo, V. Marivate, and B. Twala, “Unsupervised learning for
robust bitcoin fraud detection,” in ISSA. IEEE, 2016, pp. 129–134.
[Online]. Available: https://doi.org/10.1109/issa.2016.7802939

[17] T. Pham and S. Lee, “Anomaly detection in the bitcoin system - a
network perspective,” Nov 2016.

[18] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in COMAD, 2000, pp. 93–104. [Online].
Available: https://doi.org/10.1145/335191.335388
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