The Burn-to-Claim cross-

blockchain asset transfer

protocol

Babu Pillai
School of ICT
Griffith University
Gold Coast, Australia

Kamanashis Biswas
Faculty of Law and Business

Brisbane, Australia

babu.pillai @griffithuni.edu.au kamanashis.biswas@acu.edu.au z.hou@griffith.edu.au

Abstract—The future of multi-blockchain architecture de-
pends on the emergence of new protocols that achieve trust-
less communication between cross-chain participants. However,
interoperability between blockchains remains an open problem.
Existing approaches provide integration through solutions using
a middleware system, which makes it harder to gain confidence
mainly in terms of security and correctness of the process. A
cross-chain protocol needs to provide a self-verifiable state-proof
that embeds trust in the transfer process. We propose a Burn-to-
Claim cross-chain protocol to seamlessly exchange assets between
networks. Our scheme transfers assets from one blockchain
system to another in a way that the asset is burned from the
source blockchain and claimed on the destination blockchain.
Our mechanism employs combinations of crypto mechanisms
such as digital signatures and time lock to operate the protocol in
a distributed manner. We provide an analysis which proves that
our cross-chain protocol transfers assets correctly and securely
assuming that the underlying blockchain protocol is secure.

Index Terms—Dblockchain, interoperability, asset transfer,
cross-blockchain protocol

I. INTRODUCTION

Blockchain technology offers an immutable, decentralized,
and transparent mechanism for transaction processing [33].
Interestingly, beyond its role as a protocol for exchanging
values within a network, one might reasonably assume that
a blockchain system should be able to transfer assets be-
tween networks. However, the current architecture of this
technology limits the transaction within the network and its
users. A blockchain application cannot uniformly use multiple
networks and obtain a composition of their guarantees [3]. A
core reason of this issue is that each blockchain network has its
own state assumptions of the proof-problem [5], and without
restrictions, one network cannot trust the informationin a
different network. Therefore, currently, seamless composition
between two blockchain networks is impossible [23].

A blockchain is interoperable with another blockchain
if one can provide state composition guarantees of cross-
blockchain transactions for the other and vice versa [3].
We formalise the concept of interoperability from our pre-
vious work [26] and building on that, we propose a cross-
blockchain asset transfer protocol. Our vision of next-
generation blockchains is that they should have an internal
function for composability, the lack of which makes it difficult
for applications to commit transactions to multiple networks.

Australian Catholic University

Zhé Héu
School of ICT
Griffith University
Brisbane, Australia

Vallipuram Muthukkumarasamy
School of ICT
Griffith University
Gold Coast, Australia
v.muthu@griffith.edu.au

With the current protocols of blockchain systems, it is not
possible to have direct interoperability between systems [6].
There is no method in the system to provide a cross-chain
value transfer; therefore, external third-party services are the
preferred solution [3, 23]. However, such methods come with
a trade-off on decentralization, which eventually leads to
security issues of the system. Moreover, the blockchain system
cannot recognise and verify any such process carried out by
a third-party provider. Mainstream enterprises have begun to
realise that they cannot use the current public blockchain to
streamline their business processes due to this limitation. To-
day most enterprise blockchain applications reside on private
blockchains such as Hyperledger and Corda and loose the
full potential of the distributed ledger technology. To address
these issues, we propose to use an internal built-in process
that is integrated with the protocol to carry out transactions
and facilitate interoperability between systems. That way, the
system and its users are in control and aware of the assets
being transferred.

Decentralised cross-blockchain transfer mechanisms should
allow participants to fully utilise the existing variety of
blockchains, instead of being locked to a single blockchain
type. The cross-blockchain transaction serves as a corner-
stone for the next-generation blockchain-based systems. The
cross-blockchain integration would enable the interoperability
among distinct, potentially heterogeneous, blockchains [14].
This paper introduces the Burn-to-Claim cross-blockchain
protocol — a built-in method to address cross-chain
interoperability. We define it as a protocol which consists
of two components: an exitTransaction to generate a self-
verifiable proof that the transaction is committed in the source
network and an entryTransaction to verify the validity of
the proof in order to re-create the asset in the destination
network. A key novelty of a built-in method is that it is not
system/ application-specific. Unlike existing approaches that
rely on external middleware mechanisms, our method does
not require a new crypto-asset or trusted third party. Instead,
it implements a ’universal protocol’ for all applications
and tries to enforce the same integrity requirements across
different connected blockchain networks. Our method can
serve as a more general framework, in which each application
can construct a network based on its trust assumptions and

guarantees yet all these heterogeneous networks share the
same cross-chain transfer protocol.

A summary of our contributions is as follows:

o Protocol. We propose a protocol for cross-blockchain
asset transfer where transactions are performed in a
decentralised and trustworthy manner.

o Construction. We propose a novel and simple construc-
tion which is flexible and can be adopted for digital asset
transfer among blockchain network without violating the
key characteristics of the blockchain technology.

o Analysis. We perform a preliminary analysis to show the
correctness, security and fairness of our protocol.

A. Overview of the proposed protocol

In order to give an overview of our protocol, let’s consider
a common example of bank transaction. Typically a bank
transaction transfer money from one bank account to another
and is initiated by an account holder. Before the transfer takes
place, the users should establish knowledge such as account
details. The sender proves the her credentials, after validation
she initiates the transfer. At the same time, the transfer-amount
gets blocked by the bank from further use (preventing double
spending). Here the system is generating a proof that the
money exists and it is locked; thereby, the counterparties can
rely on it and act. In a banking scenario, we deal with money
as a commonly accepted asset — this can be different in other
applications.

In the blockchain setting, a cross-chain protocol is defined
as the interaction between two blockchain networks, namely
the source and the destination network. Our cross-chain pro-
tocol has three stages: prepare, commit and execute. At
the prepare stage, the users agree and establish the trans-
fer parameters. We assume this process occurs out-of-band
through a secure channel. At the commit stage, the source
network generates a conditional time-locked and publicly
verifiable transfer-proof. We define this transfer-proof to be
a committed cross-chain transaction. The conditional time-
lock means that the transaction output is time-locked in the
source network while the transaction is in transit. Finally,
at the execute stage, upon presenting the transfer-proof, the
destination network nodes verify the validity and correctness
of the transfer-proof and execute the exchange. We assume that
the recipient’s network nodes can validate the transfer-proof
through an intermediary middleware mechanism. The recipient
can claim the transaction if it is within the conditional time-
bound and the transfer-proof has been validated. In case of an
unsuccessful transaction, after the expiry of time-bound, the
sender is able to reclaim the asset.

B. Assumptions

Our protocol is designed with the following assumptions:
o The underlying blockchain networks are secure with a
concept of transaction finality within finite time, after
which the transactions cannot be rolled back [4].

e The participants involved in the cross-communication
process ‘trust’ each other to a required minimum level
and are willing to process the transaction if valid proof
is presented by the other party. The required level of trust
varies depending on the application and to be agreeable
to both parties.

¢ The network nodes are motivated to take part in the
respective proof-mechanism (mining process) on both
the chains (refer to the network assumption in subsec-
tion III-B1).

e A transaction output carry a single output which cor-
responds to a single asset and the networks involved
recognize and form a common understanding of the assets
they are holding.

Under these assumptions, once a transaction is broadcasted,
the network nodes verify the transaction and include it in
a block. A blockchain system tends to synchronise using a
protocol in which the network nodes are constantly trying
to produce new blocks and broadcasting their achievements
to the entire network. In the case of cryptocurrencies, for
instance, this behaviour is motivated by mining rewards. We
assume there is an appropriate incentive mechanism to support
participation by nodes here as well.

II. PRELIMINARIES

In the literature, there are slightly different definitions for
blockchain operations based on the purpose of the application,
but they usually do not cover all the assumptions of blockchain
in our context. Therefore, in this section, we define the
terminologies and general features of blockchain required to
explain the aspects of cross-chain interoperability.

Definition 1 (Block). A block, written as B, represents a list
of transactions B= [Tx1, Txo, Txg, ---].

A blockchain is a chain of blocks where each element of
the block contains several transactions, a validation proof and
some metadata which are omitted for simplicity.

Definition 2 (Blockchain). A blockchain, written as C, is a
tuple (G,B) where G is a genesis state and B is block which
consists of a list of transactions representing the global state.
The blocks are cryptographically linked such that H(B;) C
By, HBs) ¢ Bs, ---, H(B,,_1) C B,, where H denotes
a hash function.

Definition 3 (State). A state, written as (), is the set of
transactions and the data associated with on-chain objects in
a blockchain at a certain time .

A state transaction function given as II takes the current
state @ and a block B to produce new state (Q’, is written as
II(Q, B) = Q'. In the context of a blockchain, a state is valid
if it is accepted by the majority of nodes [25]. A block B is
valid in a state @ if B € @ and (@ is valid in a blockchain. We
assume that the state () is monotonic once it is settled on a
blockchain C' with height k. We require that our state () only
depends on the stable portion of the blockchain C, which are

Table 1
SUMMARY OF NOTATIONS USED THROUGHOUT THIS PAPER

Symbol Description
C Blockchain
B Block
Q Blockchain state and Q' a new state
N1, No Blockchain network 1 and network 2 respectively
II State transaction function
v Asset
Kagr, B Blockchain address and Burn address
pr K, Ks Public key, private key and secret key respectively
S, R Sender (Alice) and recipient (Bob)
Kg, KTS , K de Senders public key, private key and blockchain address respectively
KI KR KR Recipients public key, private key and blockchain address respectively
o Digital signature
Tz, Tz, Txe, Tx' Transaction, exit transaction, entry transaction and previous transaction respectively
v, H(y), T Secret code, hash of the secret code and encrypted secret code respectively
t, tiock Time and time lock respectively

the blocks that are buried under k (recommended block height
for security [28]) subsequent blocks. This means that once a
transaction T’z is settled under a state () of a blockchain C,
it will not change due to a blockchain reorganization.

Definition 4 (Address). The blockchain Address schema is
constructed from a key pair (K,, K,) , where the public
key K, is concatenated with the network identifier /V;4 and
subsequently hashed to generate a network specific address
Kadr-

In a blockchain network, a user is defined by a unique
address (Kgqy). In this paper, K2, and KZE, is used to
represent the sender and the recipient’s address respectively.
However, this address is constructed from the user’s public
key (K,) as shown in Algorithm 1, whereas the private key
(K) is used to generate the digital signature [24]. The digital
signature is generated through a function, sign(M, K,), that
takes a message (M) and the private key of the sender (/) as
inputs to create the signature (o) as an output. In contrast, the
verification function verify(M, K,, o) checks whether the
signature o is valid for the message M by using the sender’s
public key K.

Bitcoin and other similar cryptocurrencies use a transaction-
output-based system where each transaction fully spends the
outputs of previously unspent transactions. These unspent
transaction outputs are called UTXOs. Bitcoin allows a single
UTXO to be spent to many distinct outputs, each associated
with a different address. To spend a UTXO a user must provide
a signature, or more precisely a scriptSig, that enables the
transaction SCRIPT to evaluate to be true. Apart from the
validity of the scriptSig, miners verify that the transaction
spends previously unspent outputs, and that the sum of the
inputs is greater than the sum of the outputs.

For a given transaction T’z from a public key K, referring
to an address K4, and a signature o, the verification function
verify(T'z, K,, o) verifies 0. Once o is verified, the address
K4 needs to be verified via Algorithm 1 [8, 19].

Algorithm 1 blockchain-address-protocol

1: function genAddress(K))
fingerPrint <— 0x00 || RIPEMD160(SHA256(X),))
3 checkSum < SHA256(SHA256(fingerPrint))
4: K4y + base58(fingerPrint || checkSum[:4])
5
6

»

return K4,
: end function

Here, we present a generic blockchain address generation
protocol [8, 19]. We assume an elliptic curve algorithm is
used to generate K. Algorithm 1 takes the public key as
an input to generate the corresponding address from the key.
First, the public key, K, is hashed by the SHA256 algorithm,
which is hashed again using the RIPEMD160 hash function.
After that, the output is concatenated (denoted by ||) with a
network specific id to create a fingerPrint. The fingerPrint
is then hashed twice to generate a checkSum. Finally the
fingerPrint and first 4 bytes (denoted by [:4]) of the checkSum
are concatenated and formatted through a base58 encoder to
generate the blockchain address (K g4;-)-

For the sake of simplicity, we combine the digital signature
verification process and address generation process using a
single function called spendVerifier, which returns true if
verify(T'x, Kqq4,, o) returns true and genAddress(K,,) returns
Kagr for a given transaction Tz from a public key K,
referring to address K4y

Definition 5 (Transaction). A transaction' Tx is a tuple

(K5, K3,., KE,_ v, Tz') where v is an asset and Tz' is
a previous transaction where v is transferred from. Each T'x
encode transaction value and relevant parameters associated

with it.

The transaction value includes the asset and any related
transaction fee, which is the fee a spender offers to a miner
node who successfully includes that transaction in a block.
The relevant parameters include time, date and other metadata
information which are ignored for clarity.

As in the literature [7], we loosely use “transaction” to represent both a
piece of data and an operation.

A typical transaction protocol in blockchain is given in
Algorithm 2, where a valid transfer of v from K2, to KE,
is defined as K2, — KZE,_: v. The symbol : denotes asset

v is associated with the address K Lﬁir.

Algorithm 2 transaction-protocol

1: function transactionProtocol(Tz(K S K5, KL, 0. Ta"),0)
2 if spendVerifier(K S K fdr, o) and

3 assetVerifier(Tz', K,) is true then

4 K3, — KE v

5: else

6 invalid transaction

7 end if

8 return transaction receipt

9: end function

A transfer will only occur if spendVerifier and assetVerifier
both return true. The function assetVerifier [2, 25] first checks
the validity of the asset v by ensuring that the address K asdr
carries (enough amount of) the asset. We refer to this first
step as the balance function balance(K%,) which returns
true if it is valid, false if it is not valid and burn if it
has transferred the asset to a burn-address. Then the function
checks whether this Tz referred by the previous transaction
Tz' is included a valid block Tzt € B (validate with a Merkle
Tree proof?) which is in a valid state (check the longest chain).
Every transaction returns a transaction receipt which encodes
transaction information from its execution that are useful form

a zero-knowledge proof, or to search from the index.

III. THE BURN-TO-CLAIM PROTOCOL

In this section we formally define the Burn-to-Claim proto-
col and its primitives.

A. Communication between networks

The Burn-to-Claim protocol consists of two main functions
for the communication between networks: exitTransaction
defined in Algorithm 3 to lock the asset and serve as a transfer-
proof in the source network, entryTransaction defined in
Algorithm 4 to verify the validity of the transfer-proof in order
to re-create the asset in the destination network.

In our protocol, the sender who wishes to transfer the asset
must present a proof that the asset is locked. To achieve
this, we adopt the proof-of-burn protocol [19, 29], which
presents a mechanism where the sender transfers the asset
to a non-spendable burn-address and is able to present that
transaction as a proof for the locked asset. The proof-of-burn
protocol is a more energy-saving alternative to the proof-of-
work protocol. In proof-of-burn based systems, for security
guarantee, cryptocurrencies are intentionally “burned” and the
process does not require powerful mining hardware.

Definition 6 (Burn-address). A burn-address given as f is
an address to which one can send assets, but from where

2A cryptographic hash tree where every leaf node hash of a data block.

they can never be recovered because there is no private key
corresponding to that address.

The process of burning consists of sending cryptocurrencies
to an address where they become inaccessible and useless.
Typically, these addresses are randomly generated, where the
addresses do not have a corresponding private key therefore
the asset at those addresses are not spendable. The burn
protocol [19] presents proofs such that if the underlying
cryptographic is secure then the probability of finding a private
key for a given burn address is nearly negligible.

1) Exit transaction: The exit-transaction must be initiated
on the source network by the sender. This execution checks the
validity of the transaction and generates a transfer-proof. The
transaction-validity process checks the authenticity of the asset
and the owner’s ability to spend. The transfer-proof generator
produces a proof that the asset exists and it is locked while
the asset is in transit. This transaction aims to create an exit
proof for that asset in the source blockchain network. Having
an exit proof created by the system as part of the protocol will
retain the system’s security. Moreover, the network comes to
a consensus about the asset transfer, thereby the authenticity
of the information is satisfied.

In our protocol, exitTransaction uses a conditional time-lock
with a secret code — the former determines a time frame for
the transaction, and the latter is used to claim the asset in the
destination network. A time-lock is defined as a function that
locks the output of a transaction for a period of time such that
the asset cannot be spent until the time has past’.

Our protocol requires the sender to generate a secret code
~ using a random key generator function, keyGen(). Then
the secret code v is encrypted using the public key of the
recipient Kf before sharing with her. The encrypted secret
code is denoted by I'. We assume the public key information
is shared among users during the preparation stage.

Algorithm 3 exit-transaction-protocol

1: function exitTransaction(T'z(K 5, K fdr,ﬁ wTzh,H (7),0)
2 if exportVerifier(K?,,, v, o) is true then

3 K3, —B:v

4: v is timelocked(v, t) at 8 in Ny

5: Txi— (Tx, H(v), 0)

6 else

7 invalid transaction

8 end if

9: return transaction receipt

10: end function

We design our transaction protocol based on the the
blockchain transaction protocol in Algorithm 2. The func-
tion exitTransaction defined in Algorithm 3 takes a tuple of
(Tx(K5, K2, , B, v, Tz"), H(y), o) as inputs where Tz

includes the sender’s public key (K7) and address (K3;,),
burn-address (/3), asset (v) and the previous transaction (7z")

3https://beoin.io/guides/cltv.html

in which the asset v was spent. H () represents the hash value
of secret code v and o is the digital signature. We denote the
data structure of exit-transaction as T'x;, which is a tuple (T,
h, o) of a transaction, a hash value and a signature.

Definition 7 (exportVerifier). The exportVerifier function con-
sists of two sub-functions spendVerifier and assetVerifier, it
returns true when both sub-functions return true, and it returns
false otherwise.

« spend Verifier:

— returns true if for the given K fdr from Kg
the function verify(Tz, K S o) returns true and
getAddress(K 7)) returns K2 ;

— returns false otherwise.

o assetVerifier:

— returns true if balance(K fdr) is true and Tz" € B
and B € Q;

— returns false otherwise.

Each node performs the mining process. If exportVerifier
returns true then the transaction executes the transfer of the
asset to the given burn-address § with conditions such that
the asset is time-locked within the source network for a
determined time-lock period ¢ and the hashed secret code
H () is added to the data structure of the transaction.

2) Entry transaction: The purpose of the entry-transaction
is to recreate the asset in the destination network. An entry-
transaction must be initiated in the destination network by
the recipient. Upon initiating the entryTransaction with the
transfer-proof from source chain, the network nodes verify the
validate of the transfer-proof and re-create the asset.

Algorithm 4 entry-transaction-protocol
1: function entryTransaction((T'x(K. 5,K (ﬁlr,ﬁ,v,T:cT),F,cr)
2 if importVerifier(T'z, Tzt,0) and

3 (Tz' time-lock is under the time limit) and

4 decrypt(I,K*) = Tat.H(v)) is true then

5: 8= K fd,,. TV
6
7

8

9

Txe (Tz, H(7), 0)
else
invalid transaction
end if
10: return transaction receipt
11: end function

The function entryTransaction defined in Algorithm 4 takes
a tuple (T'x (KE, Kf:'ir, B v, T2, T, o) as input where
the Tz includes the recipient public key K%, the recipient
address K fdr, the burn-address [, the asset v and the previous
transaction T2z'. The data structure of entry-transaction is
written as Tx., which is also a tuple (Tz, h, o) of a
transaction, a hash value and a signature. A I' represent the
encrypted version* of hash of the secret code and o denotes

the digital signature.

“Encrypted with recipient private key T = encrypt(KF,y) and

decrypt(I", K. f’) =7

Definition 8 (importVerifier). The importVerifier consists of
two functions spendVerifier and proofVerifier, it returns true
when both sub-functions return true, and false otherwise.

« spendVerifier:

— returns true if for the given burn-address 5 from
Kf the function verify(T:c,Kf, o) returns true and
getAddress(Kf) returns K Lﬁir (assuming the node
use a source chain version of getAddress function);

— returns false otherwise.
« proofVerifier:

— returns true if S is generated from K ﬁzw balance((3)
=burn, Tzt € B, and B € Q;
— otherwise returns false.

A proofVerifier is an extended version of assetVerifier.
Here the nodes on the destination network need to verify the
proof from the source network. We assume that through the
gateway mechanism, the destination network nodes are able
to verify the proof. Through the Tz any gateway node can
access the specific transaction in the source network. Once the
importVerifier returns true, the mining nodes need to check the
time-lock and the secret code. We assume that both the source
and the destination network run on a global time zone. If the
time is under the time-lock period and the encrypted secret
code matches with the hash value embedded in the transaction,
the network awards the asset to the recipient address K, .

B. Workflow of the protocol

This section presents a walk-through of the workflow of
the burn-to-claim protocol. We begin with a use case of
two blockchain systems which are self-sufficient and secure.
The two networks run different applications but they want
to interoperate. These networks may have distinct consensus
participants that employ different agreement protocols. It is
assumed that the majority of consensus participants in both
networks are honest. Here the assumption is that even though
these systems are not connected, they have enough credibility
which is governed by a protocol and have some top-level
relation. For example, they can be two different businesses
with a collaborative business interest, different branches of a
company or different departments in an organisation. The main
objective of this paper is to address the cross-blockchain trans-
action proof-problem. Therefore, we focus on the construction
of consensus on how the transactions are verified, and on what
conditions the transactions are valid.

1) Network assumptions: To address the state proof-
problem, we made some assumptions about the network
participants and their ability to mine. We assume that the
cryptographic primitives of the networks are secure. For the
underlying network, we make the same assumptions as in prior
work [9, 20, 22, 32]. For example, a presents of a global
clock and the honest nodes are well connected with the able
to communicate with each other.

In the network of our model, elected nodes function as
gateway nodes. We envision each blockchain as an au-
tonomous system, which communicates with each other via a

— |
to
Confirmation

exitTransaction() .
perlod

Alice (sender) S
Keygen() — secret—key y
encrypl(y, k) - '

/I\asset is burend
v(timeLock —t,) > H(y)

‘ | .)
Prepare Commit) -v.eflf Y

MDHD&D&D&&P

entryTransaction() |

Bob (recipient) R
decrypt(y’, Kf) -y

(ﬁ - Klfdr v

time

S —

ty

reclaimTransaction()

(B = Kaar : V)\J/

=) MDﬂﬂ

|
|
|
! S reclatm v after ty
S reveal y

miner gety
verify,
Execute
l P2

|notify

Y
if (R claim v)R reveal ywithin t,

"if (not)
~|:|<—|:|4— Destination

Confirmation
) .
period

Figure 1. A high level overview of the Burn-to-Claim protocol workflow. The boxes represent chained blocks along the time steps in the source and destination
networks. At the preparation stage, S generates and shares an encrypted secret code encrypt(y) with R. At the commit stage, .S initiates the exitTransaction,
burning the asset to 3 generated from R’s address, then time-locks the transaction output with the hash value of H (). After confirmation period R gets
notified with the previous transaction Tz. At the execution stage, R initiates exitTransaction, claiming asset v. To do that R must prove the relation with
[and reveal ~ within the time-lock period. If R failed to claim the v, S reclaims the v after the time-lock period.

cross-blockchain protocol. To facilitate communication among
blockchains, the nodes can rely on decentralised integration
mechanisms that can identify and address cross-chain inte-
gration. This decentralised integration mechanism acts as a
verification method for the cross-blockchain protocol. The
architecture of our model can be seen as a number of networks
(depends upon the topology) connected through a gateway
mechanism to create a network-of-networks (NON) [11].

There will be multiple nodes which function as gateways on
the same network; therefore, they will be competing against
each other for the mining reward. We assume that not all
the nodes will verify the transaction, but a sufficient number
of them must do to satisfy the security of the system. The
other nodes will accept a gateway node’s proposal based on
the credibility of the gateway node in the network. We leave
further discussions on a decentralised integration mechanisms
for future work.

2) Example: We set an example where Alice (the sender
S in the blockchain network N7) wants to transfer an asset
to Bob (the recipient R in the blockchain network Ns). Alice
first submits an exitTransaction to network N;. Network N;
executes the transaction, effectively burns Alice’s asset in
network N;. Bob notices that the asset has been burned
successfully and submits the proof of burn to network Ns.
Network N, verifies the proof and if successful, recreates the
asset and assigns it to Bob’s account. Figure 1 shows a brief
overview of the protocol construction.

3) Preparation stage: In the preparation stage, First, Alice
S and Bob R shall agree on a shared secret code ~ via
asymmetric cryptography. The S generates the + and encrypts
the v with the recipient’s K ff and then shares the encrypted
secret code I' with the recipient; Secondly, they must agree

on the time-lock period ¢; Thirdly, Alice S need to generate
the burn address.
We now discuss the use and importance of these parameters.

In order to spend value in an address K4, a user needs to
prove the ownership of the public key that is used to generate
the address. That means any value sent to an address with
no private key can be considered as burned. However, how
do we know that an address does not have a private key?
To address this issue and to make a more specific proof in
our protocol, S uses R’s address to generate the burn address
which is given as getAddress(KadT) and returns (3. This will
guarantee that the address S does not have a private key in the
source network and the § is more specific to the recipient R
because it is generated from R’s address. Therefore, we can
use such a transfer to burn address as a valid proof.

Now that we have the proof we need to add a provision
for retrieving the asset in case of an unsuccessful transfer.
For instance, the asset is burned on the source chain and
not recreated in the recipient network, or the asset is sent
to a wrong address. We name this property as reclaim-from-
burn and explain the process in Algorithm 6. To ensure
this correctness of this property, we impose a time-lock on
transaction output in the source network. This will stop the
sender from claiming the asset before the recipient claims the
asset. The time-lock period is agreed based on factors such as
the network latency and consensus timing, which we refer to
as transit-time.

We also need to consider the double-spending problem
where a dishonest sender commits exit-transaction on the same
asset multiple times [18]. In order to prevent double-spending,
our protocol requires that the sender and the recipient agree on
a shared secret code v which is hashed and encrypted using

the recipient’s public key. This «y is not known to the network.
As a result, only the user who has the recipient’s private key
can decrypt and compare the hash value, which is required to
claim the asset. Once secret 7y reveled no one can claim the
asset.

4) Commit stage: In the commit stage, S creates and
broadcasts an exitTransaction to invoke Algorithm 4 in the
network NNVj.

Algorithm 5 shows the transfer condition logic. The con-
dition here is that anyone claiming the transaction output
(includes the asset and the miner’s fee) must reveal the secret
code. Therefore, the transaction will be mined by the miners
who has access to the destination network’s data because they
need to get the secret code to claim the fee. That means if
there is no valid® gateway node then this transaction will not
go through in the first place.

Algorithm 5 exit-transaction-time-key-lock condition
1: while (time-lock is true) do
2 if (R claim v) then
3 R reveal secret v to Ny
4 Nj.miner gets v from N,
5: Nj.miner claims his ~-locked fee
6
7
8

> secret v is known to Ny & N»
end if
: end while (after the ;,.%)
9: if (R fail to claim v) then
10: S reveals v to Ny

11: S re-claim v

12: Ni.miner claim his y-locked fee

13: > secret v is known to Ny
14: end if

The time-key-lock condition mechanism allows only one
party to claim the asset at a time. For example, while the
Tz output is time-locked in the source network, if R reveals
the secret code ~ in his network, the miner who mined this
transaction in the source network will reveal it in source
network to claim his fees; thereby the v is known to both
the networks. After that, S will not be able to claim the asset.
Likewise, if the R fails to claim the asset within the time
frame, then S reveals «y after ¢;,.; in the source network to
reclaim the asset. In our design +y is not known to the network;
therefore, once the ~ is revealed nobody will be able to claim
the asset even after ¢;,cx.

5) Execution stage: The execution stage has two possibil-
ities: either R claims the asset within the transit time-lock
period or S reclaims the asset after the time-lock period.

a) R claims the asset: R constructs an entry-transaction
and broadcasts to Np. If R can prove the ownership of K7
and K, | the network will be able to process the transaction.
However, our protocol requires a solid evidence that S has
burned the asset v on the source network. Here R provides a

SA valid gateway node refers to a gateway accepted by the network, this
could be using a trust-based approach to elect the gateway node.

burn-address /5 and a previous transaction Tz', which form
the proof of commit in the source chain.

As specified in subsection III-B1, our protocol requires a
mining process where some nodes are able to mine in multiple
blockchains. With that requirement, among n number of nodes
and m gateway nodes propose this transaction and eventually
one proposal will be accepted by the network. We assume that
these gateway nodes are able to validate the transfer-proof with
Tx'. The nodes verify that transaction occurred on the source
chain by ensuring that the transaction is contained in a block.
This can be done by checking the chain validity [12] of the
block and the transaction.

If importVerifier returns true the network awards the asset v
to the recipient address K, . That means by now the secret
code v is known to the network, and after that, the source
network miner will take it to the source network to claim his
fee, and then ~ is known to both the networks.

b) S reclaims the asset: In case the recipient has not claimed
the asset within the time-lock period, the sender gets notified
by the network or the mining node who mined the 7'z, and the
sender then invoke reclaimTransaction, which is is a variant
of entryTransaction and is defined in Algorithm 6, to claim
the asset back. The transaction first checks the signature via
verifty(T'z, K asdr, o), then checks the time-lock period and
secret code hash. As we stated earlier, our protocol requires
some miners to mine in both the chains. Therefore, we assume
that miners are able to check with the network N5 before
approving this transaction.

Algorithm 6 reclaim-transaction-protocol

1: function reclaimTransaction((Txz (K 1;9 K fdr,ﬁ w,T2NH.TIo)
2 if reclaimVerifier() is true and

3 (Tt 100k pass the time limit) and

4 decrypt(F,K;?) = Tzt . H(y)) is true then

S: B — K fdr)

6 else

7 invalid transaction

8 end if

9: return transaction receipt

10: end function

The function of reclaimVerifier consists of two sub-
functions spendVerifier and proofVerifier. The function check
if verify(T'z, KE, o) returns true and getAddress(K F) returns
KZE, . Then the proofVerifier checks the transfer proof of Tt
referring to if the balance(3) = burn and TxT € B and B €
@ return true else return false. The reclaimTransaction can be
included with the entryTransaction but for clarity, we present

it as a separate transaction.

IV. ANALYSIS

In this section, we analysis the correctness and security of
the Burn-to-Claim protocol. Cross-chain data guaranty/trust
is one of the most important means to enable interoper-
ability among blockchain networks. The integration process
for exchanging information may be based on other existing

techniques. But to build trust about the shared information we
must resolve specific properties of the individual transactions
involved in the exchange process; that is, security: a cryp-
tographic assurance of transfer commitment of transactions;
correctness: each successful transaction commits only one
valid outcome and fairness: either the transfer executes the
transfer of an asset or return the asset [4, 19, 27, 31].

In our protocol the burn-address is generated uniquely for
each input (recipient address) therefore it is clear that it is not
generated from a regular keypair. Given that it is manually
crafted from the recipient address which is not part of the
source network it is not spendable in the current network.
Therefore, with the signature scheme of the underlying cryp-
tocurrency, the asset burned through our scheme would remain
unspendable.

We now present some lemmas to establish the security of
the protocol.

Lemma 1 (Unspendability). A burn-address (3 is unspendable
with respect to a blockchain address protocol in Algorithm 1.

The main functionality of entryTransaction is to recreate
asset but only after the asset is burnt on the source chain.
In our protocol the asset must be permanently burned at the
commit stage. With the burn protocol and its property of
unspendability the asset is permanently burned before claiming
on the source chain.

Lemma 2 (Burn before claim). An asset v which is transferred
from Ny to No must be burned in Ny before a user can claim
it in No.

The sender who initiates the exit-transaction must own the
asset he is transferring. In exitTransaction the exportVerifier()
checks the transaction validity and owner’s ability to spend.
This process must be carried by each mining node and must
reach the consensus of the network. Therefore, as long as the
network is secure, the participants can only exchange the asset
of their own.

Lemma 3 (Ownership). The function exitTransaction can only
be successfully executed if the sender owns the asset.

We will now apply the above lemmas to show the security
property of the our protocol.

Theorem 4 (Security). The recipient network can rely on the
Burn-to-Claim exit-proof guarantee provided by the source
network.

Proof. (Outline.) Based on Lemma 2, exitTransaction burns
the asset to a burn-address ([which is unspendable as
per Lemma 1. The function exitTransaction also checks the
sender’s ability to spend the asset (Lemma 3). Under the
assumption of a secure blockchain C, for a given Tz, com-
mitted in a valid state) of a C' can serve as a reliable
proof. Therefore, if an Tz, successfully executes a transfer
K2, — B : v and includes in a block B then is executed by

a state transaction function II (Q, B) = @’ then the out put
of the new state)’ is deemed as a valid proof. [

Now we analyse the correctness of the our protocol.

The function exitTransaction transfers the asset v to a burn-
address 3 that is derived from the recipient R’s address K%, .
To claim v, the recipient must prove to the network that g is
derived from an address he owns. The function spendVerifier
checks the signature o to verify the K, and checks the whether
3 is derived from the given K, using the function getAddress.
Therefore, only the user who owns a private key associated
with K* can make the claim of the asset in the destination

adr
network.

Theorem 5 (Correctness). The exchange operation only ex-
change an asset to a correct recipient.

Proof. (Outline.) Based on the function exitTransaction of
Algorithm 4 the recipient’s signature must be correct, then the
relation with the 8 must be correct. Finally the recipient must
be able to decrypt the encrypted secret code I' using his private
key via decrypt(F,Kf). All these measures point out that the
Tx, will only transfer asset to the correct recipient. O

We assume that no adversary can obtain the private key of
a secure signature scheme, except with negligible probability.
As a result, the correctness of our protocol is dependent on a
probabilistic polynomial-time adversary can decipher the key.
Let o be a secure signature scheme then the possibility of
a distribution entity to decipher the K, from a K, or 8 is
unpredictable.

Now we analyse the fairness property of the our protocol.

Whenever transfer parties do not trust each other it is in their
interest to ensure that no participant can take advantage from
the transfer agreed upon. The protocol must be constructed
in such a way that the transfer is performed in its entirety or
no asset transfer is committed such as all-or-nothing. In the
case of failures during the protocol execution, every transfer
participant must be able to regain possession of the original
owned assets.

Fairness in our context means that both parties receive the
item they expect or neither do. The fairness theorem only relies
on the fact that a standard hash function is collision resistant.
By using hash preimage as the secret code of the conditional
payment, the atomicity of the transactions can be guaranteed
without the participation of a trusted third parties, so as to
realise fair cross-chain exchange.

Theorem 6 (Fairness). The exchange operation should only
execute one outcome, either the exchange succeeds and the
asset is transferred to the recipient, or it is failed and the
asset returns to the sender.

Proof. (Outline.) If the recipient R claimed the asset v, it must
be that R has revealed the secret code ~y. Therefore, v is known
to the destination network N5. Now the miner who processes
the exit-transaction in source network N; needs v to get the
fee. The miner gets v from N» to N; to claiming his fees.
Thereafter v is known to both N5 and N; and no one will be
able to claim the asset.

If R fails to claim the asset within the time-lock, S would
invoke reclaimTransaction defined in Algorithm 6 to re-claim
the asset. Due to the time-lock mechanism, .S can only reclaim
after the time-lock period. During the time lock period 7 is
not known to the network.

In other cases of a transfer failure, (e.g., the recipient goes
offline or the sender uses a wrong recipient address to generate
the burn address) the sender is also able to reclaim the asset.
With the help of time-lock and the secret code, the protocol
can only reach one of the outcomes stated in this theorem. [

V. RELATED WORK

In this section, we briefly discuss the related work on
developing and formalising protocols in the field of cross-
blockchain asset transfers.

Blockchain interoperability is often considered as one of
the prerequisites for the massive adoption of blockchains.
The existing approaches focus on asset transfer between
blockchains using trustless exchange protocols, including
side-chains [13, 21], atomic cross-chain swaps [15], and
cryptocurrency-backed assets [32]. However, those solutions
have specific constraints. For example, the side-chain protocols
can only support transactions between parent and child chains.
The atomic swaps protocol requires interactive monitoring
during execution. The cryptocurrency-backed asset transfer
protocol relies on a set of reliable smart contracts to control
the underlying process.

There is a number of efforts addressing interoperability [16,
27] with different integration architecture. Although they differ
in architectures, most of them follow the approach of using the
source chain to generate a transfer-proof and the destination
chain to recreate the asset based on the transfer-proof. The
cross-chain transfer-proofs are either a smart contract [27]
or a notary schema [16]. Generally, these approaches makes
significant assumptions. For example, in a smart contract
holds the transfer proof the verifying smart contract able to
trust the communicate with the verifier smart contract. In
a notary schema, a pre-defined set of validators is trusted
with controlling over assets on the transferring chain. Some
other projects [1, 17, 30] are focused on the building of a
completely new ecosystem for interoperable blockchains rather
than enabling interoperability between existing blockchains.

The proof-of-burn protocol is proposed by [19, 27]. In [19]
the burn-address is generated from a reference of the recip-
ient’s address and a fag, therefore, the burn-verifier returns
true if and only if the address and the tag match. However,
one of the limitations we found in [19] is the absence of a
mechanism to return the asset back to the source chain in
case of an unsuccessful transfer. Whereas in [27] the sender
on the source chain invokes a burn-transaction to destroy his
coin which will be recorded in the smart contract on the source
chain. After that, anyone can query the smart contract to check
the validity of the burn-proof and whether the burn-proof is
used or not. To claim the asset, a user invokes the asset
management smart contract on the destination network and
provides the proof-of-burn transaction reference on the smart

contract. Compared to those methods, our work uses a direct
reference of the recipient address in the exit transaction which
guaranty the correctness property we defined. The time-lock
along with secret code and re-claim mechanism satisfies the
fairness property. Table II gives a summary of the protocols
in related work and an analysis on the properties of interest.

Table II
ANALYSIS SUMMARY
Reference Security | Correctness | Fairness
Burn protocol [19] yes yes no
Sigwart et al.[27] yes low yes
Burn-to-Claim yes yes yes

VI. CONCLUSION AND FUTURE WORKS

In this paper, we analyse the blockchain transaction protocol
and propose to add new features that help solve the problem
of interoperability. One of the critical features of our method
is that it presents an internal functionality for value/asset
exchange. An internal protocol provides a universal language,
and via such a protocol, blockchain users can communicate
directly and transfer various forms of data via standardised
pathways. Furthermore, we briefly showed that Burn-to-Claim
protocol is resilient to double-spending by its correctness and
fairness properties.

We formalise the cross-blockchain proof-problem and show
that it can be solved without a trusted third party, as compare
to the assumptions often made in the blockchain community.
Our approach is to introduce an built-in function to address
the proof-problem. However, it often requires changes in the
target blockchains, as most blockchains do not support locking
or burning assets.

Future work involves the implementation of the Burn-to-
Claim protocol which will show how the protocol will hold
up in practice. Further investigations on selfish mining [10]
and gateway incentive mechanism will also be conducted.

REFERENCES

[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian
Cachin, Konstantinos Christidis, Angelo De Caro, David
Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, et al. Hyperledger fabric: a distributed operat-
ing system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, pages 1-15, 2018.

[2] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and
Roberto Zunino. A formal model of bitcoin transactions.
In International Conference on Financial Cryptography
and Data Security, pages 541-560. Springer, 2018.

[3] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro,
and Miguel Correia. A survey on blockchain interoper-
ability: Past, present, and future trends. arXiv preprint
arXiv:2005.14282, 2020.

[4] Marianna Belotti, Stefano Moretti, Maria Potop-
Butucaru, and Stefano Secci. Game theoretical analysis
of Atomic Cross-Chain Swaps. PhD thesis, Caisse des

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

dépdts-Institut pour la recherche et Banque des terri-
toires, 2019.

Michael Borkowski, Daniel McDonald, Christoph Ritzer,
and Stefan Schulte. Towards atomic cross-chain token
transfers: State of the art and open questions within
tast. Distributed Systems Group TU Wien (Technische
Universit at Wien), Report, 2018.

Michael Borkowski, Christoph Ritzer, Daniel McDonald,
and Stefan Schulte. Caught in chains: Claim-first trans-
actions for cross-blockchain asset transfers. Technische
Universitdt Wien, Whitepaper, 2018.

Vitalik Buterin, Jeff Coleman, and Matthew Wampler-
Doty. Notes on scalable blockchain protocols (verson
0.3), 2015.

Dmitry Ermilov, Maxim Panov, and Yury Yanovich.
Automatic bitcoin address clustering. In 2017 16th
IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 461-466. IEEE, 2017.
Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and
Robbert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th symposium on networked systems
design and implementation, pages 45-59, 2016.

Ittay Eyal and Emin Giin Sirer. Majority is not enough:
Bitcoin mining is vulnerable. In International conference
on financial cryptography and data security, pages 436—
454. Springer, 2014.

Jianxi Gao, Daqing Li, and Shlomo Havlin. From a single
network to a network of networks. National Science
Review, 1(3):346-356, 2014.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The
bitcoin backbone protocol: Analysis and applications.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 281—
310. Springer, 2015.

Peter GaZi, Aggelos Kiayias, and Dionysis Zindros.
Proof-of-stake sidechains. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 139—-156. IEEE, 2019.
Thomas Hardjono, Alexander Lipton, and Alex Pent-
land. Towards a design philosophy for interoperable
blockchain systems. arXiv preprint arXiv:1805.05934,
2018.

Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM symposium on principles of
distributed computing, pages 245-254, 2018.

Yiming Jiang, Chenxu Wang, Yawei Wang, and Lang
Gao. A cross-chain solution to integrating multi-
ple blockchains for iot data management. Sensors,
19(9):2042, 2019.

Luo Kan, Yu Wei, Amjad Hafiz Muhammad, Wang
Siyuan, Gao Linchao, and Hu Kai. A multiple
blockchains architecture on inter-blockchain communica-
tion. In 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C),
pages 139-145. IEEE, 2018.

Ghassan O Karame, Elli Androulaki, and Srdjan Cap-
kun. Double-spending fast payments in bitcoin. In

[21]

Proceedings of the 2012 ACM conference on Computer
and communications security, pages 906-917, 2012.
Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros.
Proof-of-burn. In International Conference on Financial
Cryptography and Data Security, 2019.

Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Annual Interna-
tional Cryptology Conference, pages 357-388. Springer,
2017.

Aggelos Kiayias and Dionysis Zindros. Proof-of-work
sidechains. In International Conference on Financial
Cryptography and Data Security, pages 21-34. Springer,
2019.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 583-598. IEEE, 2018.

Pascal Lafourcade and Marius Lombard-Platet. About
blockchain interoperability. Information Processing Let-
ters, page 105976, 2020.

Victor S Miller. Use of elliptic curves in cryptography.
In Conference on the theory and application of crypto-
graphic techniques, pages 417—-426. Springer, 1985.
Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

Babu Pillai, Kamanashis Biswas, and Vallipuram
Muthukkumarasamy. Cross-chain interoperability among
blockchain-based systems using transactions. The Knowl-
edge Engineering Review, 35, 2020.

Marten Sigwart, Philipp Frauenthaler, Christof Spanring,
and Stefan Schulte. Decentralized cross-blockchain asset
transfers. arXiv preprint arXiv:2004.10488, 2020.
Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security
model revisited. arXiv preprint arXiv:1605.09193, 2016.
Iain Stewart. Proof of burn - bitcoin wiki. Available at:
https://en.bitcoin.it/wiki/Proof_of_burn, Dec 2012.
Gavin Wood. Polkadot: Vision for a heterogeneous multi-
chain framework. White Paper, 2016.

Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros,
Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez,
Aggelos Kiayias, and William J Knottenbelt. Sok:
Communication across distributed ledgers. Technical
report, IACR Cryptology ePrint Archive, 2019: 1128,
2019.

Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis
Panayiotou, Arthur Gervais, and William Knottenbelt.
Xclaim: Trustless, interoperable, cryptocurrency-backed
assets. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 193-210. IEEE, 2019.

Kaiwen Zhang and Hans-Arno Jacobsen. Towards de-
pendable, scalable, and pervasive distributed ledgers with
blockchains. In ICDCS, pages 1337-1346, 2018.

