The Burn-to-Claim cross-

blockchain asset transfer

protocol

Babu Pillai
School of ICT
Griffith University
Gold Coast, Australia

Kamanashis Biswas
Faculty of Law and Business
Australian Catholic University

Brisbane, Australia

babu.pillai @griffithuni.edu.au kamanashis.biswas@acu.edu.au z.hou@griffith.edu.au

Abstract—The future of multi-blockchain architecture depends
on the emergence of new protocols that achieve communication
between trustless cross-chain participants. However, interoper-
ability between blockchains remains an open problem. Existing
approaches provide integration through solutions using a middle-
ware system, which makes it harder to gain confidence mainly
in terms of security and correctness of the process. A cross-
chain protocol needs to provide a self-verifiable state-proof that
embeds trust in the transfer process. We propose a Burn-to-
Claim cross-chain protocol to seamlessly exchange assets between
networks. Our scheme transfers assets from one blockchain
system to another in a way that the asset is burned from the
source blockchain and claimed on the destination blockchain.
Our mechanism employs combinations of crypto mechanisms
such as digital signatures and time lock to operate the protocol in
a distributed manner. We provide an analysis which proves that
our cross-chain protocol transfers assets correctly and securely.

Index Terms—blockchain, interoperability, asset transfer,
cross-blockchain protocol

I. INTRODUCTION

Blockchain technology offers an immutable, decentralized,
and transparent mechanism for transaction processing. In-
terestingly, beyond its role as a protocol for exchanging
values within a network, one might reasonably assume that
a blockchain system should be able to transfer assets between
networks. However, the current architecture of this technology
limits the transaction within the same network. A blockchain
application cannot uniformly use multiple networks and obtain
a composition of their guarantees [1]. A core reason of
this issue is that each blockchain network has its own state
assumptions of the proof-problem [3], and without restrictions,
one network cannot verify the information in a different
network. Therefore, currently, seamless composition between
two blockchain networks is difficult [12].

The cross-blockchain integration would enable the in-
teroperability among distinct, potentially heterogeneous,
blockchains [8]. However, with the current protocols of
blockchain systems, it is difficult to have direct interoperability
between systems [4]. There is no method in the system to
provide a cross-chain value transfer; therefore, external third-
party services are the preferred solution [1, 12]. However,
the blockchain system cannot recognise and verify any such
process carried out by a third-party provider. Today most en-
terprise blockchain applications reside on private blockchains

Zhé Héu
School of ICT
Griffith University
Brisbane, Australia

Vallipuram Muthukkumarasamy
School of ICT
Griffith University
Gold Coast, Australia
v.muthu@griffith.edu.au

such as Hyperledger and Corda and unable to leverage the full
potential of the distributed ledger technology.

To address the above issues, we propose a built-in process
that is integrated with the protocol to carry out transactions and
facilitate interoperability between systems. We first formalise
the concept of interoperability from our previous work [13]
and then introduces the Burn-to-Claim cross-blockchain proto-
col — a built-in method to address cross-chain interoperability.
We define it as a protocol which consists of two components:
an exitTransaction to generate a self-verifiable proof and an
entryTransaction to verify the validity of the proof in order to
re-create the asset. The contribution of this paper are threefold:

o Protocol: We propose a protocol for cross-blockchain
asset transfer where transactions are performed in a
decentralised and trustworthy manner.

o Workflow: We propose a novel and simple workflow
which is flexible and can be adopted for digital asset
transfer among blockchain networks without violating the
key characteristics of the blockchain technology.

o Analysis: We perform a preliminary analysis to show
the correctness, security and fairness of the proposed
protocol.

A. Assumptions

The following assumptions are made in the proposed protocol:

o The underlying blockchain networks are secure with a
concept of transaction finality within finite time, after
which the transactions cannot be rolled back [2].

e The participants involved in the cross-communication
process ‘trust’ each other to a required minimum level
and are willing to process the transaction if valid proof
is presented by the other party. The required level of trust
varies depending on the application and to be agreed by
both parties.

o The network nodes are motivated to take part in the
respective proof-mechanism (mining process) on both the
chains.

e A transaction output carry a single output which cor-
responds to a single asset and the networks involved
recognize and form a common understanding of the assets
they are transacting.

Under these assumptions, once a transaction is broadcasted,
the network nodes verify the transaction and include it in
a block. A blockchain system tends to synchronise using a
protocol in which the network nodes constantly try to produce
new blocks and broadcast their achievements to the entire
network. In the case of cryptocurrencies, for instance, this
behaviour is motivated by mining rewards. Here also we
assume there is an appropriate incentive mechanism to support
participation by nodes.

II. THE BURN-TO-CLAIM PROTOCOL

In this section we formally define the proposed Burn-to-
Claim protocol and its primitives. A summary of notations
used in this paper is available under this Git repository’.

A. Communication between networks

The Burn-to-Claim protocol consists of two main functions
for the communication between networks: exitTransaction
which locks the asset and serves as a transfer-proof in the
source network, entryTransaction which verifies the validity
of the transfer-proof in order to re-create the asset in the
destination network.

In our protocol, the sender who wants to transfer the asset
must present a proof that the asset is locked. To achieve this,
we adopt the proof-of-burn protocol [10, 14], which presents
a mechanism where the sender transfers the asset to a non-
spendable burn-address and is able to present that transaction
as a proof for the locked asset.

Definition 1 (Burn-address). A burn-address given as f is
an address to which one can send assets, but from where
they can never be recovered because there is no private key
corresponding to that address.

The process of burning consists of sending crypto asset to an
address where they become inaccessible and useless. Typically,
these addresses are randomly generated, where the addresses
do not have a corresponding private key therefore the asset
at those addresses are not spendable. The burn protocol [10]
presents proofs such that if the underlying cryptographic
scheme is secure then the probability of finding a private key
for a given burn address is nearly negligible.

1) Exit transaction: The exit-transaction must be initiated
on the source network by the sender. This execution checks the
validity of the transaction and generates a transfer-proof. The
transaction-validity process checks the authenticity of the asset
and the owner’s ability to spend. The transfer-proof generator
produces a proof that the asset exists and it is locked while
the asset is in transit. This transaction aims to create an exit
proof for that asset in the source blockchain network. Having
an exit proof created by the system as part of the protocol will
ensure the system’s security. Moreover, the network comes to
a consensus about the asset transfer, thereby the authenticity
of the information is satisfied.

In our protocol, exitTransaction uses a conditional time-lock
with a secret code — the former determines a time frame for

Thttps://github.com/b-pillai/burn-to-claim

the transaction, and the latter is used to claim the asset in the
destination network. A time-lock is defined as a function that
locks the output of a transaction for a period of time such that
the asset cannot be spent until the time has elapsed?.

Our protocol requires the sender to generate a secret code y
using a random key generator function, keyGen(). Then the
secret code 7y is encrypted using the public key of the recipient
Kf’ before sharing with recipient. The encrypted secret code
is denoted by I'. We assume the public key information is
shared among users during the preparation stage.

Algorithm 1 exit-transaction-protocol

1: function exitTransaction(Tx(KS,der,ﬁ,v,T:z:T),H('y),o)
2: if exportVerifier(X de, v, 0) is true then

3 K3, —B:v

4: v is timelocked(v, t) at 8 in Ny

5: Ty (Tx, H(v), 0)

6 else

7 invalid transaction

8 end if

9: return transaction receipt

10: end function

The function exitTransaction defined in Algorithm 1 takes a
tuple of (Tx(K35, K2, , 8, v, Tx"), H(y), o) as inputs where
T'z includes the sender’s public key (K. 5) and address (K fdr),
burn-address (), asset (v) and the previous transaction (Tzh
in which the asset v was spent. H () represents the hash value
of secret code vy and o is the digital signature of the T'x .

Definition 2 (exportVerifier). The exportVerifier function con-
sists of two sub-functions spendVerifier and assetVerifier, it
returns true when both sub-functions return true, and it returns
false otherwise.

« spendVerifier:

— returns true if for the given K fdr from K]f
the function verify(Tz, K S o) returns true and
getAddress(K)) returns K2, ;

— returns false otherwise.

o assetVerifier:
S

o) s true and Tt is

— returns true if balance(X
included in a valid state;
— returns false otherwise.

If exportVerifier returns true then the transaction executes
the transfer of the asset to the given burn-address [with
conditions such that the asset is time-locked within the source
network for a defined time-lock period ¢ and the hashed secret
code H(~) is added to the data structure of the transaction.

2) Entry transaction: The purpose of the entry-transaction
is to recreate the asset in the destination network. An entry-
transaction must be initiated in the destination network by
the recipient. Upon initiating the entryTransaction with the
transfer-proof from source chain, the network nodes verify the
validity of the transfer-proof and recreate the asset.

Zhttps://bcoin.io/guides/cltv.html

Algorithm 2 entry-transaction-protocol

1: function entryTransaction((Tx(Kf,K ﬁT,B,U,TxT),F,O‘)
2 if importVerifier(Tz, Tx',0) and

3 (Tzt time-lock is under the time limit) and

4 decrypt(I,K*) = Tz'.H(v)) is true then

5: B — K& o
6
7

8

9

adr
Tz (Tx, H(v), 0)
else
invalid transaction
end if
10: return transaction receipt
11: end function

The function entryTransaction defined in Algorithm 2 takes
a tuple (T'z (KE, Kﬁir, B v, TxT), T', o) as input where
the T includes the recipient public key K%, the recipient
address K fdr, the burn-address [, the asset v and the previous
transaction Tz'; " represents the encrypted secret code and o

denotes the digital signature.

Definition 3 (importVerifier). The importVerifier consists of
two functions spendVerifier and proofVerifier, it returns true
when both sub-functions return true, and false otherwise.

« spendVerifier:

— returns true if for the given burn-address /5 from
K[the function verify(Tz, K, o) returns true and
getAddress(K) returns K%, (assuming the node
use a source chain version of getAddress function);

— returns false otherwise.

 proofVerifier:

— returns true if § is generated from K (ﬁr, balance(5)
= burn, Tz is included in a valid state:

— otherwise returns false.

A proofVerifier is an extended version of assetVerifier.
Here the nodes on the destination network need to verify the
proof from the source network. We assume that through the
gateway mechanism, the destination network nodes are able
to verify the proof. Through the Tz any gateway node can
access the specific transaction in the source network. Once the
importVerifier returns true, the mining nodes need to check the
time-lock and the secret code. We assume that both the source
and the destination network run on a global clock. If the time
is under the time-lock period and the hash of decrypted secret
code matches with the hash value embedded in the transaction,

the network awards the asset to the recipient address K7, .

B. Workflow of the protocol

This section presents a walk-through of the workflow of
the burn-to-claim protocol. We begin with a use case of
two blockchain systems which are self-sufficient and secure.
The two networks run different applications but they want
to interoperate. These networks may have distinct consensus
participants that employ different agreement protocols. It is
assumed that the majority of consensus participants in both
networks are honest. Here the assumption is that even though

these systems are not connected, they have enough credibility
which is governed by a protocol and have some common
agreements. For example, they can be two different businesses
with a collaborative business interest, different branches of a
company or different departments in an organisation. The main
objective of this paper is to address the cross-blockchain trans-
action proof-problem. Therefore, we focus on the construction
of consensus on how the transactions are verified, and on what
conditions the transactions are valid.

1) Network assumptions: To address the state proof-
problem, we made some assumptions about the network
participants and their ability to mine. We assume that the
cryptographic primitives of the networks are secure. For the
underlying network, we make the same assumptions as pre-
sented in [5, 11]. One assumption is that the nodes in sender
and receiver networks are synchronized with a global clock.

In the network of our model, some nodes are elected
as gateway nodes. We envision each blockchain as an au-
tonomous system, which communicates with each other via a
cross-blockchain protocol. To facilitate communication among
blockchains, the nodes can rely on decentralised integration
mechanisms that can identify and address cross-chain inte-
gration. This decentralised integration mechanism acts as a
verification method for the cross-blockchain protocol. The
architecture of our model can be seen as a number of net-
works (based on the topology) connected through a gateway
mechanism to create a network-of-networks (NoN) [6].

There will be multiple nodes which function as gateways on
the same network; therefore, they will be competing against
each other for the mining reward. We assume that not all
the nodes will verify the transaction, but a sufficient number
of them must do to satisfy the security of the system. The
other nodes will accept a gateway node’s proposal based on
the credibility of the gateway node in the network. We leave
further discussions on a decentralised integration mechanisms
for future work.

2) Example: We set an example where Alice (the sender
S in the blockchain network N7) wants to transfer an asset
to Bob (the recipient R in the blockchain network N,). Alice
first submits an exitTransaction to network N;. Network Ny
executes the transaction, effectively burns Alice’s asset in
network Ni. Bob notices that the asset has been burned
successfully and submits the proof of burn to network Ns.
Network N verifies the proof and if successful, recreates the
asset and assigns it to Bob’s account. Figure 1 shows a brief
overview of the protocol construction.

3) Preparation stage: In the preparation stage, first, Alice
S and Bob R require to exchange their public keys via a key
exchange mechanism. S uses the public key of R to encrypt
the secret code () and share the encrypted secret code (I')
with R to initiate entryTransaction. Then, they mutually agree
on the time-lock period ¢. After that, Alice S generates the
burn address (/3). Here, we describe the steps in detail.

In order to spend value in an address K4, a user needs to
prove the ownership of the public key that is used to generate
the address. That means any value sent to an address with

—
to
exitTransaction() Confi rr_natlon
perlod

(Kaar— B:v)

Alice (sender) S
Keygen() — secret-key y

encrypt(y, KI‘?) Sy /I\asset is burend

_ v(timelock —ty) — H(y)
1 ' [=
Prepare Commit

verify

time

S —

t

reclaimTransaction()

(B — Kzgy : V)\l/

5 DM@Dﬂ%

I
I
i S reclalm vafter t;
Sreveal y

miner get
\notify geey

verify / .
Execute
|

Yy
- if(Relaim v)R reveal ywithin t,

“ "if (not)

Q Mmﬂmﬁ - o

Bob (recipient) R
decrypt(y’, Kf) >y

(,B - Kﬂd?" Y

Figure 1.

entry T ransaffmn() [

2 Confirmation
period

A high level overview of the Burn-to-Claim protocol workflow. The boxes represent chained blocks along the time steps in the source and destination

networks. At the preparation stage, S generates and shares an encrypted secret code encrypt(y) with R. At the commit stage, S initiates the exitTransaction,
burning the asset to 3 generated from R’s address, then time-locks the transaction output with the hash value of H(v). After confirmation period R gets

notified with the previous transaction Tz’

. At the execution stage, R initiates exitTransaction, claiming asset v. To do that R must prove the relation with

[and reveal «y within the time-lock period. If R failed to claim the v, S reclaims the v after the time-lock period.

no private key can be considered as burned. However, how
do we know that an address does not have a private key?
To address this issue and to make a more specific proof in
our protocol, S uses R’s address to generate the burn address
which is given as getAddress(K %,) and returns 3. This will
guarantee that the address S does not have a private key in
the source network and (8 is more specific to the recipient R
because it is generated from R’s address. Therefore, we can
use such a transfer to burn address as a valid proof.

Now that we have the proof we need to add a provision
for retrieving the asset in case of an unsuccessful transfer.
For instance, the asset is burned on the source chain and
not recreated in the recipient network, or the asset is sent
to a wrong address. We name this property as reclaim-from-
burn and explain the process in Algorithm 4. To ensure
this correctness of this property, we impose a time-lock on
transaction output in the source network. This will stop the
sender from claiming the asset back before the recipient claims
the asset. The time-lock period is agreed based on factors such
as the network latency and consensus timing, which we refer
to as transit-time.

We also need to consider the double-spending problem
where a dishonest sender commits exit-transaction on the same
asset multiple times [9]. In order to prevent double-spending,
our protocol uses a secret code and a time-lock value. To claim
an asset, the recipient must reveal the secret code whereas the
sender is unable to reclaim an asset until the time-lock period
is expired.

4) Commit stage: In the commit stage, S creates and
broadcasts an exitTransaction to invoke Algorithm 2 in the
network V.

Algorithm 3 exit-transaction-time-key-lock condition
1: while (time-lock is true) do
2 if (R claim v) then
3 R reveal secret y to Ny
4 Nj.miner gets v from N,
5: Nj.miner claims his y-locked fee
6
7
8
9

> secret v is known to Ny & No
end if
: end while (after the t;,c1)
. if (R fail to claim v) then

10: S reveals v to Ny

11: S re-claim v

12: Np.miner claim his ~y-locked fee

13: > secret -y is known to Ny
14: end if

Algorithm 3 shows the transfer condition logic. The con-
dition here is that anyone claiming the transaction output
(includes the asset and the miner’s fee) must reveal the secret
code. Therefore, the transaction will be mined by the miners
who has access to the destination network’s data because they
need to get the secret code to claim the fee. That means if
there is no valid gateway node then this transaction will not
go through in the first place.

The time-key-lock condition mechanism allows only one
party to claim the asset at a time. For example, while the

Tz, output is time-locked in the source network, if R reveals
the secret code ~ in her network, the miner who mined this
transaction in the source network will reveal it in source
network to claim his fees; thereby the 7 is known to both
networks. After that, S will not be able to claim the asset.
Likewise, if R fails to claim the asset within the time frame,
then S reveals y after ¢;,.; expired in the source network to
reclaim the asset. In our design v is not known to the network;
therefore, once the v is revealed nobody will be able to claim
the asset even after ;,.; the expiry of ;5.

5) Execution stage: The execution stage has two possi-
bilities: either R claims the asset within the transit time-
lock period or S reclaims the asset after the time-lock period
expired.

a) R claims the asset: R constructs an entry-transaction
and broadcasts to No. If R can prove the ownership of K[t
and K fdr, the network will be able to process the transaction.
However, our protocol requires a solid evidence that S has
burned the asset v on the source network. Here R provides a
burn-address 3 and a previous transaction T'zf, which form

the proof of commit in the source chain.

Our protocol requires a mining process where some nodes
are able to mine in multiple blockchains. With that require-
ment, among n number of nodes m gateway nodes propose
this transaction and eventually one proposal will get accepted
by the network. We assume that these gateway nodes are
able to validate the transfer-proof with Tz, The nodes verify
that transaction occurred on the source chain by ensuring that
the transaction is contained in a block. This can be done by
checking the chain validity [7] of the block and the transaction.

If importVerifier returns true the network awards the asset v
to the recipient address K%, . That means by now the secret
code v is known to the network, and after that, the source
network miner will take it to the source network to claim his
fee, and then ~ is known to both the networks.

b) S reclaims the asset: In case the recipient has not claimed
the asset within the time-lock period, the sender gets notified
by the network or the mining node who mined the 7'z, and the
sender then invoke reclaimTransaction, which is is a variant
of entryTransaction and is defined in Algorithm 4, to claim
the asset back. The transaction first checks the signature via
verify(T'z, K fdr, o), then checks the time-lock period and
secret code hash. As we stated earlier, our protocol requires
some miners to mine in both the chains. Therefore, we assume
that miners are able to check with the network N, before
approving this transaction.

Algorithm 4 reclaim-transaction-protocol

1: function reclaimTransaction(('7’ q:(K;f K fdr,ﬁ,v,TxT),F,a)
2 if reclaim Verifier() is true and

3 Tz toek pass the time limit) and

4 decrypt(F,K;?) = Tzt . H(y)) is true then

5: 68— K fdr TV

6 else

7 invalid transaction

8 end if

9: return transaction receipt

10: end function

The function of reclaimVerifier consists of two sub-
functions spendVerifier and proofVerifier. The function check
if verify(T'x, Kﬁ, o) returns true and getAddress(K ﬁ) returns
KZE, . Then the proofVerifier checks the transfer proof of Tt
referring to if the balance(3) = burn and Tx' € B and B €
@ return true else return false. The reclaimTransaction can be
included with the entryTransaction but for clarity, we present

it as a separate transaction.

IIT. ANALYSIS

In this section, we analyse the correctness and security of
the Burn-to-Claim protocol. Cross-chain data guaranty/trust
is one of the most important means to enable interoper-
ability among blockchain networks. The integration process
for exchanging information may be based on other existing
techniques. But to build trust about the shared information we
must resolve specific properties of the individual transactions
involved in the exchange process; that is, security: a cryp-
tographic assurance of transfer commitment of transactions;
correctness: each successful transaction commits only one
valid outcome and fairness: either the transfer executes the
transfer of an asset or return the asset [2, 10].

It should be noted that the burn-address in our proposed pro-
tocol is not generated from a regular keypair, rather a unique
address is generated each time by combining the recipient
address and other parameters. Therefore, it is not spendable
in the current network. This means, with the signature scheme
of the underlying cryptocurrency, the asset burned in the
proposed scheme would remain unspendable.

Lemma 1 (Unspendability). A burn-address [is unspendable
with respect to a blockchain address protocol [11].

The main functionality of entryTransaction is to recreate
asset but only after the asset is burnt on the source chain.
In our protocol the asset must be permanently burned at the
commit stage. With the burn protocol and its property of
unspendability the asset is permanently burned before claiming
on the source chain.

Lemma 2 (Burn before claim). An asset v which is transferred
from Ny to No must be burned in Ny before a user can claim
it in No.

The sender who initiates the exit-transaction must own the
asset he is being transferred. In exitTransaction the exportVer-

ifier() checks the transaction validity and owner’s ability to
spend. This process must be carried by each mining node and
must reach the consensus of the network. Therefore, as long
as the network is secure, the participants can only exchange
the asset of their own.

Lemma 3 (Ownership). The function exitTransaction can only
be successfully executed if the sender owns the asset.

Theorem 1 (Security). The recipient network can rely on the
Burn-to-Claim exit-proof guarantee provided by the source
network.

The function exitTransaction transfers the asset v to a burn-
address 3 that is derived from the recipient R’s address K%, .
To claim v, the recipient must prove to the network that g is
derived from an address he owns. The function spendVerifier
checks the signature o to verify the K, and checks the whether
3 is derived from the given K, using the function getAddress.
Therefore, only the user who owns a private key associated
with K, can make the claim of the asset in the destination

adr
network.

Theorem 2 (Correctness). The exchange operation only ex-
change an asset to a correct recipient.

We assume that no adversary can obtain the private key of
a secure signature scheme, except with negligible probability.
As a result, the correctness of our protocol is dependent on a
probabilistic polynomial-time adversary can decipher the key.
Let o be a secure signature scheme then the possibility of
a distribution entity to decipher the K, from a K, or § is
unpredictable.

Theorem 3 (Fairness). The exchange operation should only
execute one outcome, either the exchange succeeds and the
asset is transferred to the recipient, or it is failed and the
asset returns to the sender.

Fairness in our context means that both parties receive the
item they expect or neither do. The fairness theorem only relies
on the fact that a standard hash function is collision resistant.
By using hash preimage as the secret code of the conditional
payment, the atomicity of the transactions can be guaranteed
without the participation of a trusted third party, so as to realise
fair cross-chain exchange.

IV. CONCLUSION

In this paper, we analyse the blockchain transaction protocol
and propose to add new features that help solve the problem
of interoperability. One of the critical features of our method
is that it presents an internal functionality for value/asset
exchange. An internal protocol provides a universal language,
and via such a protocol, blockchain users can communicate
directly and transfer various forms of data using standardised
pathways. Furthermore, we briefly showed that Burn-to-Claim
protocol is resilient to double-spending by its correctness and
fairness properties.

REFERENCES

[1] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro,
and Miguel Correia. A survey on blockchain interoper-
ability: Past, present, and future trends. arXiv preprint
arXiv:2005.14282, 2020.

[2] Marianna Belotti, Stefano Moretti, Maria Potop-
Butucaru, and Stefano Secci. Game theoretical analysis
of Atomic Cross-Chain Swaps. PhD thesis, Caisse des
dépots-Institut pour la recherche et Banque des terri-
toires, 2019.

[3] Michael Borkowski, Daniel McDonald, Christoph Ritzer,
and Stefan Schulte. Towards atomic cross-chain token
transfers: State of the art and open questions within
tast. Distributed Systems Group TU Wien (Technische
Universit at Wien), Report, 2018.

[4] Michael Borkowski, Christoph Ritzer, Daniel McDonald,
and Stefan Schulte. Caught in chains: Claim-first trans-
actions for cross-blockchain asset transfers. Technische
Universitdt Wien, Whitepaper, 2018.

[5] Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and
Robbert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th symposium on networked systems
design and implementation, pages 45-59, 2016.

[6] Jianxi Gao, Daqging Li, and Shlomo Havlin. From a single
network to a network of networks. National Science
Review, 1(3):346-356, 2014.

[7] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The
bitcoin backbone protocol: Analysis and applications.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques.

[8] Thomas Hardjono, Alexander Lipton, and Alex Pent-
land. Towards a design philosophy for interoperable
blockchain systems. arXiv preprint arXiv:1805.05934,
2018.

[9] Ghassan O Karame, Elli Androulaki, and Srdjan Cap-

kun. Double-spending fast payments in bitcoin. In

Proceedings of the 2012 ACM conference on Computer

and communications security, pages 906-917, 2012.

Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros.

Proof-of-burn. In International Conference on Financial

Cryptography and Data Security, 2019.

[11] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Annual Interna-
tional Cryptology Conference, pages 357-388. Springer,
2017.

[12] Pascal Lafourcade and Marius Lombard-Platet. About

blockchain interoperability. Information Processing Let-

ters, page 105976, 2020.

Babu Pillai, Kamanashis Biswas, and Vallipuram

Muthukkumarasamy. Cross-chain interoperability among

blockchain-based systems using transactions. The Knowl-

edge Engineering Review, 35, 2020.

Iain Stewart. Proof of burn - bitcoin wiki. Available at:

https://en.bitcoin.it/wiki/Proof_of_burn, Dec 2012.

